首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sorghum leaf development was analysed at plant level by analysing the time-course of elongation and identifying the beginning and end of the elongation phases of each leaf blade. This was done with destructive and non-destructive measurements in 14 experiments carried out during several growing periods in Southern France and Sahelian Africa. Elongation of each blade was characterized by the succession of a nearly exponential phase and a linear phase. For a given blade and provided that time was expressed in thermal units, initiation, beginning and end of the linear phase, and time-courses of elongation rate were strikingly similar in all experiments, except in environments with a maximum air temperature close to 40 degrees C and a maximum vapour pressure deficit close to 6 kPa. The relative elongation rate during the exponential phase declined with leaf number from 0.08 to 0.02 degrees Cd(-1), while the duration of this phase increased from 140 to 320 degrees Cd. By contrast, the absolute elongation rate during the linear phase was nearly constant from leaf 8 onwards. This phase was shorter than the exponential phase regardless of leaf position, but accounted for the largest part of blade length. A strict pattern of leaf development was observed at the whole plant level, whereby dates of elongation events and leaf and ligule appearance, represented on a thermal time scale, were linearly related to phytomer number. This pattern exhibited a simultaneous elongation cessation of the last-formed leaves and a mismatch between real and apparent (from leaf to ligule appearance) elongation duration.  相似文献   

2.
Leaf growth responses to N supply and leaf position were studied using widely-spaced sunflower plants growing under field conditions. Both N supply (range 0.25 to 11.25 g added N per plant) and leaf position significantly (p=0.001) affected maximum leaf area (LAmax) of target leaves through variations in leaf expansion rate (LER); effects on duration of expansion were small. Specific leaf nitrogen (SLN, g N m-2) fell quite rapidly during the initial leaf expansion phase (LA < 35% LAmax) but leveled off during the final 65% increase of leaf area. This pattern held across leaf positions and N supply levels. Leaf nitrogen accumulation after 35% LAmax continued up to achievement of LAmax; reductions in the higher SLN characteristic of the initial phase were insufficient to cover the nitrogen requirements for expansion during the final phase. LER in the quasi-linear expansion phase (35 to 100% of LAmax) was strongly associated with SLN above a threshold that varied with leaf position (mean 1.79±0.225 g N m-2). This contrasts with the response of photosynthesis at high irradiance to SLN, which has previously been shown to have a threshold of 0.3 g N m-2; in the present work saturation of photosynthetic rate was evident when SLN reached 1.97 g N m-2. Thus, once the area of a leaf exceeds 35% of LAmax, expansion proceeds provided SLN values are close to the levels required for maximum photosynthesis. However, growth of leaves during the initial expansion phase ensures a minimum production of leaf area even at low N supply levels.  相似文献   

3.
The expansion of individual leaves was examined in 19 genotypes of potato (Sofunum tuberosum L.) grown either with irrigation or droughted from the time of plant emergence. Drought reduced the thermal time from emergence to leaf appearance in 10 genotypes but had no significant effect in the other genotypes. In all the genotypes, final size of leaves was reduced by drought, but the magnitude of the effect differed significantly (P < 0.001) with genotype. In the droughted treatment, the final size of leaves was correlated (P < 0.001) with the maximum rate of leaf expansion suggesting that reductions in final size of leaves were the result of reduced expansion rate rather than of effects on the duration of expansion. Both the constant and the slope of the relation between leaf expansion rate and soil moisture deficit differed between genotypes. Osmotic adjustment was limited, maximally 0.16 MPa, and did not correlate with the ability to maintain leaf expansion with increasing soil moisture deficit.  相似文献   

