首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 510 毫秒
1.
Abstract Bacteria from an anaerobic enrichment reductively removed chlorine from the ortho- position of 2,3,6-trichlorobenzoic acid (2,3,6-TBA) producing 2,5-dichlorobenzoate (2,5-DBA). The strictly aerobic bacterium Pseudomonas aeruginosa JB2 subsequently used 2,5-DBA as a growth substrate in the presence of oxygen. The anaerobic dechlorinating microbial population was grown with P. aeruginosa JB2 in continuous culture. Inside the liquid culture, a nylon netting, on a stainless-steel support, contained vermiculite particles to provide a strictly anaerobic environment within the aerated culture. Complete mineralization of 2,3,6-TBA depended on the extent of oxygen input into the reactor. Under strictly anaerobic conditions 2,5-DBA and Cl were produced stoichiometrically through the reductive dechlorination of 2,3,6-TBA. This process of reductive dechlorination was not inhibited by (moderate) aeration resulting in an O2-concentration of 0.3–0.5 μM in the culture liquid.  相似文献   

2.
Abstract Bacteria from an anaerobic enrichment reductively removed chlorine from the ortho - position of 2,3,6-trichlorobenzoic acid (2,3,6-TBA) producing 2,5-dichlorobenzoate (2,5-DBA). The strictly aerobic bacterium Pseudomonas aeruginosa JB2 subsequently used 2,5-DBA as a growth substrate in the presence of oxygen. The anaerobic dechlorinating microbial population was grown with P. aeruginosa JB2 in continuous culture. Inside the liquid culture, a nylon netting, on a stainless-steel support, contained vermiculite particles to provide a strictly anaerobic environment within the aerated culture. Complete mineralization of 2,3,6-TBA depended on the extent of oxygen input into the reactor. Under strictly anaerobic conditions 2,5-DBA and Cl were produced stoichiometrically through the reductive dechlorination of 2,3,6-TBA. This process of reductive dechlorination was not inhibited by (moderate) aeration resulting in an O2-concentration of 0.3–0.5 μM in the culture liquid.  相似文献   

3.
The effect of yeast extract and its less complex substituents on the rate of aerobic dechlorination of 2-chlorobenzoic acid (2-ClBzOH) and 2,5-dichlorobenzoic acid (2,5-Cl2BzOH) by Pseudomonas sp. CPE2 strain, and of 3-chlorobenzoic acid (3-ClBzOH), 4-chlorobenzoic acid (4-ClBzOH) and 3,4-dichlorobenzoic acid (3,4-Cl2BzOH) by Alcaligenes sp. CPE3 strain were investigated. Yeast extract at 50 mg/l increased the average dechlorination rate of 200 mg/l of 4-ClBzOH, 2,5-Cl2BzOH, 3,4-Cl2BzOH, 3-ClBzOH and 2-ClBzOH by about 75%, 70%, 55%, 7%, and 1%, respectively. However, in the presence of yeast extract the specific dechlorination activity of CPE2 and CPE3 cells (per unit biomass) was always lower than without yeast extract, although it increased significantly during the exponential growth phase. When a mixed vitamin solution or a mixed trace element solution was used instead of yeast extract the rate of 4-ClBzOH dechlorination increased by 30%–35%, whereas the rate of 2,5-Cl2BzOH and 3,4-Cl2BzOH dechlorination increased by only 2%–10%. The presence of vitamins or trace elements also resulted in a specific dechlorination activity that was generally higher than that observed for the same cells grown solely on chlorobenzoic acid. The results of this work indicate that yeast extract, a complex mixture of readily oxidizable carbon sources, vitamins, and trace elements, enhances the growth and the dechlorination activity of CPE2 and CPE3 cells, thus resulting in an overall increase in the rate of chlorobenzoic acid utilization and dechlorination.  相似文献   

