首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solodukhina OV 《Genetika》2002,38(4):497-506
The genetic control of leaf rust resistance has been investigated by test crosses and the test-clone method in the rye samples Malysh 72-2, Chulpan 3, Immunnaya 4, Yaroslavna 3, Lovashpatonae 2, Gotor 2, Talovskaya 12-2, Braunrostresisten 2, Orlovskaya 9-2, 3098/18, and 4001/10. It has been found that this trait is controlled by a set of nonidentical oligogenes. Dominant gene Lr6 controls leaf rust resistance in Chulpan 3 and Immunnaya 4; Lr5, in Malysh 72-2; and Lr-c, in Yaroslavna 3. Test crosses have shown that genes Lr-a and Lr-b differ from the genes determining the resistance in Gotor 2 and Braunrostresisten 2. In German samples 3098/18 and 4001/10, the resistance to the Petersburg population of the pathogen is controlled by nonallelic genes Lr-a and Lr-b. It has been found that gene Lr-b is not identical to the resistance gene of Lovashpatonae 2, and Lr-a is not identical to Lr-c. In all samples, resistance to the leaf rust population is controlled by dominant genes from the stage of seedlings till maturity. Highly efficient Lr genes are present in the samples Malysh 72-2, Chulpan 3, Immunnaya 4, Yaroslavna 3, Lovashpatonae 2, Gotor 2, Talovskaya 12-2, 3098/18, and 4001/10. In addition to the oligogenes, most samples possess genes efficiently controlling particular clones of the pathogen.  相似文献   

2.
Genetic resistance is the most effective approach to managing wheat leaf rust. The aim of this study was to characterize seedling and adult plant leaf rust resistance of a world wheat collection. Using controlled inoculation with ten races of Puccinia triticina, 14 seedling resistance genes were determined or postulated to be present in the collection. Lr1, Lr3, Lr10 and Lr20 were the most prevalent genes around the world while Lr9, Lr14b, Lr3ka and/or Lr30 and Lr26 were rare. To confirm some gene postulations, the collection was screened with gene-specific molecular markers for Lr1, Lr10, Lr21 and Lr34. Although possessing the Lr1 and/or Lr10 gene-specific marker, 51 accessions showed unexpected high infection types to P. triticina race BBBD. The collection was tested in the field, where rust resistance ranged from nearly immune or highly resistant with severity of 1 % and resistant host response to highly susceptible with severity of 84 % and susceptible host response. The majority of the accessions possessing the adult plant resistance (APR) gene Lr34 had a maximum rust severity of 0–35 %, similar to or better than accession RL6058, a Thatcher-Lr34 near-isogenic line. Many accessions displayed an immune response or a high level of resistance under field conditions, likely as a result of synergy between APR genes or between APR and seedling resistance genes. However, accessions with three or more seedling resistance genes had an overall lower field severity than those with two or fewer. Immune or highly resistant accessions are potential sources for improvement of leaf rust resistance. In addition, some lines were postulated to have known but unidentified genes/alleles or novel genes, also constituting potentially important sources of novel resistance.  相似文献   

3.
D Bai  D R Knott 《Génome》1994,37(3):405-409
Six accessions of Triticum turgidum var. dicoccoides L. (4x, AABB) of diverse origin were tested with 10 races of leaf rust (Puccinia recondita f.sp. tritici Rob. ex Desm.) and 10 races of stem rust (P. graminis f.sp. tritici Eriks. &Henn.). Their infection type patterns were all different from those of lines carrying the Lr or Sr genes on the A or B genome chromosomes with the same races. The unique reaction patterns are probably controlled by genes for leaf rust or stem rust resistance that have not been previously identified. The six dicoccoides accessions were crossed with leaf rust susceptible RL6089 durum wheat and stem rust susceptible 'Kubanka' durum wheat to determine the inheritance of resistance. They were also crossed in diallel to see whether they carried common genes. Seedlings of F1, F2, and BC1F2 generations from the crosses of the dicoccoides accessions with RL6089 were tested with leaf rust race 15 and those from the crosses with 'Kubanka' were tested with stem rust race 15B-1. The F2 populations from the diallel crosses were tested with both races. The data from the crosses with the susceptible durum wheats showed that resistance to leaf rust race 15 and stem rust race 15B-1 in each of the six dicoccoides accessions is conferred by a single dominant or partially dominant gene. In the diallel crosses, the dominance of resistance appeared to be affected by different genetic backgrounds. With one exception, the accessions carry different resistance genes: CI7181 and PI 197483 carry a common gene for resistance to leaf rust race 15. Thus, wild emmer wheat has considerable genetic diversity for rust resistance and is a promising source of new rust resistance genes for cultivated wheats.  相似文献   

