首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
苏建亚  沈晋良 《昆虫学报》2005,48(3):444-449
通过对棉铃虫Helicoverpa armigera (Hübner)幼虫中肠氨肽酶N的克隆和测序,鉴定了1个氨肽酶N基因APN1,其cDNA序列具有3 220个核苷酸,具有3 042 bp的开放阅读框,编码产生1 014个氨基酸的蛋白质。其推定的氨基酸序列具有氨肽酶N所共有的锌结合模体HEXXHX18E和N末端20个氨基酸的疏水性信号序列,但C末端没有糖基磷酯酰肌醇(glycosylphosphatidylinositol,GPI)锚添加信号序列。该氨肽酶N的cDNA序列已提交GenBank,登录号为AY358034。  相似文献   

2.
Helicoverpa armigera midgut proteins that bind the Bacillus thuringiensis (Bt) delta-endotoxin Cry1Ac were purified by affinity chromatography. SDS-PAGE showed that several proteins were eluted with N-acetylgalactosamine and no further proteins were detected after elution with urea. Tandem mass spectral data for tryptic peptides initially indicated that the proteins resembled aminopeptidases (APNs) from other lepidopterans and cDNA sequences for seven APNs were isolated from H. armigera through a combination of cloning with primers derived from predicted peptide sequences and established EST libraries. Phylogenetic analysis showed lepidopteran APN genes in nine clades of which five were part of a lepidopteran-specific radiation. The Cry1Ac-binding proteins were then identified with four of the seven HaAPN genes. Three of those four APNs are likely orthologs of APNs characterised as Cry1Ac-binding proteins in other lepidopterans. The fourth Cry1Ac-binding APN has orthologs not previously identified as Cry1Ac-binding partners. The HaAPN genes were expressed predominantly in the midgut through larval development. Each showed consistent expression along the length of the midgut but five of the genes were expressed at levels about two orders of magnitude greater than the remaining two. The remaining mass spectral data identified sequences encoding polycalin proteins with multiple lipocalin-like domains. A polycalin has only been previously reported in another lepidopteran, Bombyx mori, but polycalins in both species are now linked with binding of Bt Cry toxins. This is the first report of hybrid, lipocalin-like domains in shorter polycalin sequences that are not present in the longest sequence. We propose that these hybrid domains are generated by alternative splicing of the mRNA.  相似文献   

3.
The susceptibilities of the major pests of cotton in Australia, Helicoverpa armigera and Helicoverpa punctigera, to some insecticidal proteins from Bacillus thuringiensis were tested by bioassay. A commercial formulation, DiPel, and individual purified insecticidal proteins were tested. H. armigera was consistently more tolerant to B. thuringiensis insecticidal proteins than was H. punctigera, although both were susceptible to only a limited range of these proteins. Only Cry1Ab, Cry1Ac, Cry2Aa, Cry2Ab, and Vip3A killed H. armigera at dosages that could be considered acceptable. There was no significant difference in the toxicities of Cry1Fa and Cry1Ac for H. punctigera but Cry1Fa had little toxicity for H. armigera. The five instars of H. armigera did not differ significantly in their susceptibility to DiPel on the basis of LC(50). However, there were significant differences in the susceptibility to Cry1Ac and Cry2Aa of three strains of H. armigera. Bioassays conducted with Cry1Ac and Cry2Aa showed that there was a small but significant negative interaction between these delta-endotoxins.  相似文献   

4.
The cloning, expression in vitro, and characterization of two aminopeptidase Ns (APN5s and APN2s) isolated from the midgut of Cry1Ac-resistant (R) and susceptible (S) strains of Plutella xylostella larvae are presented in this paper. The deduced amino acid sequences of APN5s included C-terminal GPI-modification sites, the gluzincin aminopeptidase motif GATEN, and three N-glycosylated sites; those of APN2s had no GPI-modification sites, had gluzincin aminopeptidase motif GAMEN, and had four N-glycosylated sites. O-glycosylated sites were not predicted for either APN. Because APN2R and APN2S cDNAs contained the same nucleotides, only full-length cDNAs encoding APN5R and APN5S were expressed in Trichoplusia ni cells. Far-Western blotting showed that the expressed receptor APN5 bound to the Cry1Ac toxin. An enzyme-specific activity experiment also showed that APN5 genes were expressed in T. ni cells. ELISA revealed no differences in the binding of expression proteins from the resistant and susceptible strain with Cry1Ac.  相似文献   

