首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary When tobacco suspension culture line BY2 cells in stationary phase are transferred into fresh medium, replication of proplastid DNA proceeds for 24 h in the absence of nuclear DNA replication. Replicative intermediates of the proplastid DNA concentrated by benzoylated, naphthoylated DEAE cellulose chromatography, were radioactively labelled and hybridized to several sets of restriction endonuclease fragments of tobacco chloroplast DNA. The intermediates hybridized preferentially to restriction fragments in the two large inverted repeats. Mapping of D-loops and of restriction fragment lengths by electron microscopy permitted the localization of the replication origin, which was close to the 23S rRNA gene in the inverted repeats. The replication origins in both segments of the inverted repeat in tobacco proplastid DNA were active in vivo.  相似文献   

2.
WUJIARUI 《Cell research》1999,9(3):163-170
In eukaryote,nuclear structure is a key component for the functions of eukaryotic cells.More and more evidences show that the nuclear structure plays important role in regulating DNA replication.The nuclear structure provides a physical barrier for the replication licensing,participates in the decision where DNA replication initiates,and organizes replication proteins as replication factory for DNA replication.Through these works,new concepts on the regulation of DNA replication have emerged,which will be discussed in this minireview.  相似文献   

3.
In higher eukaryotic cells, DNA is tandemly arranged into 10(4) replicons that are replicated once per cell cycle during the S phase. To achieve this, DNA is organized into loops attached to the nuclear matrix. Each loop represents one individual replicon with the origin of replication localized within the loop and the ends of the replicon attached to the nuclear matrix at the bases of the loop. During late G1 phase, the replication origins are associated with the nuclear matrix and dissociated after initiation of replication in S phase. Clusters of several replicons are operated together by replication factories, assembled at the nuclear matrix. During replication, DNA of each replicon is spooled through these factories, and after completion of DNA synthesis of any cluster of replicons, the respective replication factories are dismantled and assembled at the next cluster to be replicated. Upon completion of replication of any replicon cluster, the resulting entangled loops of the newly synthesized DNA are resolved by topoisomerases present in the nuclear matrix at the sites of attachment of the loops. Thus, the nuclear matrix plays a dual role in the process of DNA replication: on one hand, it represents structural support for the replication machinery and on the other, provides key protein factors for initiation, elongation, and termination of the replication of eukaryotic DNA.  相似文献   

4.
The model of in situ DNA replication provided by immunofluorescence and confocal imaging is compared with observations obtained by electron microscopic studies. Discrepancies between both types of observations call into question the replication focus as a persistent nuclear structure and as a replication entity where DNA replication takes place. Most electron microscopic analyses reveal that replication sites are confined to dispersed chromatin areas at the periphery of condensed chromatin, and the distribution of replication factors exhibits the same localization pattern. Moreover, rapid migration of newly synthesized DNA from the replication sites towards the interior of condensed chromatin regions obviously takes place during S-phase. It implies modifications of replication domains, hardly detectable by fluorescence microscopy. The confrontation of different observations carried out at light microscopic or electron microscopic levels of resolution lead to a conclusion that a combination of in vivo fluorescence analysis with a subsequent ultrastructural investigation performed on the same cells will represent an optimal approach in future studies of nuclear functions in situ.  相似文献   

5.
Dynamics of DNA replication factories in living cells   总被引:27,自引:0,他引:27       下载免费PDF全文
DNA replication occurs in microscopically visible complexes at discrete sites (replication foci) in the nucleus. These foci consist of DNA associated with replication machineries, i.e., large protein complexes involved in DNA replication. To study the dynamics of these nuclear replication foci in living cells, we fused proliferating cell nuclear antigen (PCNA), a central component of the replication machinery, with the green fluorescent protein (GFP). Imaging of stable cell lines expressing low levels of GFP-PCNA showed that replication foci are heterogeneous in size and lifetime. Time-lapse studies revealed that replication foci clearly differ from nuclear speckles and coiled bodies as they neither show directional movements, nor do they seem to merge or divide. These four dimensional analyses suggested that replication factories are stably anchored in the nucleus and that changes in the pattern occur through gradual, coordinated, but asynchronous, assembly and disassembly throughout S phase.  相似文献   

