首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulation of cyclin abundance is central to eukaryotic cell cycle control. Strong overexpression of mitotic cyclins is known to lock the system in mitosis, but the quantitative behavior of the control system as this threshold is approached has only been characterized in the in vitro Xenopus extract system. Here, we quantitate the threshold for mitotic block in budding yeast caused by constitutive overexpression of the mitotic cyclin Clb2. Near this threshold, the system displays marked loss of robustness, in that loss or even heterozygosity for some regulators becomes deleterious or lethal, even though complete loss of these regulators is tolerated at normal cyclin expression levels. Recently, we presented a quantitative kinetic model of the budding yeast cell cycle. Here, we use this model to generate biochemical predictions for Clb2 levels, asynchronous as well as through the cell cycle, as the Clb2 overexpression threshold is approached. The model predictions compare well with biochemical data, even though no data of this type were available during model generation. The loss of robustness of the Clb2 overexpressing system is also predicted by the model. These results provide strong confirmation of the model's predictive ability.  相似文献   

2.
BACKGROUND: Cytokinesis occurs just as chromosomes complete segregation and reform nuclei. It has been proposed that cyclin/Cdk kinase inhibits cytokinesis until exit from mitosis; however, the timer of cytokinesis has not been experimentally defined. Whereas expression of a stable version of Drosophila cyclin B blocks cytokinesis along with numerous events of mitotic exit, stable cyclin B3 allows cytokinesis even though it blocks late events of mitotic exit. We examined the interface between mitotic cyclin destruction and the timing of cytokinesis. RESULTS: In embryonic mitosis 14, the cytokinesis furrow appeared 60 s after the metaphase/anaphase transition and closed 90 s later during telophase. In cyclin B or cyclin B3 mutant cells, the cytokinesis furrow appeared at an earlier stage of mitosis. Expression of stable cyclin B3 delayed and prolonged furrow invagination; nonetheless, cytokinesis completed during the extended mitosis. Reduced function of Pebble, a Rho GEF required for cytokinesis, also delayed and slowed furrow invagination, but incomplete furrows were aborted at the time of mitotic exit. In functional and genetic tests, cyclin B and cyclin B3 inhibited Pebble contributions to cytokinesis. CONCLUSIONS: Temporal coordination of mitotic events involves inhibition of cytokinesis by cyclin B and cyclin B3 and punctual relief of the inhibition by destruction of these cyclins. Both cyclins inhibit Pebble-dependent activation of cytokinesis, whereas cyclin B can inhibit cytokinesis by additional modes. Stable cyclin B3 also blocks the later return to interphase that otherwise appears to impose a deadline for the completion of cytokinesis.  相似文献   

3.
Mitotic entry and exit are switch‐like transitions that are driven by the activation and inactivation of Cdk1 and mitotic cyclins. This simple on/off reaction turns out to be a complex interplay of various reversible reactions, feedback loops, and thresholds that involve both the direct regulators of Cdk1 and its counteracting phosphatases. In this review, we summarize the interplay of the major components of the system and discuss how they work together to generate robustness, bistability, and irreversibility. We propose that it may be beneficial to regard the entry and exit reactions as two separate reversible switches that are distinguished by differences in the state of phosphatase activity, mitotic proteolysis, and a dramatic rearrangement of cellular components after nuclear envelope breakdown, and discuss how the major Cdk1 activity thresholds could be determined for these transitions.  相似文献   