4.
The heterocontinuous flow cultivation technique was used for the study of 2-chlorobenzoic and 2,5-dichlorobenzoic acid degradation in soil columns inoculated withPseudomonas stutzeri. 2-Chlorobenzoic and 2,5-dichlorobenzoic acids disappeared from the soil columns within 8 and 12 d, respectively. The presence of the haloaromatics increased the survival of strain KS25 in soil. Viable cell numbers in the soil columns flushed with 2-chlorobenzoic and 2,5-dichlorobenzoic acids were 1.3 and 2 times higher, respectively, than those without the chlorobenzoic acids after 30 d of incubation.  相似文献   

5.
6.
Succinate-limited continuous cultures of an Azorhizobium caulinodans strain were grown on ammonia or nitrogen gas as a nitrogen source. Ammonia-grown cells became oxygen limited at 1.7 μM dissolved oxygen, whereas nitrogen-fixing cells remained succinate limited even at dissolved oxygen concentrations as low as 0.9 μM. Nitrogen-fixing cells tolerated dissolved oxygen concentrations as high as 41 μM. Succinate-dependent oxygen uptake rates of cells from the different steady states ranged from 178 to 236 nmol min−1 mg of protein−1 and were not affected by varying chemostat-dissolved oxygen concentration or nitrogen source. When equimolar concentrations of succinate and β-hydroxybutyrate were combined, oxygen uptake rates were greater than when either substrate was used alone. Azide could also used alone as a respiratory substrate regardless of nitrogen source; however, when azide was added following succinate additions, oxygen uptake was inhibited in ammonia-grown cells and stimulated in nitrogen-fixing cells. Use of 25 mM succinate in the chemostat resevoir at a dilution rate of 0.1 h−1 resulted in high levels of background respiration and nitrogenase activity, indicating that the cells were not energy limited. Lowering the reservoir succinate to 5 mM imposed energy limitation. Maximum succinate-dependent nitrogenase activity was 1,741 nmol of C2H4h−1 mg (dry weight)−1, and maximum hydrogen-dependent nitrogenase activity was 949 nmol of C2H4 h−1 mg (dry weight)−1. However, when concentration of 5% (vol/vol) hydrogen or greater were combined with succinate, nitrogenase activity decreased by 35% in comparison to when succinate was used alone. Substitution of argon for nitrogen in the chemostat inflow gas resulted in “washout,” proving that ORS571 can grow on N2 and that there was not a nitrogen source in the medium that could substitute.  相似文献   

7.
The uptake of phenol by pure cultures of Pseudomonas putida growing on phenol in continuous culture has been studied. The purpose of the experiments was to determine the kinetic parameters governing uptake of phenol by organisms growing on phenol in the high-conversion range by measuring uptake rates per unit biomass per unit time at various phenol concentrations. The microorganisms used were taken from a chemostat at residence times of 8, 5.25, 3.85, 3.2, 3, and 2.7h. The Monod–Haldane model and modifications of it were applied to the data and the best kinetic parameters were determined by nonlinear least-squares techniques. The best model was a two-parameters simplification of Monod–Haldane in which μ = K1S/(K2 + S2). The value of K1 was found to increase monotonically with the value of phenol concentration in the original chemostat with an apparent induction “threshold” of 0.1 mg/L.  相似文献   

8.
Summary A crude extract of Alcaligenes sp. CPE3 strain grown on 3,4-dichlorobenzoic acid metabolised 3- and 4-chlorobenzoic acid by reactions requiring O2 and NADH, and 3,4-dichlorobenzoic acid by a reaction requiring O2, NADH, FAD and FMN. The specific activity of the extract vs. 3-chlorobenzoic acid was described by the Michaelis-Menten kinetics, that vs. 4-chlorobenzoic acid was described by a substrate inhibitory kinetics and that vs. 3,4-dichlorobenzoic acid exhibited a two-peaked profile.  相似文献   

