首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The molecular weights of lyophilized and non-lyophilized horse liver alcohol dehydrogenase have been compared by quasi-elastic light scattering, and ultracentrifugation. Whereas the non-lyophilized enzyme has the expected molecular weight of 78 000, the lyophilized enz)me has an initial molecular weight of about 10(6) which increases with time by an endothermic process. This result shows that any physical measurement using lyophilized liver alcohol dehydrogenase to investigate the enzyme mechanism, which relies upon the molecular size, will be invalid.  相似文献   

3.
4.
5.
Polymorphism of horse liver alcohol dehydrogenase   总被引:1,自引:0,他引:1  
The properties of the most cathodal component of horse liver alcohol dehydrogenase (isozyme SS) have been found to vary. The variability is dependent on the livers from which the enzyme is isolated rather than on the purification procedure. Two distinct preparations, differing in catalytic properties, have been obtained and named S-type and A-type preparations. The preparations can be distinguished from each other by the ratio of activity with acetaldehyde to activity with the steroidal ketone 5β-dihydrotestosterone. This ratio is about one for the S-type and twenty for the A-type preparations.  相似文献   

6.
A J Sytkowski  B L Vallee 《Biochemistry》1978,17(14):2850-2857
The preparation of metal hybrid species of horse liver alcohol dehydrogenase is made possible by the development of carefully delineated systems of metal in equilibrium metal exchange employing equilibrium dialysis. The conditions which are optimal for the site-specific replacement of the catalytic and/or noncatalytic zinc atoms of the native enzyme by cobalt are not identical with those which are utilized for substitution with 65Zn. Thus, while certain 65Zn hybrids can be prepared by exploiting the differential effects of buffer anions, the cobalt hybrids are generated by critical adjustments in the pH of the dialysate. Factors which may determine the mechanism of metal replacement reactions include acid-assisted, ligand-assisted, and metal-assisted dechelation, steric restriction, and ligand denticity as well as physicochemical properties of the enzyme itself. The spectral characteristics of the catalytic and noncatalytic cobalt atoms reflect both the geometry of the coordination complexes and the nature of the ligands and serve as sensitive probes of these loci in the enzyme.  相似文献   

7.
Aldehyde dehydrogenase catalyzes the oxidation of aldehydes to acids through the formation of a covalent intermediate. It has been postulated that a cysteine residue could be acting as the active site nucleophilic group. Although N-ethylmaleimide was found to react with many cysteines it was possible by doing the reaction in the presence of chloral hydrate, a substrate analog which functions as a competitive inhibitor, to label cysteine at position 49 in the horse liver mitochondrial enzyme. The dehydrogenase activity was lost as the residue was modified, consistent with the possibility that the residue was an integral component of the active site of the enzyme. Cysteines at positions 162 and 369 also could be modified. It is suggested that cysteine 162 may function as part of a site capable of hydrolyzing nitrophenyl acetate. Details of the second site will appear in the accompanying paper (Tu, G. C., and Weiner, H. (1988) J. Biol. Chem. 263, 1218-1222). It appeared that the substrate-binding domain was in the N-terminal portion of the enzyme while the coenzyme binding domain was in the C-terminal portion. During this investigation 133 of the 500 residues of the horse liver enzyme were sequenced. These showed about 95% sequence identity with those of the human enzyme. Inasmuch as both beef and rat liver enzymes also share 95% identity with the human enzyme it can be expected that the results found with the horse liver enzyme can be applicable to all mammalian aldehyde dehydrogenase.  相似文献   

8.
The quenching of liver alcohol dehydrogenase protein fluorescence at alkaline pH indicates two conformational states of the enzyme with a pKa of 9.8+/-0.2, shifted to 10.6+/-0.2 in D2O. NAD+ and 2-p-toluidinonaphthalene-6-sulfonate, a fluorescent probe competitive with coenzyme, bind to the acid conformation of the enzyme. The pKa of the protein-fluorescence quenching curve is shifted toward 7.6 in the presence of NAD+, and the ternary complex formation with NAD+ and trifluoroethanol results in a pH-independent maximal quench. At pH (pD) 10.5, the rate constant for NAD+ binding was 2.6 times faster in D2O2 than in H2O due to the shift of the pKa. Based on these results, a scheme has been proposed in which the state of protonation of an enzyme functional group with a pKa of 9.8 controls the conformational state of the enzyme. NAD+ binds to the acid conformation and subsequently causes another conformational change resulting in the perturbation of the pKa to 7.6. Alcohol then binds to the unprotonated form of the functional group with a pKa of 7.6 in the binary enzyme-NAD+ complex and converts the enzyme to the alkaline conformation. Thus, at neutral pH liver alcohol dehydrogenase undergoes two conformational changes en route to the ternary complex in which hydride transfer occurs.  相似文献   