4.
Fournier  C.; Andrieu  B. 《Annals of botany》2000,86(3):551-563
The kinetics of elongation of individual internodes of maizestems were studied under field conditions. Thermal time coursesof internode length were recorded using non-destructive methods,based on direct measurement of X-ray photographs or on indirectestimates using heights of leaf collars. These data were complementedby serial dissections of maize stems, and by precise observationof the process of sheath emergence, to specify its role in thekinetics of internode elongation. The kinetics of elongationwere found to be composed of four phases. The rate of elongationrises exponentially during phase I, and then increases sharplyduring a short period (phase II), which is followed by a majorperiod of constant growth rate (phase III) and a shorter periodin which the rate declines (phase IV). During phase I, elongationappears to be integrated at the level of the whole apical cone.From phase II onwards, elongation becomes determined at thelevel of the phytomer. The emergence of the sheath attachedto the internode appears to be a possible trigger for the transitionbetween phase I and phase II, and it may also be involved invariation in final length among phytomers. Copyright 2000 Annalsof Botany Company Zea mays L., internode, elongation, modelling, dynamics, X-rays, collar, phytomer, stem, thermal time, phasic development  相似文献   

5.
This paper describes mathematically the effects of temperatureand position on the expansion of leaves along a kiwifruit (Actinidiadeliciosa) shoot, taking into account shoot morphology. Theleaves were grouped into three zones along the shoot: initialcluster leaves (first zone); the rest of the leaves that werepreformed during the previous season (second zone); and leavesthat were initiated during the current season (third zone).After opening of the initial cluster, the leaves appeared atconstant rates for each of the two temperature treatments considered.The expansion of individual leaves was modelled by a growthfunction with the parameters: final area; duration of the growthwindow; centre of the growth window (timing of expansion); andlower asymptote. Within the first two zones, the pattern ofleaf expansion was affected by nodal position, with basal leaveshaving higher initial rates of expansion than distal leaves.The timing of expansion was linear with respect to the nodalposition within each of the zones, with the slope independentof temperature for the first zone. The slopes of the timingof expansion for the second and third zones depended on temperatureand were correlated for each temperature treatment. Final leafarea was a function of leaf position in the first zone and afunction of timing of leaf expansion for distal leaves startingfrom leaf 10. Temperature had no effect on final leaf area inthe first zone. For the rest of the leaves, temperature affectedfinal leaf area indirectly, through the timing of leaf expansion.The effect of temperature on the growth window of individualleaves within the first zone was less than that for the restof the leaves. However, simulated values for the total leafarea of shoots using the average shoot growth window showedgood agreement with experimental values.Copyright 2001 Annalsof Botany Company Actinidia deliciosa‘Hayward’, shoot development, individual leaf area, temperature effect, positional effects, modelling  相似文献   

6.
Abstract. The effect of nitrate supply upon leaf area development in willow ( Salix viminalis ) was investigated. Rooted cuttings were grown in culture solution at two different rates of exponentially-increasing nitrate supply and with free access to other nutrients. During the lag-phase in attaining stable nutrition, the rate of production of unfolded leaves, in the treatment with poorer N-supply, decreased. After acclimation to the different N-availabilities, the rate of dry matter increase per plant nitrogen was constant and the same in both treatments. The ratio of total leaf area to total amount of nitrogen in the plant was slightly higher in the treatment with poorer nitrogen supply. During the exponential (stable) phases of growth, nearly all the increase in total leaf area was attributable to main-stem leaves; large numbers of leaves on axillary shoots in the treatment with better N-supply contributed little to the total area. During the stable growth phase, the rate of production of unfolded leaves was the same in both treatments. Higher maximum values of relative rate of increase in area of single leaves were found with a better N-supply and at higher leaf positions on the main stem. The duration of leaf expansion was not much affected by N-supply. Final leaf size was greater at higher positions on the main-stem. Within a treatment (investigated for poorer N-supply), differences in final leaf size were proportional to differences in numbers of epidermal cells. Final leaf size was greater, at the same node, in the treatment with better N-supply. Better N-availability had increased the final size but not the number of epidermal cells. It was concluded that the higher exponential rate of total area increase with a better N-supply was largely associated with higher rates of expansion in epidermal cells.  相似文献   