6.
The mammalian sperm nucleus provides an excellent model for studying the relationship between the formation of nuclear structure and the initiation of DNA replication. We previously demonstrated that mammalian sperm nuclei contain a nuclear matrix that organizes the DNA into loop domains in a manner similar to that of somatic cells. In this study, we tested the minimal components of the sperm nucleus that are necessary for the formation of the male pronucleus and for the initiation of DNA synthesis. We extracted mouse sperm nuclei with high salt and dithiothreitol to remove the protamines in order to form nuclear halos. These were then treated with either restriction endonucleases to release the DNA not directly associated with the nuclear matrix or with DNAse I to digest all the DNA. The treated sperm nuclei were injected into oocytes, and the paternal pronuclear formation and DNA synthesis was monitored. We found that restriction digested sperm nuclear halos were capable of forming paternal pronuclei and initiating DNA synthesis. However, when isolated mouse sperm DNA or sperm DNA reconstituted with the nuclear matrices were injected into oocytes, no paternal pronuclear formation or DNA synthesis was observed. These data suggest that the in situ nuclear matrix attachment organization of sperm DNA is required for mouse paternal pronuclear DNA synthesis.  相似文献   

7.
Chloroplast DNA replication was studied in the green, autotrophic suspension culture line SB-1 of Glycine max. Three regions (restriction fragments Sac I 14.5, Pvu II 4.1 and Pvu II 14.8) on the plastome were identified that displayed significantly higher template activity in in vitro DNA replication assays than all other cloned restriction fragments of the organelle genome, suggesting that these clones contain sequences that are able to direct initiation of DNA replication in vitro. In order to confirm that the potential in vitro origin sites are functional in vivo as well, replication intermediates were analyzed by two-dimensional gel electrophoresis using cloned restriction fragments as probes. The two Pvu II fragments that supported deoxynucleotide incorporation in vitro apparently do not contain a functional in vivo replication origin since replication intermediates from these areas of the plastome represent only fork structures. The Sac I 14.5 chloroplast DNA fragment, on the other hand, showed intermediates consistent with a replication bubble originating within its borders, which is indicative of an active in vivo origin. Closer examination of cloned Sac I 14.5 sub-fragments confirmed high template activity in vitro for two, S/B 5 and S/B 3, which also seem to contain origin sites utilized in vivo as determined by two-dimensional gel electrophoresis. The types of replication intermediate patterns obtained for these sub-fragments are consistent with the double D-loop model for chloroplast DNA replication with both origins being located in the large unique region of the plastome [17, 18]. This is the first report of a chloroplast DNA replication origin in higher plants that has been directly tested for in vivo function.  相似文献   

8.
Using 5 end-labeled nascent strands of tobacco chloroplast DNA (ctDNA) as a probe, replication displacement loop (D-loop) regions were identified. The strongest hybridization was observed with restriction fragments containing the rRNA genes from the inverted repeat region. Two-dimensional gel analysis of various digests of tobacco ctDNA suggested that a replication origin is located near each end of the 7.1 kb BamHI fragment containing part of the rRNA operon. Analysis of in vitro replication products indicated that templates from either of the origin regions supported replication, while the vector alone or ctDNA clones from other regions of the genome did not support in vitro replication. Sequences from both sides of the BamHI site in the rRNA spacer region were required for optimal in vitro DNA replication activity. Primer extension was used for the first time to identify the start site of DNA synthesis for the D-loop in the rRNA spacer region. The major 5 end of the D-loop was localized to the base of a stem-loop structure which contains the rRNA spacer BamHI site. Primer extension products were insensitive to both alkali and RNase treatment, suggesting that RNA primers had already been removed from the 5 end of nascent DNA. Location of an origin in the rRNA spacer region of ctDNA from tobacco, pea and Oenothera suggests that ctDNA replication origins may be conserved in higher plants.  相似文献   