4.
M Brandeis  T Hunt 《The EMBO journal》1996,15(19):5280-5289
We have studied how the cell cycle-specific oscillations of mitotic B-type cyclins are generated in mouse fibroblasts. A reporter enzyme comprising the N-terminus of a B-type cyclin fused to bacterial chloramphenicol acetyl transferase (CAT) was degraded at the end of mitosis like endogenous cyclins. Point mutations in the destruction box of this construct completely abolished its mitotic instability. When the destructible reporter was driven by the cyclin B2 promoter, CAT activity mimicked the oscillations in the level of the endogenous cyclin B2. These oscillations were largely conserved when the reporter was transcribed constitutively from the SV40 promoter. Pulse-chase experiments or addition of the proteasome inhibitors lactacystin and ALLN showed that cyclin synthesis continued after the end of mitosis. The destruction box-specific degradation of cyclins normally ceases at the onset of S phase, and is active in fibroblasts arrested in G0 and in differentiated C2 myoblasts. We were able to reproduce this proteolysis in vitro in extracts of synchronized cells. Extracts of G1 cells degraded cyclin B1 whereas p27Kip1 was stable, in contrast, cyclin B1 remained stable and p27Kip1 was degraded in extracts of S phase cells.  相似文献   

5.
The mitotic exit network (MEN) is an essential GTPase signaling pathway that triggers exit from mitosis in budding yeast. We show here that during meiosis, the MEN is dispensable for exit from meiosis I but contributes to the timely exit from meiosis II. Consistent with a role for the MEN during meiosis II, we find that the signaling pathway is active only during meiosis II. Our analysis further shows that MEN signaling is modulated during meiosis in several key ways. Whereas binding of MEN components to spindle pole bodies (SPBs) is necessary for MEN signaling during mitosis, during meiosis MEN signaling occurs off SPBs and does not require the SPB recruitment factor Nud1. Furthermore, unlike during mitosis, MEN signaling is controlled through the regulated interaction between the MEN kinase Dbf20 and its activating subunit Mob1. Our data lead to the conclusion that a pathway essential for vegetative growth is largely dispensable for the specialized meiotic divisions and provide insights into how cell cycle regulatory pathways are modulated to accommodate different modes of cell division.  相似文献   

6.
Comment on: Signon L. Cell Cycle 2011; 10:1655-68.  相似文献   

7.
Mitotic cyclins are abruptly degraded at the end of mitosis by a cell-cycle-regulated ubiquitin-dependent proteolytic system. To understand how cyclin is recognized for ubiquitin conjugation, we have performed a mutagenic analysis of the destruction signal of mitotic cyclins. We demonstrate that an N-terminal cyclin B segment as short as 27 residues, containing the 9-amino-acid destruction box, is sufficient to destabilize a heterologous protein in mitotic Xenopus extracts. Each of the three highly conserved residues of the cyclin B destruction box is essential for ubiquitination and subsequent degradation. Although an intact destruction box is essential for the degradation of both A- and B-type cyclins, we find that the Xenopus cyclin A1 destruction box cannot functionally substitute for its B-type counterpart, because it does not contain the highly conserved asparagine necessary for cyclin B proteolysis. Physical analysis of ubiquitinated cyclin B intermediates demonstrates that multiple lysine residues function as ubiquitin acceptor sites, and mutagenic studies indicate that no single lysine residue is essential for cyclin B degradation. This study defines the key residues of the destruction box that target cyclin for ubiquitination and suggests there are important differences in the way in which A- and B-type cyclins are recognized by the cyclin ubiquitination machinery.  相似文献   

8.
Cyclical inactivation of B-type cyclins has been proposed to be required for alternating DNA replication and mitosis. Destruction box-dependent Clb5p degradation is strongly increased in mitotic cells, and constitutive overexpression of Clb5p lacking the destruction box resulted in rapid accumulation of inviable cells, frequently multiply budded, with DNA contents ranging from unreplicated to apparently fully replicated. Loss of viability correlated with retention of nuclear Clb5p at the time of nuclear division. CLB2-Deltadb overexpression that was quantitatively comparable to CLB5-Deltadb overexpression with respect to Clb protein production and Clb-associated kinase activity resulted in a distinct phenotype: reversible mitotic arrest with uniformly replicated DNA. Simultaneous overexpression of CLB2-Deltadb and CLB5-Deltadb overexpressers similarly resulted in a uniform arrest with replicated DNA, and this arrest was significantly more reversible than that observed with CLB5-Deltadb overexpression alone. These results suggest that Clb2p and not Clb5p can efficiently block mitotic completion. We speculate that CLB5-Deltadb overexpression may be lethal, because persistence of high nuclear Clb5p-associated kinase throughout mitosis leads to failure to load origins of replication, thus preventing DNA replication in the succeeding cell cycle.  相似文献   