4.
Leaf rust resistance genes were sought in 23 resistant common wheat accessions with alien genetic material of Aegilops speltoides, Ae. triuncialis, and Triticum kiharae from the Arsenal collection. The genes were identified by common phytopathological tests and PCR analysis with STS markers linked with the known Lr genes. None of the methods identified the resistance genes in two accessions. In the other accessions, the combination of the two methods broadened the spectrum of detectable genes and, in some cases, allowed double verification of the presence of a resistance gene. Most accessions proved to contain several leaf rust resistance genes, combining juvenile and adult plant ones. The accessions were found to contain gene combinations that ensured field resistance (Lr13 + Lr10 and Lr12 + Lr34) and immunity under the conditions of the Non-Chernozem region. Accessions with alien genetic material contained a unique combination of five or six resistance genes. Since the accessions were rich in leaf rust resistance genes, including effective ones, and carried rare combinations of these genes, they were proposed as donors to be universally employed in breeding for immunity in all regions of Russia.  相似文献   

5.
In 1995–2004 we investigated leaf rust virulence in Slovakia on Thatcher near isogenic lines (NILs) with genes Lr1, Lr2a, Lr2b, Lr2c, Lr3a, Lr9, Lr10, Lr11, Lr15, Lr17, Lr19, Lr21, Lr23, Lr24, Lr26 and Lr28. According to reaction of leaf rust isolates resistance genes Lr9 and Lr19 were completely effective to all examined pathotypes in all years. The resistance genes Lr24 and Lr28 were also completely effective to all examined pathotypes till the year 2001. In the year 2001 we detected 20% and 10% virulent isolates on NILs Lr24 and Lr28, respectively. According to the reaction of investigated isolates from the territory of Slovakia on NILs, resistance genes Lr2c, Lr3a, Lr11, Lr17, Lr21, Lr23 and Lr26 were mostly ineffective. During the 1994–2004 period we detected 16 races of leaf rust (races 2, 2SaBa, 6, 6SaBa, 12, 12SaBa, 14, 14SaBa, 57, 57SaBa, 61, 61SaBa, 62SaBa, 77, 77SaBa, 77/57SaBa). The most frequently determined races were 61SaBa and 77SaBa, which occurred in all years. Among frequently determined races we can assign race 12SaBa as well. According to the field tests in 2001–2004 good resistance to leaf rust was displayed by the cvs Arida (Lr13, Lru), Eva (Lr3, Lru) and Solara (Lru).  相似文献   

6.
The incorporation of effective and durable disease resistance is an important breeding objective for wheat improvement. The leaf rust resistance gene Lr34 and stripe rust resistance gene Yr18 are effective at the adult plant stage and have provided moderate levels of durable resistance to leaf rust caused by Puccinia triticina Eriks. and to stripe rust caused by Puccinia striiformis Westend. f. sp. tritici. These genes have not been separated by recombination and map to chromosome 7DS in wheat. In a population of 110 F7 lines derived from a Thatcher × Thatcher isogenic line with Lr34/Yr18, field resistance to leaf rust conferred by Lr34 and to stripe rust resistance conferred by Yr18 cosegregated with adult plant resistance to powdery mildew caused by Blumeria graminis (DC) EO Speer f. sp. tritici. Lr34 and Yr18 were previously shown to be associated with enhanced stem rust resistance and tolerance to barley yellow dwarf virus infection. This chromosomal region in wheat has now been linked with resistance to five different pathogens. The Lr34/Yr18 phenotypes and associated powdery mildew resistance were mapped to a single locus flanked by microsatellite loci Xgwm1220 and Xgwm295 on chromosome 7DS.  相似文献   