9.
The growth of a model plant pathogen, Pseudomonas syringae pv. tomato DC3000, was investigated using a chemostat culture system to examine environmentally regulated responses. Using minimal medium with iron as the limiting nutrient, four different types of responses were obtained in a customized continuous culture system: (1) stable steady state, (2) damped oscillation, (3) normal washout due to high dilution rates exceeding the maximum growth rate, and (4) washout at low dilution rates due to negative growth rates. The type of response was determined by a combination of initial cell mass and dilution rate. Stable steady states were obtained with dilution rates ranging from 0.059 to 0.086 h?1 with an initial cell mass of less than 0.6 OD600. Damped oscillations and negative growth rates are unusual observations for bacterial systems. We have observed these responses at values of initial cell mass of 0.9 OD600 or higher, or at low dilution rates (<0.05 h?1) irrespectively of initial cell mass. This response suggests complex dynamics including the possibility of multiple steady states. Iron, which was reported earlier as a growth limiting nutrient in a widely used minimal medium, enhances both growth and virulence factor induction in iron‐supplemented cultures compared to unsupplemented controls. Intracellular iron concentration is correlated to the early induction (6 h) of virulence factors in both batch and chemostat cultures. A reduction in aconitase activity (a TCA cycle enzyme) and ATP levels in iron‐limited chemostat cultures was observed compared to iron‐supplemented chemostat cultures, indicating that iron affects central metabolic pathways. We conclude that DC3000 cultures are particularly dependent on the environment and iron is likely a key nutrient in determining physiology. Biotechnol. Bioeng. 2010;105: 955–964. © 2009 Wiley Periodicals, Inc.  相似文献   

10.
Rhodobacter capsulatus strain 37b4 was grown phototrophically in chemostat cultures with 2 mM of ammonium chloride and 30 mM of malate at a constant dilution rate of 0.075 h-1. When illumination was raised from 3000 to 30000 lx, steady state biomass levels as well as malate uptake increased linearly with increasing illumination. Yet, in no case external ammonium could be detected in the culture fluid. Specific nitrogenase activity increased by a factor of ten between 3000 and 15000 lx and approached constancy above 15 000 lx. When samples were anaerobically withdrawn from the chemostat and subsequently grown in batch cultures under saturating light conditions, biomass increased to a constant level, independently of the illumination used in the previous chemostat culture. In fact, the specific nitrogen contents of cells were 0.195 and 0.154 (g of N per g of protein) with chemostat cultures adapted to 3000 and 30000 lx, respectively. With the former cultures, specific nitrogen contents decreased to 0.142 g of nitrogen per g of cell protein upon incubation in a batch system. This suggests the existence of free nitrogen compounds in cells of chemostat cultures, the concentrations of which decrease while protein levels increase with increasing energy supply. Intracellular amino acid pools revealed slightly elevated levels of major amino acids in low-light cultures as compared to high-light cultures. On the basis of intracellular levels of ammonium, however, no significant differences could be detected. Since, in addition, malate consumption increased linearly with increasing illumination, it is proposed that light controls nitrogenase in Rhodobacter capsulatus via the C/N ratio, as represented by malate and ammonium consumption, rather than directly.  相似文献   

11.
The influence of different physiological states on the glucose uptake and mineralization by Cytophaga johnsonae, a freshwater isolate, was examined in batch and chemostat cultures. At different growth rates under glucose limitation in chemostat cultures, different uptake patterns for 14C labeled glucose were observed. In batch culture and at high growth rates the glucose uptake potential showed a higher maximum velocity and a much lower substrate affinity than at lower growth rates. These findings and the results of short-term labeling patterns could be explained by two different glucose uptake mechanisms which enable the strain to grow efficiently both at high and low substrate concentrations. Substrate specificity studies showed that a structural change of the C-2 atom of the glucose molecule was tolerated by both systems. The consequences of these results for the ecophysiological classification of the Cytophaga group and for the operation of continuous cultures are discussed.  相似文献   