9.
The events of late mitosis, from sister-chromatid separation to cytokinesis, are governed by the anaphase-promoting complex (APC), a multisubunit assembly that triggers the ubiquitin-dependent proteloysis of key regulatory proteins. An intricate regulatory network governs APC activity and helps to ensure that late mitotic events are properly timed and coordinated.  相似文献   

10.
S Sigrist  H Jacobs  R Stratmann    C F Lehner 《The EMBO journal》1995,14(19):4827-4838
While entry into mitosis is triggered by activation of cdc2 kinase, exit from mitosis requires inactivation of this kinase. Inactivation results from proteolytic degradation of the regulatory cyclin subunits during mitosis. At least three different cyclin types, cyclins A, B and B3, associate with cdc2 kinase in higher eukaryotes and are sequentially degraded in mitosis. We show here that mutations in the Drosophila gene fizzy (fzy) block the mitotic degradation of these cyclins. Moreover, expression of mutant cyclins (delta cyclins) lacking the destruction box motif required for mitotic degradation affects mitotic progression at distinct stages. Deltacyclin A results in a delay in metaphase, deltacyclin B in an early anaphase arrest and deltacyclin B3 in a late anaphase arrest, suggesting that mitotic progression beyond metaphase is ordered by the sequential degradation of these different cyclins. Coexpression of deltacyclins A, B and B3 allows a delayed separation of sister chromosomes, but interferes wit chromosome segregation to the poles. Mutations in fzy block both sister chromosome separation and segregation, indicating that fzy plays a crucial role in the metaphase/anaphase transition.  相似文献   

11.
In the budding yeast Saccharomyces cerevisiae, cell cycle progression and cytokinesis at mitotic exit are proposed to be linked by CDC14 phosphatase antagonizing the function of mitotic B-type cyclin (CLBs). We have isolated a temperature-sensitive mutant, cdc14(A280V), with a mutation in the conserved phosphatase domain. Prolonged arrest in the cdc14(A280V) mutant partially uncoupled cell cycle progression from the completion of cytokinesis as measured by bud re-emergence, in the form of elongated apical projections, and DNA re-replication. In contrast to previous mitotic exit mutants, cdc14(A280V) mutants displayed a strong bias for the first apical projection to form in the mother cell body. Using cdc14(A280V) mutant phenotypes, the functions of the B-type cyclins at mitotic exit were investigated. The preference in mother-daughter apical projection formation was observed to be independent of any individual CLB function. However, cdc14(A280V)clb1Δ cells displayed a pronounced increase in apical projections, while cdc14(A280V)clb3Δ cells were observed to form round cellular chains. While cdc14(A280V) cells arrested at mitotic exit, both cdc14(A280V)clb1Δ and cdc14(A280V)clb3Δ cells completed cytokinesis, but failed cell separation. cdc14(A280V)clb2Δ cells displayed a defect in actin ring assembly. These observations differentiate the functions of CLB1, CLB2, and CLB3 at mitotic exit, and are consistent with the hypothesis that CLB activities are antagonized by the CDC14 phosphatase in order to couple cell cycle progression with cytokinesis at mitotic exit.  相似文献   

12.
Propagation of centromeric chromatin requires exit from mitosis   总被引:1,自引:0,他引:1       下载免费PDF全文
Centromeres direct chromosomal inheritance by nucleating assembly of the kinetochore, a large multiprotein complex required for microtubule attachment during mitosis. Centromere identity in humans is epigenetically determined, with no DNA sequence either necessary or sufficient. A prime candidate for the epigenetic mark is assembly into centromeric chromatin of centromere protein A (CENP-A), a histone H3 variant found only at functional centromeres. A new covalent fluorescent pulse-chase labeling approach using SNAP tagging has now been developed and is used to demonstrate that CENP-A bound to a mature centromere is quantitatively and equally partitioned to sister centromeres generated during S phase, thereby remaining stably associated through multiple cell divisions. Loading of nascent CENP-A on the megabase domains of replicated centromere DNA is shown to require passage through mitosis but not microtubule attachment. Very surprisingly, assembly and stabilization of new CENP-A-containing nucleosomes is restricted exclusively to the subsequent G1 phase, demonstrating direct coupling between progression through mitosis and assembly/maturation of the next generation of centromeres.  相似文献   