7.
It is known that few wheat cultivars maintain their resistance to rust diseases for a long period of time, particularly when crop populations become genetically more uniform. A number of genetically diverse, so far unexploited, sources of rust resistance in the natural as well as mutagenized population of wheat cultivars were identified. Several of these genes were placed in agronomically superior well-adapted backgrounds so that they could be used as pre-breeding stocks for introducing genetic diversity for resistance in a crop population. Some of these stocks when employed as parents in several cross combinations in a breeding programme have generated a number of promising cultivars with diversity for resistance.Many presently grown wheats in India, near-isogenic lines each with Lr14b, Lr14ab, Lr30 and certain international cultivars were identified as possessing diverse sources of adult plant resistance (APR) to leaf rust. Prolonged leaf rust resistance in some of the Indian cultivars was attributed to the likely presence of Lr34 either alone or in combination with other APR components. Tests of allelism carried out in certain cultivars that continue to show adequate levels of field resistance confirm the presence of Lr34, which explains the role that this gene has played in imparting durability for resistance to leaf rust. Also, Lr34 in combination with other APR components increases the levels of resistance, which suggests that combination of certain APR components should be another important strategy for breeding cultivars conferring durable and adequate levels of resistance. A new adult plant leaf rust resistance source that seems to be associated with durability in Arjun has been postulated. Likewise, cultivars possessing Sr2 in combination with certain other specific genes have maintained resistance to stem rust.Further, non-specific resistances that were transferred across widely different genotypes into two of the popular Indian wheats provided easily usable materials to the national breeding programmes for imparting durable resistance to stripe rust.  相似文献   

8.
Spring wheat nursery accessions, including 18 spring wheat lines derived in CIMMYT, Mexico, and 12 spring wheat cultivars bred in Poland, along with cultivars Frontana and Sumai 3 as resistant controls, were examined for resistance to leaf rust under field conditions. Multipathotype tests with 16 different pathogen isolates were performed for postulation of Lr genes in Polish cultivars. Besides, STS markers for resistance genes Lr1, Lr9, Lr10, Lr24, Lr28, Lr37 were analysed in the studied cultivars and lines with Thatcher near-isogenic lines as positive controls. All Polish cultivars appeared to be susceptible to leaf rust. Ten of the CIMMYT nursery lines (IPG-SW: #7, 11, 14, 21, 22, 23, 27, 29, 30, 32) and cv. Frontana were resistant in the same environment and can be sources of resistance genes. Marker for the Lr10 gene was identified in 6 accessions (IPG-SW #14, 22, 23, 29, 30, 32) exhibiting resistance to leaf rust, whereas markers for Lr1 and Lr28 genes were observed in all the examined accessions. STS markers for Lr9, Lr24 and Lr37 genes were not identified in the investigated accessions.  相似文献   

9.
Thirty-seven wheat cultivars originating from seven European countries were examined by using sequence tagged site (STS) markers for seven Lr (leaf rust = brown rust) resistance genes against the fungal pathogen of wheat Puccinia recondita f. sp. tritici (Lr9, Lr10, Lr19, Lr24, Lr26 and Lr37). Additionally, 22 accessions with various Lr genes from two germplasm collections were tested. A Scar (sequence-characterized amplified region) marker for Lr24 and a CAPS (Cleaved Amplified Polymorphic Sequence) marker for Lr47 were also used to identify those genes in the wheat accessions. Each marker amplified one specific DNA fragment. Three Lr gene markers were identified in wheat cultivars (Lr10, Lr26 and Lr37). Another four markers (Lr9, Lr19, Lr24 and Lr47) were found in breeding lines carrying leaf rust resistance genes. The results were compared with leaf rust resistance gene postulations made in previous studies, based on multipathotype testing. Markers for Lr10, Lr26 and Lr37 may be useful in marker-assisted breeding.  相似文献   