7.
In crop species, the impact of temperature on plant development is classically modelled using thermal time. We examined whether this method could be used in a non-crop species, Arabidopsis thaliana, to analyse the response to temperature of leaf initiation rate and of the development of two leaves of the rosette. The results confirmed the large plant-to-plant variability in the studied isogenic line of the Columbia ecotype: 100-fold differences in leaf area among plants sown on the same date were commonly observed at a given date. These differences disappeared in mature leaves, suggesting that they were due to a variability in plant developmental stage. The whole population could therefore be represented by any group of synchronous plants labelled at the two-leaf stage and followed during their development. Leaf initiation rate, duration of leaf expansion and maximal relative leaf expansion rate varied considerably among experiments performed at different temperatures (from 6 to 26 degrees C) but they were linearly related to temperature in the range 6-26 degrees C, with a common x-intercept of 3 degrees C. Expressing time in thermal time with a threshold temperature of 3 degrees C unified the time courses of leaf initiation and of individual leaf development for plants grown at different temperatures and experimental conditions. The two leaves studied (leaf 2 and leaf 6) had a two-phase development, with an exponential phase followed by a phase with decreasing relative elongation rate. Both phases had constant durations for a given leaf position if expressed in thermal time. Changes in temperature caused changes in both the rate of development and in the expansion rate which mutually compensated such that they had no consequence on leaf area at a given thermal time. The resulting model of leaf development was applied to ten experiments carried out in a glasshouse or in a growth chamber, with plants grown in soil or hydroponically. Because it predicts accurately the stage of development and the relative expansion rate of any leaf of the rosette, this model facilitates precise planning of sampling procedures and the comparison of treatments in growth analyses.  相似文献   

8.
BACKGROUND AND AIMS: Plant architecture and its interaction with agronomic practices and environmental constraints are determinants of the structure of the canopy, which is involved in carbon acquisition and fruit quality development. A framework for the quantitative analysis of grapevine (Vitis vinifera) shoot architecture, based on a set of topological and geometrical parameters, was developed for the identification of differences between cultivars and the origins of phenotypic variability. METHODS: Two commercial cultivars ('Grenache N', 'Syrah') with different shoot architectures were grown in pots, in well-irrigated conditions. Shoot topology was analysed, using a hidden semi-Markov chain and variable-order Markov chains to identify deviations from the normal pattern of succession of phytomer types (P0-P1-P2), together with kinematic analysis of shoot axis development. Shoot geometry was characterized by final internode and individual leaf area measurements. KEY RESULTS: Shoot architecture differed significantly between cultivars. Secondary leaf area and axis length were greater for 'Syrah'. Secondary leaf area distribution along the main axis also differed between cultivars, with secondary leaves preferentially located towards the basal part of the shoot in 'Syrah'. The main factors leading to differences in leaf area between the cultivars were: (a) slight differences in main shoot structure, with the supplementary P0 phytomer on the lower part of the shoot in 'Grenache N', which bears a short branch; and (b) an higher rate and duration of development of branches bearing by P1-P2 phytomers related to P0 ones at the bottom of the shoot in 'Syrah'. Differences in axis length were accounted for principally by differences in individual internode morphology, with 'Syrah' having significantly longer internodes. This trait, together with a smaller shoot diameter, may account for the characteristic 'droopy' habit of 'Syrah' shoots. CONCLUSIONS: This study highlights the architectural parameters involved in the phenotypic variability of shoot architecture in two grapevine cultivars. Differences in primary shoot structure and in branch development potential accounted for the main differences in leaf area distribution between the two cultivars. By contrast, shoot shape seemed to be controlled by differences in axis length due principally to differences in internode length.  相似文献   

9.
Plasticity of petioles of white clover (Trifolium repens) to blue light   总被引:1,自引:0,他引:1  
Petiole response of white clover to variations in blue light (BL) was studied on the main axis and on primary and secondary branches. The objectives of the present work were to determine (1) the time course of petiole response to BL and (2) whether these responses were dependent on petiole location. Under BL, clover had shorter petioles, and the switch to conditions without BL increased the length of forthcoming petioles. The fitting of a logistic function was used to compare the effect of BL on final petiole length, maximum elongation rate and the duration of petiole elongation between axes and phytomers. Petiole response to BL was not dependent on its location within the plant (axis type or phytomer position along the axis). A reduction in BL induced a rapid increase in leaf elongation rate, despite a small decrease in the duration of petiole elongation. Moreover, petiole response was dependent on petiole stage of development: the increase in the maximum rate of petiole elongation was inversely proportional to the petiole stage of development at the time of the switch. We conclude that the effects of BL on petiole elongation were not dependent on its position within the plant, whereas internode elongation resulted from the integration of light environment at the plant level. The difference between the responses of orthotropic and plagiotropic organs of clover to BL is discussed in relation to their structural function and localisation in the canopy.  相似文献   