9.
Replication of Arabidopsis nuclear, mitochondrial and chloroplast DNA (ncDNA, mtDNA, cpDNA) was assayed by measuring respective changes in copies per leaf, employing quantitative PCR (QPCR) analysis with genome-specific primer pairs. All three genomes showed parallel increases during growth of cotyledons and 5th leaves in planta, maintaining approximately 13 mtDNA copies and 280 cpDNA copies per haploid nuclear genome. Detached 5th leaves, which showed good growth and DNA replication on agar plates, were irradiated at (DNA-effective) UV-B fluences of 1.3-5.0 kJ m-2 and incubated under blue (photorepair-active) plus gold light or gold light only. Under blue light, replication of all genomes after all UV fluences was approximately as efficient as replication in unirradiated leaves. UV-irradiated leaves showed little growth under gold light only; 5 kJ m-2 stopped replication of all three genomes, 2.5 kJ m-2 stopped only cpDNA replication, and 1.3 kJ m-2 only delayed cpDNA replication. Immunoassays showed that 5 kJ m-2 induced about 1.2 cyclobutane pyrimidine dimers and 0.1 [6-4]photoproducts per kbp of bulk DNA, and that both photoproducts were completely removed during 2-3 days under blue light, suggesting efficient photorepair of at least ncDNA and cpDNA. The evidence for efficient photorepair of organellar DNA contrasts with previous studies of irradiated 5-day-old seedlings, and with the apparent absence of Arabidopsis photolyases bearing transit peptides.  相似文献   

10.
11.
X Xia 《Current Genomics》2012,13(1):16-27
Different patterns of strand asymmetry have been documented in a variety of prokaryotic genomes as well as mitochondrial genomes. Because different replication mechanisms often lead to different patterns of strand asymmetry, much can be learned of replication mechanisms by examining strand asymmetry. Here I summarize the diverse patterns of strand asymmetry among different taxonomic groups to suggest that (1) the single-origin replication may not be universal among bacterial species as the endosymbionts Wigglesworthia glossinidia, Wolbachia species, cyanobacterium Synechocystis 6803 and Mycoplasma pulmonis genomes all exhibit strand asymmetry patterns consistent with the multiple origins of replication, (2) different replication origins in some archaeal genomes leave quite different patterns of strand asymmetry, suggesting that different replication origins in the same genome may be differentially used, (3) mitochondrial genomes from representative vertebrate species share one strand asymmetry pattern consistent with the strand-displacement replication documented in mammalian mtDNA, suggesting that the mtDNA replication mechanism in mammals may be shared among all vertebrate species, and (4) mitochondrial genomes from primitive forms of metazoans such as the sponge and hydra (representing Porifera and Cnidaria, respectively), as well as those from plants, have strand asymmetry patterns similar to single-origin or multi-origin replications observed in prokaryotes and are drastically different from mitochondrial genomes from other metazoans. This may explain why sponge and hydra mitochondrial genomes, as well as plant mitochondrial genomes, evolves much slower than those from other metazoans.  相似文献   

12.
13.
Noc3p (Nucleolar Complex-associated protein) is an essential protein in budding yeast DNA replication licensing. Noc3p mediates the loading of Cdc6p and MCM proteins onto replication origins during the M-to-G1 transition by interacting with ORC (Origin Recognition Complex) and MCM (Minichromosome Maintenance) proteins. FAD24 (Factor for Adipocyte Differentiation, clone number 24), the human homolog of Noc3p (hNOC3), was previously reported to play roles in the regulation of DNA replication and proliferation in human cells. However, the role of hNOC3 in replication licensing was unclear. Here we report that hNOC3 physically interacts with multiple human pre-replicative complex (pre-RC) proteins and associates with known replication origins throughout the cell cycle. Moreover, knockdown of hNOC3 in HeLa cells abrogates the chromatin association of other pre-RC proteins including hCDC6 and hMCM, leading to DNA replication defects and eventual apoptosis in an abortive S-phase. In comparison, specific inhibition of the ribosome biogenesis pathway by preventing pre-rRNA synthesis, does not lead to any cell cycle or DNA replication defect or apoptosis in the same timeframe as the hNOC3 knockdown experiments. Our findings strongly suggest that hNOC3 plays an essential role in pre-RC formation and the initiation of DNA replication independent of its potential role in ribosome biogenesis in human cells.  相似文献   