5.
Acetylcholinesterase (AChE) has been known to be the target of organophosphorous and carbamate insecticides. Only a single AChE, however, existed in insects and was involved in insecticide resistance, recently another AChE is reported in mosquitoes and aphids. We have cloned cDNAs encoding two ace genes, designated as Ha-ace1 and Ha-ace2 by a combined degenerate PCR and RACE strategy from adult heads of the oriental tobacco budworm, Helicoverpa assulta. The Ha-ace1 and Ha-ace2 genes encode 664 and 647 amino acids, respectively and have conserved motifs including a catalytic triad, a choline-binding site and an acyl pocket. Both Ha-AChEs were determined to be secretory proteins based on the existence of a signal peptide. The Ha-ace1 gene, the first reported ace1 in lepidopterans, belongs to the ace1 subfamily whereas the Ha-ace2 gene showed high similarity to those in the ace2 subfamily. Phylogenetic analysis showed that the Ha-ace1 gene was completely diverged from the Ha-ace2, suggesting that the Ha-ace genes are duplicated. Quantitative real time-PCR revealed that expression level of the Ha-ace1 gene was much higher than that of the Ha-ace2 in all body parts examined. The biochemical properties of purified proteins by affinity chromatography showed substrate specificity for acetylthiocholine iodide, and inhibitor specificity for BW284C51 and eserine and their peptide sequences partially identified by a MALDI-TOF mass spectrometer demonstrated that two Ha-AChEs were expressed in vivo.  相似文献   

6.
Carboxylesterase (EC 3.1.1.1) is a member of the carboxyl/cholinesterase (CCE) superfamily, which is widely distributed in animals, plants and microorganisms. This enzyme has been known to be associated with insecticide resistance and detoxification. Although CCEs have been extensively studied in insects, including lepidopterans, the research on butterflies, a major subgroup in Lepidoptera, is still poor. In the present study, we cloned a CCE gene (McCCE1) from the Glanville fritillary butterfly (Melitaea cinxia, Lepidoptera: Nymphalidae). The full-length cDNA encoding McCCE1 was 1786 bp, containing a 1641 bp open reading frame encoding 546 amino acids, a 38 bp 5′-untranslated region (5′-UTR), and a 107 bp 3′-UTR with a poly(A) tail. The functionally conserved amino acids in McCCE1 shared the 55% identity with the cytoplasmic esterase CCE017a in Helicoverpa armigera (Lepidoptera: Noctuidae), which has been associated with detoxification. Assays in vitro showed that the recombinant McCCE1 could hydrolyze α- and β-naphthyl acetate. Thus, the present study adds to the body of knowledge concerning the detoxification of pesticides by lepidopterans.  相似文献   

7.
Four aminopeptidase N (APN) isoforms, TnAPN1, TnAPN2, TnAPN3 and TnAPN4, were identified from the cabbage looper, Trichoplusia ni, by cDNA cloning. The deduced amino acid sequences of the four APNs indicate that TnAPN1, TnAPN2, TnAPN3 and TnAPN4 are synthesized as pre-proteins of 110, 106, 114 and 108 kDa, respectively. Sequence features of the T. ni APNs include the presence of a signal peptide at their N-termini and a prepeptide at the C-termini for the GPI anchor, the zinc binding/gluzincin motif HEX2HX18E, the gluzincin aminopeptidase motif GAMENWG and the presence of glycosylation sites. After removal of the signal peptide and the C-terminal prepeptide, the predicted molecular weights of TnAPN1, TnAPN2, TnAPN3 and TnAPN4 are 106, 102, 110 and 104 kDa, respectively. Enzymatic activity assays of various larval tissues showed that aminopeptidase activities were mainly localized in the midgut and the specific enzyme activity per mg of midgut tissue proteins was constant in T. ni larvae regardless of the composition of dietary proteins and amino acids. Both enzyme activity assays and RT-PCR analyses for the expression of the APN genes in T. ni larval tissues demonstrated that APN genes were expressed in Malphigian tubules in addition to the midgut, which was the first observation that APNs were also synthesized in insect Malphigian tubules. The finding of APN gene expression and enzyme activity in the Malphigian tubules indicated the biochemical and functional similarity of the insect Malphigian tubules to the mammalian counterpart, the kidney, in which APNs are known to play important functions.  相似文献   