10.
8个小麦育种亲本抗叶锈基因分析   总被引:1,自引:0,他引:1  
选取19个小麦叶锈菌生理小种对8个小麦育种亲本进行成株期和苗期抗叶锈病鉴定及基因推导,同时利用与24个抗叶锈基因紧密连锁或共分离的31个分子标记进行分子检测。推测出L83#-5与L83#-6含有Lr1,可能含有Lr2c和Lr42;L/PL2003-1含有Lr1,可能含有Lr2c、Lr28和Lr42;贵农13号可能含有Lr28;92R137可能含有Lr2c和Lr28;L201含有Lr1,可能含有Lr2c、Lr16和Lr28;TM可能含有Lr41和其他抗叶锈基因。研究结果表明,测试的8个小麦育种亲本中TM的抗叶锈性最好,具有很好的抗叶锈病应用潜力,可作为小麦抗叶锈病育种的重要抗源。  相似文献   

11.
Resistance based on slow-rusting genes has proven to be a useful strategy to develop wheat cultivars with durable resistance to rust diseases in wheat. However this type of resistance is often difficult to incorporate into a single genetic background due to the polygenic and additive nature of the genes involved. Therefore, markers, both molecular and phenotypic, are useful tools to facilitate the use of this type of resistance in wheat breeding programs. We have used field assays to score for both leaf and yellow rust in an Avocet-YrA × Attila population that segregates for several slow-rusting leaf and yellow rust resistance genes. This population was analyzed with the AFLP technique and the slow-rusting resistance locus Lr46/Yr29 was identified. A common set of AFLP and SSR markers linked to the Lr46/Yr29 locus was identified and validated in other recombinant inbred families developed from single chromosome recombinant populations that segregated for Lr46. These populations segregated for leaf tip necrosis (LTN) in the field, a trait that had previously been associated with Lr34/Yr18. We show that LTN is also pleiotropic or closely linked to the Lr46/Yr29 locus and suggest that a new Ltn gene designation should be given to this locus, in addition to the one that already exists for Lr34/Yr18. Coincidentally, members of a small gene family encoding β-1 proteasome subunits located on group 1L and 7S chromosomes implicated in plant defense were linked to the Lr34/Yr18 and Lr46/Yr29 loci.  相似文献   

12.
Powdery mildew, caused by Blumeria graminis f. sp. tritici is a major disease of wheat (Triticum aestivum L.) that can be controlled by resistance breeding. The CIMMYT bread wheat line Saar is known for its good level of partial and race non-specific resistance, and the aim of this study was to map QTLs for resistance to powdery mildew in a population of 113 recombinant inbred lines from a cross between Saar and the susceptible line Avocet. The population was tested over 2 years in field trials at two locations in southeastern Norway and once in Beijing, China. SSR markers were screened for association with powdery mildew resistance in a bulked segregant analysis, and linkage maps were created based on selected SSR markers and supplemented with DArT genotyping. The most important QTLs for powdery mildew resistance derived from Saar were located on chromosomes 7DS and 1BL and corresponded to the adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29. A major QTL was also located on 4BL with resistance contributed by Avocet. Additional QTLs were detected at 3AS and 5AL in the Norwegian testing environments and at 5BS in Beijing. The population was also tested for leaf rust (caused by Puccinia triticina) and stripe rust (caused by P. striiformis f. sp. tritici) resistance and leaf tip necrosis in Mexico. QTLs for these traits were detected on 7DS and 1BL at the same positions as the QTLs for powdery mildew resistance, and confirmed the presence of Lr34/Yr18 and Lr46/Yr29 in Saar. The powdery mildew resistance gene at the Lr34/Yr18 locus has recently been named Pm38. The powdery mildew resistance gene at the Lr46/Yr29 locus is designated as Pm39.  相似文献   