10.
BACKGROUND AND AIMS: It is well known that plant aerial development is affected by light intensity in terms of the date of flowering, the length of stems and petioles, and the final individual leaf area. The aim of the work presented here was to analyse how shade-induced changes in leaf development occur on a dynamic basis from the whole rosette level to that of the cells. METHODS: Care was taken to ensure that light intensity was the only source of micro-meteorological variation in the study. The dynamics of leaf production, rosette expansion, individual leaf area expansion and epidermal cell expansion were analysed in Arabidopsis thaliana plants grown under two light intensities in three independent experiments. KEY RESULTS: The total area of rosette leaves was reduced by the shading treatment. Both the number of leaves produced and their individual leaf areas were reduced. The reduction in leaf number was associated with a reduction in leaf initiation rate and the duration of the phase of leaf production. The reduction in individual leaf area was associated with a reduction in leaf expansion rate and an increase in the duration of leaf expansion. The changes in leaf expansion dynamics were accompanied by a decrease in epidermal cell number which was partly compensated for by an increase in epidermal cell area. Overall, the whole rosette leaf expansion rate was reduced by shading, whereas the total duration of rosette leaf expansion was unaffected. This was mainly due to the accumulation of the increases in the durations of expansion of each individual leaf which was associated with an increase in cell expansion. CONCLUSIONS: The dynamic analysis presented here reveals a new shade-adaptative response mediated via the control of area expansion at the cell, organ and whole plant levels.  相似文献   

11.
We have tested whether the effects of temperature on sunflower leaf growth could be documented by using thermal time. The rates of leaf expansion and of cell division were analysed in leaves located at two positions on the stem, and a spatial analysis of expansion rate was carried out. Experiments were performed in growth chamber (stable conditions), in the field or in a greenhouse (fluctuating conditions). We compared three methods for characterizing the rate and the duration of expansion. Responses to leaf temperature were consistent only when expansion was characterized as a two-phase process — a period of exponential expansion (constant relative expansion rate, RER ) followed by a decrease in RER . RER and relative cell division rate ( RDR ) responded linearly to temperature with a common response curve for all studied conditions. This response curve was also common to all studied zones within a leaf and to leaves at two positions on the stem. The reciprocals of the durations of the periods of exponential expansion, non-zero expansion and non-zero division were also linearly related to leaf temperature with common response curves in a given leaf zone. The x -intercepts of all these response curves and of the response curve of leaf initiation rate to temperature did not significantly differ in an analysis of covariance, with a common value of 4·8 °C. The expression of time in cumulative degree days, with a base temperature of 4·8 °C, resulted in a unique time course of RER and cell division rate regardless of temperature. These results suggest that a powerful 'program' of leaf development exists in a sunflower plant.  相似文献   

12.
It is commonly stated that nitrogen (N) influences biomass accumulation in plants. For trees, however, a precise characterisation of shoot response to N and its impact on architecture is lacking. We attempted to study on the phytomer scale the effects of N limitation on shoot growth components, i.e. leaf emergence rate, final internode length and branching on the main and secondary axes of 1-year-old peach trees [Prunus persica (L.) Batsch]. Trees were grown on recycled nutrient solutions in which N concentration was restored once a week. We used two hydroponic set-ups in which weekly N availability, i.e. amount of N per tree, differed being either low (N1) or high (N2). Net N availability was defined weekly as the relative amount of N remaining in each set-up before solution replenishment. It declined with time and three periods of contrasting net N availability were identified. During these periods, leaf emergence rate and final internode length were similar on the main axis of N1 and N2 trees, so too was the distribution of secondary axes along the main axis. Secondary axes responded to N limitation by decreasing their growth components according to their position along the main axis. Differences were most important for basal secondary axes. Leaf emergence rate and final internode length responded similarly to N availability depending on axis order and position in the tree. It was concluded that N availability, particularly during the period of maximum growth of axes, influenced the shoot growth components and thus tree architecture.  相似文献   