8.
9.
Complementary DNA (cDNA) encoding a protein component pB1 (also pAIF-1 and DQH) of the 54-kilodalton glycoprotein of boar seminal plasma was cloned and its nucleotide sequence was determined (Gene Bank accession no. AF047026). The pB1 precursor protein is a 130-amino-acid-long polypeptide containing a 25-amino-acid-long signal peptide. The amino acid sequence of the pB1 is homologous to that of SFP1_BOVIN (named also BSP-A1/A2, PDC-109/ major protein and SVSp109), SFP3_BOVIN (BSP-A3), SFP4 BOVIN (BSP-30 KD), and SP1_HORSE (HSP-1) seminal plasma proteins. The homology extends also for the signal peptide of SFP1_BOVIN protein. All these seminal plasma proteins contain two fibronectin type-II domains that differ from those found in other proteins such as colagenases, fibronectins, and mannose receptors. The first domain located in the N-terminal region of pB1 is four amino acids shorter than those present in other proteins. High homology is also observed between 3' noncoding regions of the nucleotide sequences of cDNAs of pB1_PIG and SFP1_BOVIN (Gene Bank accession nos. AF047026 and P02784, respectively).  相似文献   

10.
Small neuropeptides of the adipokinetic/red pigment-concentrating hormone (AKH/RPCH) family regulate energy metabolism in insects. Within lepidopterans, the nonapeptide Manduca sexta AKH (Manse-AKH) represents a widely occurring AKH, whereas the decapeptide Helze-HrTH (at first isolated from Helicoverpa zea) seems to be restricted to moths. Here we report the identification of the Manse-AKH-like Spofr-AKH 1 and the Helze-HrTH-like Spofr-AKH 2 prohormone precursors from the fall armyworm, Spodoptera frugiperda. Moreover, by PCR screening of a random primer cDNA library and by RACE, three 668, 835 and 1008 bp cDNA sequences were obtained, which encode putative translation products of 67-74 amino acids, each containing one copy of a peptide sequence that in its processed form has the sequence of QLTFSSGW-amide (Spofr-AKH 3). Another cDNA sequence of 634 bp encodes a putative translation product of 40 amino acids, potentially leading to one copy of an elongated, non-amidated Helze-HrTH (pQLTFSSGWGNCTS-OH; Spofr-AKH 4). Q-RT-PCR analysis showed that the Spofr-AKH mRNAs are expressed in 2d-old female brain/corpora cardiaca complexes, but also in ovaries, midgut, fat body, accessory glands and muscle tissues. Expression was also found in the ovaries of 4d-old females. Whole-mount in situ RT-PCR analysis with ovaries from 2d-old females showed that the Spofr-AKH 2 and Spofr-AKH 4 were mainly localized in the germarium (phase 3), whereas the Spofr-AKH 1, and the three mRNA isoforms of Spofr-AKH 3 were localized at the end of the vitellarium and in the fully developed oocytes (phase 1 and 2). The results suggest that Spofr-AKH genes play a role in the regulation of oocyte maturation in S. frugiperda.  相似文献   