13.
Passage through mitosis is required to reset replication origins for the subsequent S phase. During mitosis, a series of biochemical reactions involving cyclin-dependent kinases (CDKs), the anaphase promoting complex or cyclosome (APC/C), and a mitotic exit network including Cdc5, 14, and 15 coordinates the proper separation and segregation of sister chromatids. Here we show that cyclin B/CDK inactivation can drive origin resetting in either early S phase or mitosis. This origin resetting occurs efficiently in the absence of APC/C function and mitotic exit network function. We conclude that CDK inactivation is the single essential event in mitosis required to allow pre-RC assembly for the next cell cycle.  相似文献   

14.
Walsh CJ 《PloS one》2012,7(4):e34763
Mitosis in the amebo-flagellate Naegleria pringsheimi is acentrosomal and closed (the nuclear membrane does not break down). The large central nucleolus, which occupies about 20% of the nuclear volume, persists throughout the cell cycle. At mitosis, the nucleolus divides and moves to the poles in association with the chromosomes. The structure of the mitotic spindle and its relationship to the nucleolus are unknown. To identify the origin and structure of the mitotic spindle, its relationship to the nucleolus and to further understand the influence of persistent nucleoli on cellular division in acentriolar organisms like Naegleria, three-dimensional reconstructions of the mitotic spindle and nucleolus were carried out using confocal microscopy. Monoclonal antibodies against three different nucleolar regions and α-tubulin were used to image the nucleolus and mitotic spindle. Microtubules were restricted to the nucleolus beginning with the earliest prophase spindle microtubules. Early spindle microtubules were seen as short rods on the surface of the nucleolus. Elongation of the spindle microtubules resulted in a rough cage of microtubules surrounding the nucleolus. At metaphase, the mitotic spindle formed a broad band completely embedded within the nucleolus. The nucleolus separated into two discreet masses connected by a dense band of microtubules as the spindle elongated. At telophase, the distal ends of the mitotic spindle were still completely embedded within the daughter nucleoli. Pixel by pixel comparison of tubulin and nucleolar protein fluorescence showed 70% or more of tubulin co-localized with nucleolar proteins by early prophase. These observations suggest a model in which specific nucleolar binding sites for microtubules allow mitotic spindle formation and attachment. The fact that a significant mass of nucleolar material precedes the chromosomes as the mitotic spindle elongates suggests that spindle elongation drives nucleolar division.  相似文献   

15.
In budding yeast, a signaling network known as the mitotic exit network (MEN) triggers exit from mitosis. We find that hypertonic stress allows MEN mutants to exit from mitosis in a manner dependent on the high osmolarity glycerol (HOG) mitogen-activated protein (MAP) kinase cascade. The HOG pathway drives exit from mitosis in MEN mutants by promoting the activation of the MEN effector, the protein phosphatase Cdc14. Activation of Cdc14 depends on the Cdc14 early anaphase release network, a group of proteins that functions in parallel to the MEN to promote Cdc14 function. Notably, exit from mitosis is promoted by the signaling branch defined by the Sho1 osmosensing system, but not by the Sln1 osmosensor of the HOG pathway. Our results suggest that the stress MAP kinase pathway mobilizes programs to promote completion of the cell cycle and entry into G1 under unfavorable conditions.  相似文献   

16.
《Molecular cell》2021,81(24):5007-5024.e9
  1. Download : Download high-res image (200KB)
  2. Download : Download full-size image
  相似文献   