12.
Although the facultatively autotrophic acidophile Thiobacillus acidophilus is unable to grow on formate and formaldehyde in batch cultures, cells from glucose-limited chemostat cultures exhibited substrate-dependent oxygen uptake with these C1-compounds. Oxidation of formate and formaldehyde was uncoupler-sensitive, suggesting that active transport was involved in the metabolism of these compounds. Formate- and formaldehyde-dependent oxygen uptake was strongly inhibited at substrate concentrations above 150 and 400 M, respectively. However, autotrophic formate-limited chemostat cultures were obtained by carefully increasing the formate to glucose ratio in the reservoir medium of mixotrophic chemostat cultures. The molar growth yield on formate (Y=2.5 g ·mol-1 at a dilution rate of 0.05 h-1) and RuBPCase activities in cell-free extracts suggested that T. acidophilus employs the Calvin cycle for carbon assimilation during growth on formate. T. acidophilus was unable to utilize the C1-compounds methanol and methylamine. Formate-dependent oxygen uptake was expressed constitutively under a variety of growth conditions. Cell-free extracts contained both dye-linked and NAD-dependent formate dehydrogenase activities. NAD-dependent oxidation of formaldehyde required reduced glutathione. In addition, cell-free extracts contained a dye-linked formaldehyde dehydrogenase activity. Mixotrophic growth yields were higher than the sum of the heterotrophic and autotrophic yields. A quantitative analysis of the mixotrophic growth studies revealed that formaldehyde was a more effective energy source than formate.  相似文献   

13.
Nitrate and nitrite was reduced by Escherichia coli E4 in a l-lactate (5 mM) limited culture in a chemostat operated at dissolved oxygen concentrations corresponding to 90–100% air saturation. Nitrate reductase and nitrite reductase activity was regulated by the growth rate, and oxygen and nitrate concentrations. At a low growth rate (0.11 h–1) nitrate and nitrite reductase activities of 200 nmol · mg–1 protein · min–1 and 250 nmol · mg–1 protein · min–1 were measured, respectively. At a high growth rate (0.55 h–1) both enzyme activities were considerably lower (25 and 12 nmol mg–1 · protein · min–1). The steady state nitrite concentration in the chemostat was controlled by the combined action of the nitrate and nitrite reductase. Both nitrate and nitrite reductase activity were inversely proportional to the growth rate. The nitrite reductase activity decreased faster with growth rate than the nitrate reductase. The chemostat biomass concentration of E. coli E4, with ammonium either solely or combined with nitrate as a source of nitrogen, remained constant throughout all growth rates and was not affected by nitrite concentrations. Contrary to batch, E. coli E4 was able to grow in continuous cultures on nitrate as the sole source of nitrogen. When cultivated with nitrate as the sole source of nitrogen the chemostat biomass concentration is related to the activity of nitrate and nitrite reductase and hence, inversely proportional to growth rate.  相似文献   

14.
The glucose metabolism and the response of phosphofructokinase activity to oxygen were investigated using glucose-limited chemostat cultures ofE. coli K-12. With a dilution rate of 0.2 hr–1 and a glucose input concentration of 0.83 g/litre, 10 steady states were obtained ranging from 320 to 0 mm HgO2. Dissolved oxygen reached zero level at a pO2 of 25.8 mm Hg. The specific phosphofructokinase activity was constant above 28 mm Hg O2 and increased linearly at lower pO2 levels until it reached highest activity at 0 mm Hg O2. Cell dry weight also started to decrease linearly from 28 to 5.9 mm Hg O2, and fell sharply thereafter. Acid production rate did not start before pO2 reached 25.6 mm Hg, increased progressively with an additional sharp increase below 5.9 mm Hg O2. The main endproducts formed were acetic acid and ethanol with lactic acid appearing below 5.9 mm Hg O2. The results suggest an effect of oxygen on phosphofructokinase synthesis rather than an ATP inhibition of the enzyme.This work was supported by a grant from the Australian Research Grant Commission.  相似文献   

