首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 705 毫秒
1.
G H Sack  C C Talbot 《Gene》1989,84(2):509-515
We have determined the genomic sequence of the human GSAA1 gene, a member of the family of acute-phase human serum amyloid A (SAA)-encoding genes. This sequence predicts a mature protein of 104 amino acids (aa), several of which differ from residues usually conserved in the sequence of SAA proteins isolated from serum. Despite coding differences, however, the four-exon structure of GSAA1 resembles that of other SAA genes in humans and mice. The N-terminal 25 aa of the mature GSAA1 protein are virtually identical to those of an 'SAA-like' autocrine collagenase inducer produced by rabbit synovial fibroblasts; the latter also differ from the corresponding aa found in SAA in serum. We propose that GSAA1 is the human gene coding for a protein closely related to the SAA, but which is adapted to this important autocrine cytokine function.  相似文献   

2.
The structure of a human serum amyloid A (SAA) genomic clone (SAAg9) has been analyzed and the nucleotide sequence of the coding regions is compared with that of the cDNA for apoSAA1. The leader and coding sequences of exons 2 and 3 are identical to SAA1. However, there are 10 nucleotide and 7 derived amino acid substitutions in exon 4. These changes are identical to the amino acid sequence of the amyloid protein associated with familial Mediterranean fever. In particular, the amino acid substitution (Thr to Phe) at residue 69 of SAA1 may have an important role in this type of hereditary amyloidosis. The genomic clone SAAg9 has been transfected into mouse L cells, and constitutive expression of human specific mRNA and protein were observed in stable transfected clones. The expression of both SAA mRNA and protein were increased by incubation of the transfected cells with purified human interleukin-1 (IL-1), both human and mouse recombinant IL-1, and recombinant human tumor necrosis factor alpha. The induction of SAA is pretranslational and is likely to be mediated by protein factor(s) since incubation with cycloheximide diminished IL-1-dependent increase in SAA mRNA.  相似文献   

3.
An acidic variant of serum amyloid A (SAA) identified previously by isoelectrofocusing in a family of Turkish origin has been characterized at the genomic level. DNA sequence analysis revealed that individuals expressing the variant pI6.1/pI5.7 isoforms (the mother and three of four children) were heterozygous at the SAA1 gene locus. Their SAA1 gene sequences contained an adenine, as well as the usual guanine, at the position corresponding to the second base of codon 72. The presence of both bases predicts two SAA1 protein sequences, one having aspartic acid and the other glycine at position 72. While the Gly-72 SAA1 (+/- Arg-1) sequence represents the normal pI6.5/pI6.0 isoforms, the Asp-72 SAA1 (+/- Arg-1) sequence corresponds to the variant pI6.1/pI5.7 isoforms.  相似文献   

4.
5.
The nucleotide sequences of two mink serum amyloid A (SAA) cDNA clones have been analyzed, one (SAA1) 776 base pairs long and the other (SAA2) 552 base pairs long. Significant differences were discovered when derived amino acid sequences were compared with data for apoSAA isolated from high density lipoprotein. Previous studies of mink protein SAA and amyloid protein A (AA) suggest that only one SAA isotype is amyloidogenic. The cDNA clone for SAA2 defines the "amyloid prone" isotype while SAA1 is found only in serum. Mink SAA1 has alanine in position 10, isoleucine in positions 24, 67, and 71, lysine in position 27, and proline in position 105. Residue 10 in mink SAA2 is valine while arginine and asparagine are at positions 24 and 27, respectively, all characteristics of protein AA isolated from mink amyloid fibrils. Mink SAA2 also has valine in position 67, phenylalanine in position 71, and amino acid 105 is serine. It remains unknown why these six amino acid substitutions render SAA2 more amyloidogenic than SAA1. Eighteen hours after lipopolysaccharide stimulation, mink SAA mRNA is abundant in liver with relatively minor accumulations in brain and lung. Genes encoding both SAA isotypes are expressed in all three organs while no SAA mRNA was detectable in amyloid prone organs, including spleen and intestine, indicating that deposition of AA from locally synthesized SAA is unlikely. A third mRNA species (2.2 kilobases) was identified and hybridizes with cDNA probes for mink SAA1 and SAA2. In addition to a major primary translation product (molecular mass 14,400 Da) an additional product with molecular mass 28,000 Da was immunoprecipitable.  相似文献   