14.
DNA复制的准确性   总被引:1,自引:0,他引:1  
文汉  李纯 《生物学杂志》2001,18(3):14-14,31
本文概述了促成原核生物DNA复制准确性的因素。这些因素主要包括四种脱氧核苷三磷酸的平衡供应、DNA聚合酶反应本身的准确性、DNA聚合酶的3′→5′外切酶活性的校对功能、需要RNA引物、后随链的不连续合成的机制以及复制后的修复等。  相似文献   

15.
16.
Understanding the mechanisms that lead to replication fork blocks (RFB) and the means to bypass them is important given the threat that they represent for genome stability if inappropriately handled. Here, to study this issue in mammals, we use integrated arrays of the LacO and/or TetO as a tractable system to follow in time a process in an individual cell and at a single locus. Importantly, we show that induction of the binding by LacI and TetR proteins, and not the presence of the repeats, is key to form the RFB. We find that the binding of the proteins to the arrays during replication causes a prolonged persistence of replication foci at the site. This, in turn, induces a local DNA damage repair (DDR) response, with the recruitment of proteins involved in double-strand break (DSB) repair such as TOPBP1 and 53BP1, and the phosphorylation of H2AX. Furthermore, the appearance of micronuclei and DNA bridges after mitosis is consistent with an incomplete replication. We discuss how the many DNA binding proteins encountered during replication can be dealt with and the consequences of incomplete replication. Future studies exploiting this type of system should help analyze how an RFB, along with bypass mechanisms, are controlled in order to maintain genome integrity.  相似文献   

17.
Summary Cultured cells of Glycine max (L.) Merr. v. Corsoy were permeabilized by treatment with L--lysophosphatidylcholine (LPC). The permeabilized cells were capable of uptake and incorporation of deoxynucleoside triphosphates into DNA. Incorporation of exogenous nucleotides into DNA was linear for at least 90 minutes and the initial rate of incorporation approached 50% of the theoretical in vivo rate of DNA synthesis. However, DNA synthesis in the permeabilized cells was unaffected by the potent DNA polymerase inhibitor, aphidicolin. Analysis of newly synthesized DNA by molecular hybridization revealed that only organellar DNA was synthesized by the permeabilized cells. The LPC treated cells were also permeable to a protein as large as DNase I. The permeabilized cells were capable of RNA and protein synthesis as indicated by incorporation of radiolabeled UTP and leucine, respectively, into acid-precipitable material.  相似文献   

18.
19.
Cytoplasmic organization of POXvirus DNA replication   总被引:2,自引:2,他引:0  
Poxviruses, a family of large DNA viruses, are unique among DNA viruses, because they carry out DNA replication in the cytoplasm rather than the nucleus. This process does not occur randomly, but instead, these viruses create cytoplasmic 'mini-nuclei', distinct sites that are surrounded by membranes derived from the rough endoplasmic reticulum (ER) that support viral replication. This review summarizes how distinct steps preceding cytoplasmic DNA replication, as well as replication itself, operate in the host cell. The collective data point to an important role for both the rough ER and the microtubules and indicate that these cellular structures help to co-ordinate the virus life cycle to ensure that individual steps occur at the right time and place. In a broader sense, they emphasize how viruses have evolved sophisticated ways to use host cells to optimize their life cycles to ensure efficient production of infectious progeny.  相似文献   

20.
Eukaryotic DNA replication initiates from multiple replication origins. To ensure each origin fires just once per cell cycle, initiation is divided into two biochemically discrete steps: the Mcm2‐7 helicase is first loaded into prereplicative complexes (pre‐RCs) as an inactive double hexamer by the origin recognition complex (ORC), Cdt1 and Cdc6; the helicase is then activated by a set of “firing factors.” Here, we show that plasmids containing pre‐RCs assembled with purified proteins support complete and semi‐conservative replication in extracts from budding yeast cells overexpressing firing factors. Replication requires cyclin‐dependent kinase (CDK) and Dbf4‐dependent kinase (DDK). DDK phosphorylation of Mcm2‐7 does not by itself promote separation of the double hexamer, but is required for the recruitment of firing factors and replisome components in the extract. Plasmid replication does not require a functional replication origin; however, in the presence of competitor DNA and limiting ORC concentrations, replication becomes origin‐dependent in this system. These experiments indicate that Mcm2‐7 double hexamers can be precursors of replication and provide insight into the nature of eukaryotic DNA replication origins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号