13.
Two Iranian common wheat landraces AUS28183 and AUS28187 from the Watkins collection showed high levels of seedling resistance against Australian pathotypes of leaf rust and stripe rust pathogens. Chi-squared analyses of rust response segregation among F3 populations derived from crosses of AUS28183 and AUS28187 with a susceptible genotype AUS27229 revealed monogenic inheritance of leaf rust and stripe rust resistance. As both genotypes produced similar leaf rust and stripe rust infection types, they were assumed to carry the same genes. The genes were temporarily named as LrW1 and YrW1. Molecular mapping placed LrW1 and YrW1 in the short arm of chromosome 5B, about 10 and 15 cM proximal to the SSR marker gwm234, respectively, and the marker cfb309 mapped 8–12 cM proximal to YrW1. LrW1 mapped 3–6 cM distal to YrW1 in two F3 populations. AUS28183 corresponded to the accession V336 of the Watkins collection which was the original source of Lr52. Based on the genomic location and accession records, LrW1 was concluded to be Lr52. Because no other seedling stripe rust resistance gene has previously been mapped in chromosome 5BS, YrW1 was permanently named as Yr47. A combination of flanking markers gwm234 and cfb309 with phenotypic assays could be used to ascertain the presence of Lr52 and Yr47 in segregating populations. This investigation characterised a valuable source of dual leaf rust and stripe rust resistance for deployment in new wheat cultivars. Transfer of Lr52 and Yr47 into current Australian wheat backgrounds is in progress.  相似文献   

14.
Leaf rust, caused by Puccinia triticina Eriks., is an important foliar disease of common wheat (Triticum aestivum L.) worldwide. Pyramiding several major rust-resistance genes into one adapted cultivar is one strategy for obtaining more durable resistance. Molecular markers linked to these genes are essential tools for gene pyramiding. The rust-resistance gene Lr41 from T. tauschii has been introgressed into chromosome 2D of several wheat cultivars that are currently under commercial production. To discover molecular markers closely linked to Lr41, a set of near-isogenic lines (NILs) of the hard winter wheat cultivar Century were developed through backcrossing. A population of 95 BC3F2:6 NILs were evaluated for leaf rust resistance at both seedling and adult plant stages and analyzed with simple sequence repeat (SSR) markers using bulked segregant analysis. Four markers closely linked to Lr41 were identified on chromosome 2DS; the closest marker, Xbarc124, was about 1 cM from Lr41. Physical mapping using Chinese Spring nullitetrasomic and ditelosomic genetic stocks confirmed that markers linked to Lr41 were on chromosome arm 2DS. Marker analysis in a diverse set of wheat germplasm indicated that primers BARC124, GWM210, and GDM35 amplified polymorphic bands between most resistant and susceptible accessions and can be used for marker-assisted selection in breeding programs.  相似文献   

15.
Puccinia triticina (Pt), the causal agent of leaf rust evolves through forming new pathotypes that adversely affect the growth and yield of wheat cultivars. Therefore, continued production of resistant varieties through exploring novel sources of resistance in wild relatives which are abundantly found in Iran and the neighbouring regions is a major task in wheat breeding programs. The aim of the present study was to explore 60 wild wheat genotypes selected from the species Triticum monococcum, Aegilops tauschii, Ae. neglecta, Ae. cylindrica, Ae. triuncialis, Ae. umbellulata, Ae. speltoides, Ae. columnaris, Ae. crassa and Ae. ventricosa for resistance to leaf rust. The cultivar ‘Boolani’ and Thatcher near-isogenic lines were used as controls. Two-week-old seedlings were inoculated using 10 Pt pathotypes, and the infection types were recorded. The genotypes were also analysed for polymorphism using six sequence-tagged sites (STS) and sequence characterized amplified region (SCAR) markers. Forty-eight genotypes produced high infection types (3+) for two pathotypes, but the remaining genotypes produced low infection types of ‘0; =’ to ‘1+CN’ to all pathotypes. The latter included three accessions of Ae. tauschii, two accessions of each Ae. umbellulata, Ae. columnaris and Triticum monococcum, and one accession from each Ae. triuncialis, Ae. ventricosa and Ae. neglecta. Analysis for STS and SCAR markers suggested several genotypes could carry the genes Lr9, Lr10, Lr19, Lr24, Lr26 and Lr37 or their potential orthologs in addition to unknown resistance genes. In conclusion, the identified resistant genotypes could be further characterized and used in wheat breeding programs for leaf rust resistance.  相似文献   