6.
The sequence and structure of a new serum amyloid A gene.   总被引:11,自引:1,他引:10       下载免费PDF全文
The acute phase response is characterized by changes in the serum concentrations of many proteins. A 1000-fold increase in the concentration of serum amyloid A (SAA) protein occurs within 24 hours of LPS injection in the mouse. We have isolated a cDNA clone and its corresponding genomic phage for a third, previously unreported SAA protein. The sequence of the cDNA, the gene's exons and neighboring DNA are presented along with the mapping evidence supporting the gene structure.  相似文献   

7.
DNA sequence evidence for polymorphic forms of human serum amyloid A (SAA)   总被引:8,自引:0,他引:8  
Serum amyloid A (SAA) is an acute-phase reactant and precursor to amyloid A protein, the major constituent of the fibril deposits of reactive amyloidosis. The factors determining whether the 104-amino acid SAA molecule is converted into the 76-amino acid amyloid A protein and deposited as fibrils are not known. As an initial step toward investigating the possibility that a particular primary structure of SAA is involved in amyloid formation, we have cloned and determined the nucleotide sequence of human SAA-specific cDNAs. The first clone, selected using an oligonucleotide probe, was shown to encode the signal peptide and amino-terminal region of SAA. The cDNA of this clone served as probe in the selection of two distinct, full-length SAA cDNAs, initially differentiated by the presence (pSAA21) or absence (pSAA82) of a PstI site in the coding sequence. The complete nucleotide sequence of pSAA82 cDNA was determined. Since there appear to be multiple human SAA alleles, it is conceivable that their differential expression is important to amyloid formation.  相似文献   

8.
Serum amyloid A protein (SAA) is an acute-phase apolipoprotein of high-density lipoprotein (HDL). Its N-terminal sequence is identical with that of amyloid A protein (AA), the subunit of AA amyloid fibrils. However, rats do not develop AA amyloidosis, and we report here that neither normal nor acute-phase rat HDL contains a protein corresponding to SAA of other species. mRNA coding for a sequence homologous with the C-terminal but not with the N-terminal part of human SAA is synthesized in greatly increased amounts in acute-phase rat liver. These observations indicate that the failure of rats to develop AA amyloid results from the absence of most of the AA-like part of their SAA-like protein, and that the N-terminal portion of SAA probably contains the lipid-binding sequences.  相似文献   

9.
Amyloidosis is a group of diseases characterized by the extracellular deposition of protein that contains non-branching, straight fibrils on electron microscopy (amyloid fibrils) that have a high content of beta-pleated sheet conformation. Various biochemically distinct proteins can undergo transformation into amyloid fibrils. The precursor protein of amyloid protein A (AA) is the acute phase protein serum amyloid A (SAA). The concentration of SAA in plasma increases up to 1000-fold within 24 to 48 h after trauma, inflammation or infection. Individuals with chronically increased SAA levels may develop AA amyloidosis. SAA has been divided into two groups according to the encoding genes and the source of protein production. These two groups are acute phase SAA (A-SAA) and constitutive SAA (C-SAA). Although the liver is the primary site of the synthesis of A-SAA and C-SAA, extrahepatic production of both SAAs has been observed in animal models and cell culture experiments of several mammalian species and chicken. The functions of A-SAA are thought to involve lipid metabolism, lipid transport, chemotaxis and regulation of the inflammatory process. There is growing evidence that extrahepatic A-SAA formation may play a crucial role in amyloidogenesis and enhances amyloid formation at the site of SAA production.  相似文献   

10.
Circular-dichroism studies on two murine serum amyloid A proteins.   总被引:9,自引:0,他引:9       下载免费PDF全文
C.d. studies have shown that mouse SAA2 (serum amyloid A2) protein has about one-half of the alpha-helix content of the SAA1 (serum amyloid A1) analogue (15 as against 32%), although secondary-structure prediction analyses based on sequence data do not suggest such a large difference between the forms. The decreased helical content may be a reflection or indication of a stronger propensity to aggregation of the SAA2 form compared with SAA1. The main elements of secondary structure in both proteins are beta-sheets/turns. Interactions with Ca2+ are accompanied by small losses in alpha-helix content, whereas binding to chondroitin-6-sulphate in the presence of millimolar Ca2+ also decreases the amount of secondary structure. However, SAA2 binding to heparan sulphate increases its beta-sheet structure, whereas with SAA1 secondary structure is not apparently altered by its interaction with heparan sulphate. Computer-generated surface profiles show slight differences in accessibility, hydrophilicity and flexibility between the proteins. Understanding these differences may help to explain why SAA2 is found in amyloid fibrils whereas SAA1 is not. In particular, a stronger tendency to aggregation might be the reason why SAA2 is deposited exclusively in these fibrils.  相似文献   