13.
We analyzed the effect of short-term water deficits at different periods of sunflower (Helianthus annuus L.) leaf development on the spatial and temporal patterns of tissue expansion and epidermal cell division. Six water-deficit periods were imposed with similar and constant values of soil water content, predawn leaf water potential and [ABA] in the xylem sap, and with negligible reduction of the rate of photosynthesis. Water deficit did not affect the duration of expansion and division. Regardless of their timing, deficits reduced relative expansion rate by 36% and relative cell division rate by 39% (cells blocked at the G0-G1 phase) in all positions within the leaf. However, reductions in final leaf area and cell number in a given zone of the leaf largely differed with the timing of deficit, with a maximum effect for earliest deficits. Individual cell area was only affected during the periods when division slowed down. These behaviors could be simulated in all leaf zones and for all timings by assuming that water deficit affects relative cell division rate and relative expansion rate independently, and that leaf development in each zone follows a stable three-phase pattern in which duration of each phase is stable if expressed in thermal time (C. Granier and F. Tardieu [1998b] Plant Cell Environ 21: 695–703).  相似文献   

14.
Genetic variability in the plasticity of leaf area expansion in response to water deficit has been reported in Arabidopsis thaliana. Here, the objective was to identify the underlying dynamic and cellular processes involved in this variability. Twenty-five accessions were subjected to identical soil water deficit treatments. In all accessions, the plasticity of leaf production was low compared with that of individual leaf expansion. A subset of accessions was selected for further dissection of individual leaf expansion into its underlying variables: the rate and duration of leaf expansion and epidermal cell number and area. In all accessions, water deficit had opposite effects on the rate and duration of leaf expansion. The accumulation of these effects was reflected in changes in final leaf area. At the cellular level, moderate water deficits had opposite effects on cell number and cell size, but more severe ones reduced both variables. The importance of these opposing effects is highlighted by the behaviour of the accession An-1, for which the compensation between the decrease in leaf expansion rate and the increase in the duration of expansion is total. This dynamic plasticity in response to water deficit is not detectable when only final measurements are done.  相似文献   

15.
The effects of temperature on leaf growth of sugar beet varieties   总被引:1,自引:0,他引:1  
Leaf growth of nine varieties of sugar beet (Beta vulgaris L.) was studied at constant temperatures of 7, 11, 15 and 20·C, using generalised logistic curves fitted to the data to estimate the parameters of growth. The rate of leaf appearance increased linearly with temperature and was the same in all varieties. There were differences between varieties in the weighted mean rates of expansion of leaf area per plant (ā), the temperature coefficient of ā and the leaf area duration (D); these differences were caused more by differences in rates of expansion and final sizes of individual leaves than by differences in rates of leaf production. The growth of the first six leaves produced by each plant was examined in detail. The greater size of successive leaves of plants and genotypic differences between comparable leaves were more attributable to differences in the rate than differences in the duration of leaf expansion. Increasing temperatures increased leaf size because they accelerated the rate of expansion more than they shortened the duration of the expansion phase. It is inferred that all effects arose through differences in the initial sizes of leaves before they unrolled from the shoot apex. Dry matter production was proportional to D but was partitioned more to the storage root at the colder temperatures. This may have been related to the differential effects of temperature on cell division and expansion and the relative contribution of these two processes to the final sizes of the leaves and storage root.  相似文献   

16.
A precise knowledge of the temporal and spatial distributions of cell division and tissue expansion is essential for appropriate leaf sampling in omics studies and for analyses of plant–environment relations. Elongating leaves of rice were studied during their whole development for elongation rate, distribution of cell length, cell production rate and spatial distribution of growth in the leaf. In seven genotypes, the pattern of leaf elongation rate followed three phases: (1) an exponential increase before leaf appearance; (2) a short phase (2–4 d at 20 °C) with a stable leaf elongation rate around leaf appearance; and (3) a phase of 8–10 d with a progressive decrease in elongation rate. The profile of cell length along the leaf changed with time during the first and last phases, but was time invariant around appearance. We propose a method adapted to non-steady elongation based on anatomical measurements, which was successfully tested by comparing it with the pricking method. It allowed analysis of the change with time in the spatial distribution of growth from initiation to end of leaf growth. The length of leaf zones with cell division and tissue elongation varied with time, with maximums of 21 and 60 mm respectively around leaf appearance.  相似文献   