15.
In potassium-limited chemostat cultures of Paracoccus denitrificans the maximum specific growth rate (µmax) was found to depend on the input potassium concentration: At 0.21mM µmax was 0.10–0.11 h-1; at 0.44 mM 0.15–0.16 h-1 and at 0.66 mM 0.20–0.21 h-1. The plots of the specific rates of oxygen-, succinate-and potassium consumption against gave straight lines. The intracellular potassium concentration was a linear function of and varied from 1% (0.13 M) at a value of 0.034 h-1 to 2.2% (0.29 M) at =0.26 h-1; the potassium concentration gradient and the potassium concentration in the culture fluid in the steady state were dependent on the input potassium concentration. The potassium concentration gradient varied from 8,900-1,200. At all values 20–25% of the total energy production was used for potassium transport. 350,100 and 30 ATP molecules were calculated to be required to maintain one potassium ion intracellular during 1 h at values of 0.034, 0.197 and 0.257 h-1 respectively. It is concluded that the amount of circulation of potassium is dependent on the potassium concentration gradient or on the potassium concentration in the culture in the steady state. The dependency of µmax on the input potassium concentration was explained by the assumption that at low input potassium concentrations the net uptake of potassium (influx-efflux) is not rapidly enough to maintain the high potassium gradient in the existing cells and to establish it in the newly formed cells. At high values and at high input potassium concentrations µmax is limited by the specific rate of oxygen consumption, which was found to be 11–12 mmol O2 g dry weight-1 h-1 at µmax for potassium-, succinate-and sulphate-limited chemostat cultures.  相似文献   

16.
Somatic embryogenesis was achieved in callus cultures derived from immature cotyledonary explants ofHardwickia binata Roxb., a multipurpose leguminous tree, on semisolid modified Murashige and Skoog's (mMS) medium containing 2900 mg/l potassium nitrate (KNO3) supplemented with 4.64 µM kinetin (Kn) and 5.37µM a-naphthaleneacetic acid (NAA). Somatic embryos proliferated rapidly after transfer to MS basal medium supplemented with 2052.6 µM L-glutamine and 0.084 µM gibberellic acid (GA3). Maturation of somatic embryos was achieved on half-strength MS basal medium supplemented with 1.23 µM IBA and 2% (w/v) sucrose. Histological studies confirmed different developmental stages of somatic embryogenesis inHardwickia binata. Abbreviations BA N6-benzyladenine - Kn kinetin - NAA a-naphthaleneacetic acid - 2,4-D 2,4-dichlorophenoxyacetic acid - IBA indole-3-butyric acid - GA3 gibberellic acid - MS Murashige and Skoog (1962) medium - mMS modified Murashige and Skoog (1962) medium  相似文献   

17.
Alanine dehydrogenase in Arthrobacter fluorescens exhibited an allosteric behaviour and two K m values for ammonium were estimated. In batch cultures at different ammonium concentrations and in continuous culture following an NH4 + pulse, the level of ADH activity seems to be regulated by the ammonium concentration, high activities being observed when extracellular ammonium was in excess. The response to the growth rate of an ammonium-limited chemostat culture of A. fluorescens seems to indicate that alanine dehydrogenase and glutamine synthetase activities were inversely related. High activities of glutamate oxaloacetate transaminase and glutamate pyruvate transaminase have been found in crude extract of ammonium-limited cultures. From the results obtained in batch cultures grown at different glucose concentrations and in carbon-limited chemostat culture it appeared that the limitation by glucose influenced alanine dehydrogenase activity negatively. No glutamate dehydrogenase activity and no glutamate synthase activity could be detected with either NADH or NADPH as coenzymes.Abbreviations ADH alanine dehydrogenase - GS glutamine synthetase - GDH glutamate dehydrogenase - GOGAT glutamine oxoglutarate aminotransferase - GOT glutamate oxaloacetate transaminase - GPT glutamate pyruvate transaminase  相似文献   