11.
The amyloid-relates serum protein SAA has been isolated by gel filtration in 10% formic acid from three animal species: mink, mouse, rabbit. Sera used in the isolation procedure were obtained from animals in which high concentrations of SAA had been induced by treatment with LPS. The isolated SAA proteins had a subunit size similar to that of human SAA, with m.w. values ranging from 10,000 to 11,700 (estimated by gel filtration in 6 M guanidine-HC1) or 12,400 to 15,000 (estimated by SDS-PAGE). The m.w. studies and amino acid sequence data indicated that SAA and the amyloid fibril protein AA in the mouse, and probably also the mink, are related in the same way as in man, the two proteins having common NH2-terminal amino acid sequences and SAA being extended by 20 to 40 residues at the COOH-terminal end of the molecule.  相似文献   

12.
Serum amyloid A (SAA) is a multifunctional acute‐phase protein whose concentration in serum increases markedly following a number of chronic inflammatory and neoplastic diseases. Prolonged high SAA level may give rise to reactive systemic amyloid A (AA) amyloidosis, where the N‐terminal segment of SAA is deposited as amyloid fibrils. Besides, recently, well‐documented association of SAA with high‐density lipoprotein or glycosaminoglycans, in particular heparin/heparin sulfate (HS), and specific interaction between SAA and human cystatin C (hCC), the ubiquitous inhibitor of cysteine proteases, was proved. Using a combination of selective proteolytic excision and high‐resolution mass spectrometry, a hCC binding site in the SAA sequence was determined as SAA(86–104). The role of this SAA C‐terminal fragment as a ligand‐binding locus is still not clear. It was postulated important in native SAA folding and in pathogenesis of AA amyloidosis. In the search of conformational details of this SAA fragment, we did its structure and affinity studies, including its selected double/triple Pro→Ala variants. Our results clearly show that the SAA(86–104) 19‐peptide has rather unordered structure with bends in its C‐terminal part, which is consistent with the previous results relating to the whole protein. The results of affinity chromatography, fluorescent ELISA‐like test, CD and NMR studies point to an importance of proline residues on structure of SAA(86–104). Conformational details of SAA fragment, responsible for hCC binding, may help to understand the objective of hCC–SAA complex formation and its importance for pathogenesis of reactive amyloid A amyloidosis. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
A 12,000 dalton serum amyloid A protein (SAA) has been isolated by chromatography on Sephadex in 10% formic acid. It is similar immunologically to the previously characterized 8500 dalton tissue amyloid A (AA) protein. The results of amino acid analyses, peptide maps, and the identity of the first 11 residues of the SAA and AA proteins support the idea that AA represents the amino terminal fragment of SAA and is derived from it by proteolysis.  相似文献   

14.
Serum amyloid A1 (SAA1) is an apolipoprotein that binds to the high‐density lipoprotein (HDL) fraction of the serum and constitutes the fibril precursor protein in systemic AA amyloidosis. We here show that HDL binding blocks fibril formation from soluble SAA1 protein, whereas internalization into mononuclear phagocytes leads to the formation of amyloid. SAA1 aggregation in the cell model disturbs the integrity of vesicular membranes and leads to lysosomal leakage and apoptotic death. The formed amyloid becomes deposited outside the cell where it can seed the fibrillation of extracellular SAA1. Our data imply that cells are transiently required in the amyloidogenic cascade and promote the initial nucleation of the deposits. This mechanism reconciles previous evidence for the extracellular location of deposits and amyloid precursor protein with observations the cells are crucial for the formation of amyloid.  相似文献   

15.
The administration of dimethylnitrosamine (DMN) into rabbit induced liver fibrosis/cirrhosis and finally caused a lethal hepatic failure. Blood collected from the rabbit was centrifuged and the supernatant was analyzed by two-dimensional gel electrophoresis (2-DE) for the study of proteome in serum. Compared with 2-DE gel of serum from healthy rabbit, a significant reduction in the number of protein spots having molecular weights (MWs) below 21 kDa was observed in the gels of the serum from the rabbit treated with DMN, while the secretion of albumin was kept at a high level. Separated spots in the two-dimensional gel were cut, digested with trypsin, and analyzed by MALDI-TOF mass spectrometry. Serum amyloid A-3 protein precursor (SAA3) and other serum amyloid A (SAA) protein precursors were identified by matching the peptide masses with those in database. In the SAA family of acute-phase/inflammatory response proteins, SAA3 is mainly synthesized in the liver. The SAA3 secreted level in the serum decreased with time after DMN administration as the result of hepatic dysfunctions.  相似文献   