17.
An assessment of the growth rate spectrum based on a longitudinal weight study of golden hamsters was undertaken over the preweaning period. The period covered 23 days with data probes at 24-hourly intervals and encompassed 16 litters providing a birth number of 120 young and a weaning survival number of 82. Subsequent analysis directed initially at the pooled or averaged data showed sex differences with males gaining weight faster than females. Further analysis showed the total period to have three definitive break-points and therefore four phases of growth activity. The segmented linear regression line calculations showed that the phasic duration of males in the second and third phases were two days later than the females. Following data-analysis adjustments and taken into account aberrations of the sample, final indications pointed to the preweaning hamster growth spectrum as quadrophasic, exhibiting a stable first phase, a second and third phase terminating earlier in females and a final weaning weight being heavier in males. The growth curves demonstrated a 'U' shaped outline and formed an integral part of hamster preweaning precocity.  相似文献   

18.
When metals were added in a pulse mode to methylotrophic-methanogenic biomass, three methane production rate phases were recognized. Increased concentrations of Ni and Co accelerated the initial exponential and final arithmetic increases in the methane production rate and reduced the temporary decrease in the rate. When Ni and Co were added continuously, the temporary decrease phase was eliminated and the exponential production rate increased. We hypothesize that the temporary decrease in the methane production rate and the final arithmetic increase in the methane production rate were due to micronutrient limitations and that the precipitation-dissolution kinetics of metal sulfides may play a key role in the biovailability of these compounds.  相似文献   

19.
Fournier  C.; Andrieu  B. 《Annals of botany》2000,86(6):1127-1134
The dynamics of elongation of individual maize internodes havepreviously been characterized under standard agronomic conditions.In this paper these dynamics are compared with those under ashading treatment. Shading was applied after the tip appearanceof leaf 6, using a black net that transmitted 20% of light,without altering spectral composition. Internode length wasdetermined as a function of thermal time by measuring the verticaldisplacement of individual leaf collars. Shading slowed plantdevelopment and caused significant reductions in internode length.The onset of the linear phase of elongation was delayed by shading,but its duration was not affected. The reduction in the linearelongation rate was almost totally responsible for the reductionin the final length of phytomers in the shade treatment. Theco-ordination between collar emergence and the onset of linearelongation remained. These results support the contention thatthe kinetics of internode elongation are controlled by the emergenceof leaf collars. Copyright 2000 Annals of Botany Company Zea mays L., internode, elongation, dynamics, model, shade, light, phytomer, stem, thermal time, photomorphogenesis  相似文献   

20.
We have investigated the spatial distributions of expansion and cell cycle in sunflower (Helianthus annuus L.) leaves located at two positions on the stem, from leaf initiation to the end of expansion. Relative expansion rate (RER) was analyzed by following the deformation of a grid drawn on the lamina; relative division rate (RDR) and flow-cytometry data were obtained in four zones perpendicular to the midrib. Calculations for determining in situ durations of the cell cycle and of S-G2-M in the epidermis are proposed. Area and cell number of a given leaf zone increased exponentially during the first two-thirds of the development duration. RER and RDR were constant and similar in all zones of a leaf and in all studied leaves during this period. Reduction in RER occurred afterward with a tip-to-base gradient and lagged behind that of RDR by 4 to 5 d in all zones. After a long period of constancy, cell-cycle duration increased rapidly and simultaneously within a leaf zone, with cells blocked in the G0-G1 phase of the cycle. Cells that began their cycle after the end of the period with exponential increase in cell number could not finish it, suggesting that they abruptly lost their competence to cross a critical step of the cycle. Differences in area and in cell number among zones of a leaf and among leaves of a plant essentially depended on the timing of two events, cessation of exponential expansion and of exponential division.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号