18.
Summary The present study describes the growth of Pseudomonas putida cells (ATCC 33015) in batch and continuous cultures on two toxic substrates; toluene and m-toluic acid as sole carbon and energy sources. In fed-batch cultures on m-toluic acid up to 3.55 g cell dry weight/1 were achieved with a maximal specific growth rate (max) of 0.1 h-1. The average cellular yield was 1.42 g cell dry weight/g m-toluic acid utilized. When liquid toluene was added to shake-flask cultures in the presence of 0.7 g/1 m-toluic acid, the average cellular yield obtained was 1.3 g cell dry weight/g toluene utilized and the max was 0.13 h-1. Growth on toluene vapour in the presence of 0.7 g/l m-toluic acid in batch cultures resulted in a cellular yield of 1.28 g cell dry weight/g toluene utilized, with growth kinetics almost identical to those with liquid toluene (max liquid=0.13 h-1, max vapour=0.12 h-1). The maximal biomass concentration was 3.8 g cell dry weight/l, obtained in both cases after 100 h of incubation. Pseudomonas putida was grown in a chemostat initially on 0.7 g/l m-toluic acid and vapour toluene and then in the steady state on toluene as the sole source of carbon and energy. Toluene was added continuously to the culture as vapour with the inflowing airstream. Chemostat cultures could be maintained at steady state for several months on toluene. The maximal biomass concentration obtained in the chemostat culture was 3.2 g cell dry weight/l. The maximum specific growth rate was 0.13 h-1, with a cellular yield of 1.05 g cell dry weight/g toluene utilized. Approximately 70% of the toluene consumed was converted into biomass, and the remainder was converted to CO2 and unidentified byproducts.  相似文献   

19.
The accumulation of biofilm by Acetobacterium sp. during continuous culture in an upflow anaerobic filter (UAF) growing on methanol-formate was the result of space velocity and inlet concentrations of substrate and Co+2. To achieve good development of biofilm, a space velocity of 0.38 h–1, inlet substrate concentrations of 125 mM of both methanol and formate, and Co+2 at 0.16 mM were required. Cell productivities in the effluent of the UAF-reactor were about 6-fold higher than in chemostat cultures (0.20 g l–1 h–1 for UAF and 0.035 g l–1 h–1 for chemostat) (previous studies), and the maximum vitamin B12 specific concentration was 5.1 mg g cell–1.  相似文献   

20.
With a glucose-limited chemostat culture of Bacillus stearothermophilus, increasing the incubation temperature progressively from 45°C to 63°C led to a progressive marked increase in the maintenance rates of glucose and oxygen consumption. Hence, at a fixed low dilution rate the yield values with respect to glucose and oxygen decreased substantially with increased temperature. However, the apparent Y glucose max and values did not decrease but actually increased with temperature, being highest at 63°C (i.e., close to the maximum growth temperature). With glucose-sufficient cultures growing at a fixed low dilution rate (0.2 h–1) and at their optimum temperature (55°C), glucose and oxygen consumption rates invariably were higher than that of a corresponding glucose-limited culture. Cation (K+ or Mg2+)-limited cultures expressed the highest metabolic rates and with the K+ limited culture this rate was found to be very markedly temperature dependent. As the temperature was increased from 45°C to 63°C the rate of glucose consumption increased 1.8-fold, and that of oxygen consumption by 3.7-fold. The culture pH value also exerted a noticeable effect on the metabolic rate of a glucose-limited culture, particularly at the extremes of pH tolerance (5.5 and 8.5, respectively). A K+-limited culture was less affected with respect to metabolic rate by the culture pH value though the steady state bacterial concentration, and thus the cellular K+ content, changed substantially. These results are discussed in relation to previous findings of the behaviour of this organism in batch culture, and to the behaviour of other thermophilic Bacillus species in chemostat culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号