11.
Insulin-regulated aminopeptidase (IRAP) is a type II integral membrane protein belonging to the gluzincin family of metallopeptidases identified by the characteristic Zn(2+)-coordination sequence element, HEXXH-(18-64X)-E. A second conserved sequence element, the GXMEN motif, positioned 22-32 amino acids N-terminal to the Zn(2+)-coordination sequence element distinguishes the gluzincin aminopeptidases from other gluzincins. To investigate the importance of the G428AMEN and H464ELAH-(18X)-E487 motifs for the activity of IRAP, mutational analysis was carried out. cDNA encoding the full-length transmembrane form of human IRAP was expressed in HEK293 cells and recombinant wild-type IRAP was shown to have biochemical and enzymatic properties similar to those reported for native IRAP and the soluble serum form of IRAP. Mutational analysis using single amino-acid substitutions in the GAMEN motif (G428A, A429G, M430K, M430E, M430I, E431D and E431A) and in the Zn(2+)-binding motif (H464Y, E465D, E465Q, H468Y, E487D and E487Q) resulted in decreased or abolished aminopeptidase activity towards the leucine-para-nitroanilide substrate. The results show that conservation of residues within the GAMEN and Zn(2+)-binding motifs is important for IRAP enzyme activity.  相似文献   

12.
Methionyl aminopeptidases (MetAPs) are metallo-dependent proteases responsible for removing of N-terminal methionine residue of peptides and proteins during protein maturation and activation. In this report we use a comprehensive strategy to screen the substrate specificity of three methionyl aminopeptidases: Homo sapiens MetAP-1, Homo sapiens MetAP-2 and Escherichia coli MetAP-1. By utilizing a 65-membered fluorogenic substrate library consisting of natural and unnatural amino acids we established detailed substrate preferences of each enzyme in the S1 pocket. Our results show that this pocket is highly conserved for all investigated MetAPs, very stringent for methionine, and that several unnatural amino acids with methionine-like characteristics were also well hydrolyzed by MetAPs. The substrate-derived results were verified using several phosphonate and phosphinate-based inhibitors.  相似文献   

13.
The 3'-->5' exonucleases catalyze the excision of nucleoside monophosphates from the 3' termini of DNA. We have identified the cDNA sequences encoding two 3'-->5' exonucleases (TREX1 and TREX2) from mammalian cells. The TREX1 and TREX2 proteins are 304 and 236 amino acids in length, respectively. Analysis of the TREX1 and TREX2 sequences identifies three conserved motifs that likely generate the exonuclease active site in these enzymes. The specific amino acids in these three conserved motifs suggest that these mammalian exonucleases are most closely related to the proofreading exonucleases of the bacterial replicative DNA polymerases and the RNase T enzymes. Expression of TREX1 and TREX2 in Escherichia coli demonstrates that these recombinant proteins are active 3'-->5' exonucleases. The recombinant TREX1 protein was purified, and exonuclease activity was measured using single-stranded, partial duplex, and mispaired oligonucleotide DNA substrates. The greatest activity of the TREX1 protein was detected using a partial duplex DNA containing five mispaired nucleotides at the 3' terminus. No activity was detected using single-stranded RNA or an RNA-DNA partial duplex. Identification of the TREX1 and TREX2 cDNA sequences provides the genetic tools to investigate the physiological roles of these exonucleases in mammalian DNA replication, repair, and recombination pathways.  相似文献   

14.
15.
16.
Prior to the widespread adoption of two-gene Bt cotton (Bollgard II?) in Australia, the frequency of resistance alleles to one of the deployed proteins (Cry2Ab) was at least 0.001 in the pests targeted namely, Helicoverpa armigera and Helicoverpa punctigera. In the 7 years hence, there has been a statistically significant increase in the frequency of alleles conferring Cry2Ab resistance in field populations of H. punctigera. This paper reviews the history of deploying Bt cotton in Australia, the characteristics of the isolated Cry2Ab resistance that likely impact on resistance evolution, aspects of the efficacy of Bollgard IIχ, and the behavioural ecology of Helicoverpa spp. larvae as it pertains to resistance management. It also presents up-to-date frequencies of resistant alleles for H. punctigera and reviews the same information for H. armigera. This is followed by a discussion of current resistance management strategies. The consequences of the imminent release of a third generation product that utilizes the novel vegetative insecticidal protein Vip3A are then considered. The area planted to Bt-crops is anticipated to continue to rise worldwide and many biotechnical companies intend to add Vip3A to existing products; therefore the information reviewed herein for Australia is likely to be pertinent to other situations.  相似文献   