17.
cdc28-1N is a conditional allele that has normal G1 (Start) function but confers a mitotic defect. We have isolated seven genes that in high dosage suppress the growth defect of cdc28-1N cells but not of Start-defective cdc28-4 cells. Three of these (CLB1, CLB2, and CLB4) encode proteins strongly homologous to G2-specific B-type cyclins. Another gene, CLB3, was cloned using PCR, CLB1 and CLB2 encode a pair of closely related proteins; CLB3 and CLB4 encode a second pair. Neither CLB1 nor CLB2 is essential; however, disruption of both is lethal and causes a mitotic defect. Furthermore, the double mutant cdc28-1N clb2::LEU2 is nonviable, whereas cdc28-4 clb2::LEU2 is viable, suggesting that the cdc28-1N protein may be defective in its interaction with B-type cyclins. Our results are consistent with CDC28 function being required in both G1 and mitosis. Its mitotic role, we believe, involves interaction with a family of at least four G2-specific cyclins.  相似文献   

18.
The ubiquitin-mediated degradation of mitotic cyclins is required for cells to exit from mitosis. Previous work with cell-free systems has revealed four components required for cyclin-ubiquitin ligation and proteolysis: a nonspecific ubiquitin-activating enzyme E1, a soluble fraction containing a ubiquitin carrier protein activity called E2-C, a crude particulate fraction containing a ubiquitin ligase (E3) activity that is activated during M-phase, and a constitutively active 26S proteasome that degrades ubiquitinated proteins. Here, we identify a novel approximately 1500-kDa complex, termed the cyclosome, which contains a cyclin-selective ubiquitin ligase activity, E3-C. E3-C is present but inactive during interphase; it can be activated in vitro by the addition of cdc2, enabling the transfer of ubiquitin from E2-C to cyclin. The kinetics of E3-C activation suggest the existence of one or more intermediates between cdc2 and E3-C. Cyclosome-associated E3-C acts on both cyclin A and B, and requires the presence of wild-type N-terminal destruction box motifs in each cyclin. Ubiquitinated cyclins are then rapidly recognized and degraded by the proteasome. These results identify the cyclosome-associated E3-C as the component of the cyclin destruction machinery whose activity is ultimately regulated by cdc2 and, as such, the element directly responsible for setting mitotic cyclin levels during early embryonic cell cycles.  相似文献   

19.
Polo-like kinases are important regulators of multiple mitotic events; however, how Polo-like kinases are spatially and temporally regulated to perform their many tasks is not well understood. Here, we examined the subcellular localization of the budding yeast Polo-like kinase Cdc5 using a functional Cdc5-GFP protein expressed from the endogenous locus. In addition to the well-described localization of Cdc5 at the spindle pole bodies (SPBs) and the bud neck, we found that Cdc5-GFP accumulates in the nucleus in early mitosis but is released to the cytoplasm in late mitosis in a manner dependent on the Cdc14 phosphatase. This Cdc5 release from the nucleus is important for mitotic exit because artificial sequestration of Cdc5 in the nucleus by addition of a strong nuclear localization signal (NLS) resulted in mitotic exit defects. We identified a key cytoplasmic target of Cdc5 as Bfa1, an inhibitor of mitotic exit. Our study revealed a novel layer of Cdc5 regulation and suggests the existence of a possible coordination between Cdc5 and Cdc14 activity.  相似文献   

20.
Bardin AJ  Visintin R  Amon A 《Cell》2000,102(1):21-31
Exit from mitosis must not occur prior to partitioning of chromosomes between daughter cells. We find that the GTP binding protein Tem1, a regulator of mitotic exit, is present on the spindle pole body that migrates into the bud during S phase and mitosis. Tem1's exchange factor, Lte1, localizes to the bud. Thus, Tem1 and Lte1 are present in the same cellular compartment (the bud) only after the nucleus enters the bud during nuclear division. We also find that the presence of Tem1 and Lte1 in the bud is required for mitotic exit. Our results suggest that the spatial segregation of Tem1 and Lte1 ensures that exit from mitosis only occurs after the genetic material is partitioned between mother and daughter cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号