16.
In the cross of the durable leaf rust resistant wheat Sinvalocho MA and the susceptible line Gama6, four specific genes were identified: the seedling resistance gene Lr3, the adult plant resistance (APR) genes LrSV1 and LrSV2 coming from Sinvalocho MA, and the seedling resistance gene LrG6 coming from Gama6. Lr3 was previously mapped on 6BL in the same cross. LrSV1 was mapped on chromosome 2DS where resistance genes Lr22a and Lr22b have been reported. Results from rust reaction have shown that LrSV1 from Sinvalocho is not the same allele as Lr22b and an allelism test with Lr22a showed that they could be alleles or closely linked genes. LrSV1 was mapped in an 8.5-cM interval delimited by markers gwm296 distal and gwm261 proximal. Adult gene LrSV2 was mapped on chromosome 3BS, cosegregating with gwm533 in a 7.2-cM interval encompassed by markers gwm389 and gwm493, where other disease resistance genes are located, such as seedling gene Lr27 for leaf rust, Sr2 for stem rust, QTL Qfhs.ndsu-3BS for resistance to Fusarium gramineum and wheat powdery mildew resistance. The gene LrG6 was mapped on chromosome 2BL, with the closest marker gwm382 at 0.6 cM. Lines carrying LrSV1, LrSV2 and LrG6 tested under field natural infection conditions, showed low disease infection type and severity, suggesting that this kind of resistance can be explained by additive effects of APR and seedling resistance genes. The identification of new sources of resistance from South American land races and old varieties, supported by modern DNA technology, contributes to sustainability of agriculture through plant breeding.  相似文献   

17.
Lr68: a new gene conferring slow rusting resistance to leaf rust in wheat   总被引:2,自引:0,他引:2  
The common wheat cultivar Parula possesses a high level of slow rusting, adult plant resistance (APR) to all three rust diseases of wheat. Previous mapping studies using an Avocet-YrA/Parula recombinant inbred line (RIL) population showed that APR to leaf rust (Puccinia triticina) in Parula is governed by at least three independent slow rusting resistance genes: Lr34 on 7DS, Lr46 on 1BL, and a previously unknown gene on 7BL. The use of field rust reaction and flanking markers identified two F6 RILs, Arula1 and Arula2, from the above population that lacked Lr34 and Lr46 but carried the leaf rust resistance gene in 7BL, hereby designated Lr68. Arula1 and Arula2 were crossed with Apav, a highly susceptible line from the cross Avocet-YrA/Pavon 76, and 396 F4-derived F5 RILs were developed for mapping Lr68. The RILs were phenotyped for leaf rust resistance for over 2 years in Ciudad Obregon, Mexico, with a mixture of P. triticina races MBJ/SP and MCJ/SP. Close genetic linkages with several DNA markers on 7BL were established using 367 RILs; Psy1-1 and gwm146 flanked Lr68 and were estimated at 0.5 and 0.6 cM, respectively. The relationship between Lr68 and the race-specific seedling resistance gene Lr14b, located in the same region and present in Parula, Arula1 and Arula2, was investigated by evaluating the RILs with Lr14b-avirulent P. triticina race TCT/QB in the greenhouse. Although Lr14b and Lr68 homozygous recombinants in repulsion were not identified in RILs, γ-irradiation-induced deletion stocks that lacked Lr68 but possessed Lr14b showed that Lr68 and Lr14b are different loci. Flanking DNA markers that are tightly linked to Lr68 in a wide array of genotypes can be utilized for selection of APR to leaf rust.  相似文献   

18.
From 2001 to 2003, leaf rust was collected in different regions of Germany and the Russian Federation to generate single spore isolates and to study the structure of the pathogen populations by analyses of virulence. The virulence of isolates was tested with 38 near‐isogenic lines each carrying a different resistance gene. The analyses of variance revealed significant effects for the frequency of virulent isolates, the regions and most interactions with years and regions, but no significance was found for the effects of years. In Germany, an increase of virulence frequencies was detected for Lr1 and Lr2a while a decrease was found for Lr3a, Lr3bg and Lr3ka. Such clear trends did not occur in Russia which may be due to the great agroclimatic differences between regions. The variance of the frequency of virulent isolates was used to estimate adequate sample sizes for the analysis of regional populations of leaf rust. This procedure resulted in more reliable information about the dynamic processes within the pathogen populations. In 2002 and 2003, all pathotypes in Germany had a combined virulence to Lr1, Lr2a, Lr2b, Lr15, Lr17 and Lr20 supplemented by a few other genes. The complexity of virulence was lower in the most frequent pathotypes. In Russia virulence to the alleles at locus Lr3 was very common. Using detached leaf segments in Germany and Russia it turned out that the most virulent pathotypes carry 34 and 32 virulence genes, respectively. Virulence to Lr9, Lr19, Lr24 and Lr38 was rare or even absent. The use of major genes, not overcome by corresponding virulent pathotypes, may contribute to more durable types of resistance in case they are combined with genes having different effects, e.g. adult plant resistance.  相似文献   