16.
Amyloid A protein (AA), the major fibril protein in AA-amyloidosis, is an N-terminal cleavage product of the precursor protein, serum amyloid A (SAA). Using mass spectrometry and amino-acid sequencing, we identified and characterized two novel AA protein subsets co-deposited as amyloid fibrils in an patient having AA-amyloidosis associated with rheumatoid arthritis. One of the AA proteins corresponded to positions 2-76 (or 75) of SAA2 alpha and the other corresponded to positions 2-76 (or 75) of known SAA1 subsets, except for position 52 or 57, where SAA1 alpha has valine and alanine and SAA1 beta has alanine and valine in position 52 and 57, respectively, whereas the AA protein had alanine at the both positions. Our findings (1), demonstrate that not only one but two SAA subsets could be deposited together as an AA-amyloid in a single individual and (2), support the existence of a novel SAA1 allotype, i.e., SAA152,57Ala.  相似文献   

17.
We developed a recombinant DNA system to overexpress a fusion protein between the small, minimally soluble acute phase serum protein, serum amyloid A (SAA), and the bacterial enzyme staphylococcal nuclease (SN). This fusion protein is very soluble and is immunoreactive to polyclonal anti-SAA antibodies. Tryptophan fluorescence shows smooth denaturation curves for the fusion protein in guanidinium HCl or potassium thiocyanate. Fluorescence also indicates that only a single tryptophan residue (of the four present) is accessible to iodide quenching and, presumably, is exposed on the surface of the fusion protein. Circular dichroism (CD) shows a significant signal indicating α-helix, which can be attributed to the SAA portion of the molecule; these are the first CD spectral data available for SAA. pH titration shows persistence of helix domains for the fusion protein at pH 3.0, in contrast to the denaturation of SN under the same conditions. (The entire fusion protein shows a random coil pattern below pH 3.0.) By exploiting the structural and solubility properties of SN, this fusion protein has provided the first structural data about SAA—the precursor of the amyloid deposits in secondary amyloidosis. This fusion protein should be useful for further physical and physiologic studies of SAA. Proteins 30:381–387, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
Secondary amyloid A (AA) amyloidosis is an important complication of some chronic inflammatory diseases, primarily rheumatoid arthritis (RA). It is a serious, potentially life‐threatening disorder caused by the deposition of AA fibrils, which are derived from the circulatory, acute‐phase‐reactant, serum amyloid A protein (SAA). Recently, a specific interaction between SAA and the ubiquitous inhibitor of cysteine proteases—human cystatin C (hCC)—has been proved. Using a combination of selective proteolytic excision and high‐resolution mass spectrometry, the binding sites in the SAA and hCC sequences were assessed as SAA(86–104) and hCC(96–102), respectively. Here, we report further details concerning the hCC–SAA interaction. With the use of affinity tests and florescent ELISA‐like assays, the amino acid residues crucial for the protein interaction were determined. It was shown that all amino acid residues in the SAA sequence, essential for the formation of the protein complex, are basic ones, which suggests an electrostatic interaction character. The idea is corroborated by the fact that the most important residues in the hCC sequence are Ser‐98 and Tyr‐102; these residues are able to form hydrogen bonds via their hydroxyl groups. The molecular details of hCC–SAA complex formation might be helpful for the design of new compounds modulating the biological role of both proteins. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Amyloid A protein (AA), the major fibril protein in AA-amyloidosis, is an N-terminal cleavage product of the precursor protein, serum amyloid A (SAA). Using mass spectrometry and amino-acid sequencing, we identified and characterized two novel AA protein subsets co-deposited as amyloid fibrils in an patient having AA-amyloidosis associated with rheumatoid arthritis. One of the AA proteins corresponded to positions 2–76 (or 75) of SAA2α and the other corresponded to positions 2–76 (or 75) of known SAA1 subsets, except for position 52 or 57, where SAA1α has valine and alanine and SAA1β has alanine and valine in position 52 and 57, respectively, whereas the AA protein had alanine at the both positions. Our findings (1), demonstrate that not only one but two SAA subsets could be deposited together as an AA-amyloid in a single individual and (2), support the existence of a novel SAA1 allotype, i.e., SAA152,57Ala.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号