17.
18.
19.
We have purified a novel GTP-binding protein (G protein) with a Mr of about 24,000 to homogeneity from bovine brain membranes (Kikuchi, A., Yamashita, T., Kawata, M., Yamamoto, K., Ikeda, K., Tanimoto, T., and Takai, Y. (1988) J. Biol. Chem. 263, 2897-2904). In the present studies, we have isolated and sequenced the cDNA of this G protein from a bovine brain cDNA library using oligonucleotide probes designed from the partial amino acid sequences. The cDNA of the G protein has an open reading frame encoding a protein of 220 amino acids with a calculated Mr of 24,954. This G protein is designated as the smg-25A protein (smg p25A). The amino acid sequence deduced from the smg-25A cDNA contains the consensus sequences of GTP-binding and GTPase domains. smg p25A shares about 28 and 44% amino acid homology with the ras and ypt1 proteins, respectively. In addition to this cDNA, we have isolated two other homologous cDNAs encoding G proteins of 219 and 227 amino acids with calculated Mr values of 24,766 and 25,975, respectively. These G proteins are designated as the smg-25B and smg-25C proteins (smg p25B and smg p25C), respectively. The amino acid sequences deduced from the three smg-25 cDNAs are highly homologous with one another in the overall sequences except for C-terminal 32 amino acids. Moreover, three smg p25s have a consensus C-terminal sequence, Cys-X-Cys, which is different from the known C-terminal consensus sequences of the ras and ypt1 proteins, Cys-X-X-X and Cys-Cys, respectively. These results together with the biochemical properties of smg p25A described previously indicate that three smg p25s constitute a novel G protein family.  相似文献   

20.
Intra-specific variation in susceptibility of Helicoverpa armigera (Hübner) and Helicoverpa punctigera (Wallengren) in Australia to the Cry1Ac and Cry2Ab delta-endotoxins from Bacillus thuringiensis (Berliner) (Bt) was determined to establish a baseline for monitoring changes that might occur with the use of Bt cotton. Strains of H. armigera and H. punctigera were established from populations collected primarily from commercial farms throughout the Australian cotton belts. Strains were evaluated for susceptibility using two bioassay methods (surface treatment and diet incorporation) by measuring the dose response for mortality (LC50) and growth inhibition (IC50). The variation in LC50 among H. armigera (n=17 strains) and H. punctigera (n=12 strains) in response to Cry1Ac was 4.6- and 3.2-fold, respectively. The variation in LC50 among H. armigera (n=19 strains) and H. punctigera (n=12 strains) to Cry2Ab was 6.6- and 3.5-fold, respectively. The range of Cry1Ac induced growth inhibition from the 3rd to 4th instar in H. armigera (n=15 strains) was 3.6-fold and in H. punctigera (n=13 strains) was 2.6-fold, while the range of Cry2Ab induced growth inhibition from neonate to 3rd instar in H. armigera (n=13 strains) was 4.3-fold and in H. punctigera (n=12 strains) was 6.1-fold. Variation in susceptibility was also evaluated for two age classes (neonates and 3rd instars) in laboratory strains of H. armigera and H. punctigera. Neonates of H. punctigera had the same or higher sensitivity to Bt than 3rd instars. Neonates of H. armigera were more sensitive to Cry2Ab than 3rd instars, while being less sensitive to Cry1Ac than 3rd instars. Differences in the two methods of bioassay used affected relative sensitivity of species to Bt toxins, highlighting the need to standardize bioassay protocols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号