19.
Leaf rust, caused by Puccinia triticina, is one of the most damaging diseases of wheat worldwide. Lr16 is a widely deployed leaf rust resistance gene effective at the seedling stage. Although virulence to Lr16 exists in the Canadian P. triticina population, Lr16 provides a level of partial resistance in the field. The primary objective of this study was to identify markers linked to Lr16 that are suitable for marker-assisted selection (MAS). Lr16 was tagged with microsatellite markers on the distal end of chromosome 2BS in three mapping populations. Seven microsatellite loci mapped within 10 cM of Lr16, with the map distances varying among populations. Xwmc764 was the closest microsatellite locus to Lr16, and mapped 1, 9, and 3 cM away in the RL4452/AC Domain, BW278/AC Foremost, and HY644/McKenzie mapping populations, respectively. Lr16 was the terminal locus mapped in all three populations. Xwmc764, Xgwm210, and Xwmc661 were the most suitable markers for selection of Lr16 because they had simple PCR profiles, numerous alleles, high polymorphism information content (PIC), and were tightly linked to Lr16. Twenty-eight spring wheat lines were evaluated for leaf rust reaction with the P. triticina virulence phenotypes MBDS, MBRJ, and MGBJ, and analyzed with five microsatellite markers tightly linked to Lr16. There was good agreement between leaf rust infection type (IT) data and the microsatellite allele data. Microsatellite markers were useful for postulating Lr16 in wheat lines with multiple leaf rust resistance genes.  相似文献   

20.
Neijiang 977671 and 19 near-isogenic lines with known leaf rust resistance genes were inoculated with 12 pathotypes of Puccinia triticina for postulation of leaf rust resistance genes effective at the seedling stage. The reaction pattern of Neijiang 977671 differed from those of the lines with known leaf rust resistance genes used in the test, indicating that Neijiang 977671 may carry a new leaf rust resistance gene(s). With the objective of identifying and mapping the new gene for resistance to leaf rust, F1 and F2 plants, and F2:3 families, from Neijiang 977671 × Zhengzhou 5389 (susceptible) were inoculated with Chinese P. triticina pathotype FHNQ in the greenhouse. Results from the F2 and F2:3 populations indicated that a single dominant gene, temporarily designated LrNJ97, conferred resistance. In order to identify other possible genes in Neijiang 977671 other eight P. triticina pathotypes avirulent on Neijiang 977671 were used to inoculate 25 F2:3 families. The results showed that at least three leaf rust resistance genes were deduced in Neijiang 977671. Bulked segregant analysis was performed on equal amounts of genomic DNA from 20 resistant and 20 susceptible F2 plants. SSR markers polymorphic between the resistant and susceptible bulks were used to analyze the F2:3 families. LrNJ97 was linked to five SSR loci on chromosome 2BL. The two closest flanking SSR loci were Xwmc317 and Xbarc159 at genetic distances of 4.2 and 2.2 cM, respectively. At present two designated genes (Lr50 and Lr58) are located on chromosome 2BL. In the seedling tests, the reaction pattern of LrNJ97 was different from that of Lr50. Lr50 and Lr58 were derived from T. armeniacum and Ae. triuncialis, respectively, whereas according to the pedigree of Neijiang 977671 LrNJ97 is from common wheat. Although seeds of lines with Lr58 were not available, it was concluded that LrNJ97 is likely to be a new leaf rust resistance gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号