9.
The specificity of horse liver alcohol dehydrogenase for cyclohexanol and its 3-methyl derivatives was investigated by stopped-flow and initial velocity kinetic studies. The (1S,3S)-3-methylcyclohexanol was 7 times more reactive (V/Km) than cyclohexanol, whereas the (1R,3R)-3-methylcyclohexanol was at least 1000 times less reactive than its enantiomer. Computer simulation of the transient reaction of NAD+ and the cyclohexanols catalyzed by the enzyme suggests that the rate of transfer of hydrogen from the alcohol to NAD+ is increased with the 1S,3S isomer. Modeling of the three-dimensional structure of the ternary complex of the enzyme suggests that the 1S,3S isomer should only bind in a productive, reactive mode, whereas the 1R,3R isomer would bind predominantly in a nonproductive, inhibitory mode.  相似文献   

10.
11.
12.
A single amino group in horse liver alcohol dehydrogenase was modified with methyl(14C)acetimidate by a differential labeling procedure. Lysine residues outside the active site were modified with ethyl acetimidate while a lysine residue in the active site was protected by the formation of an enzyme-NAD+-pyrazole complex. After the protecting reagents were removed, the enzyme was treated with methyl(14C)acetimidate. Enzyme activity was enhanced 13-fold as 1.1 (14C)acetimidyl group was incorporated per active site. A labeled peptide was isolated from a tryptic-chymotryptic digest of the modified enzyme in 35% overall yield. Amino acid composition and sequential Edman degradations identified the peptide as residues 219-229; lysine residue 228 was modified with the radioactive acetimidyl group.  相似文献   

13.
14.
15.
The reaction of imido esters with horse liver alcohol dehydrogenase (LADH) and other proteins is widely considered to involve direct conversion of amino groups to amidine functions. We have shown that the 14-fold activated form of LADH which is produced when the modification is carried out near pH 8 contains primarily N-alkyl imidate, rather than amidine, moieties. Fully acetamidinated LADH, which is formed directly at pH 10, or by multiple modification at pH 8, is 6-fold activated. The observed mechanism of amidine formation suggests a re-evaluation of various conclusions drawn from studies of protein amidination.  相似文献   

16.
Pyridoxal compounds can either activate or inactivate horse liver alcohol dehydrogenase in differential labeling experiments. Amino groups outside of the active sites were modified with ethyl acetimidate, while the amino groups in the active sites were protected by the formation of the complex with NAD-plus and pyrazole. After removal of the NAD-plus and pyranzole, the partially acetimidylated enzyme was reductively alkylated with pyridoxal and NaBH4, with the incorporation of one pyridoxal group per subunit of the enzyme. The turnover numbers for the reaction of NAD-plus and ethanol increased by 15-fold, and for NADH and acetaldehyde by 32-fold. The Michaelis and inhibition constants increased 80-fold or more. Pyridoxal phosphate and NaBH4 also modified one group per subunit, but the turnover numbers decreased by 10-fold and the kinetic constants were intermediate between those obtained for pyridoxyl alcohol dehydrogenase and the partially acetimidylated enzyme. With native enzyme, the rates of dissociation of the enzyme-coenzyme complexes are rate-limiting in the catalytic reactions. The pyridoxyl enzyme is activated because the rates of dissociation of the enzyme-coenzyme complexes are increased. The rates of binding of coenzyme to phosphopyridoxyl enzyme have decreased due to the introduction of the negatively charged phosphate. The size of the group is not responsible for this decrease since these rates are not greatly decreased by the incorporation of pyridoxal. For both pyrodoxal and phosphopyridoxyl alcohol dehydrogenases, the interconversion of the ternary complex is at least partially rate-limiting. Chymotryptic-tryptic digestion of pryidoxyl enzyme produced a major peptide corresponding to residues 219 to 229, in which Lys 228 had reacted with pyridoxal. The same lysine residue reacted with pyridoxal phosphate.  相似文献   

17.
L A LeBrun  B V Plapp 《Biochemistry》1999,38(38):12387-12393
The rate of association of NAD(+) with wild-type horse liver alcohol dehydrogenase (ADH) is maximal at pH values between pK values of about 7 and 9, and the rate of NADH association is maximal at a pH below a pK of 9. The catalytic zinc-bound water, His-51 (which interacts with the 2'- and 3'-hydroxyl groups of the nicotinamide ribose of the coenzyme in the proton relay system), and Lys-228 (which interacts with the adenosine 3'-hydroxyl group and the pyrophosphate of the coenzyme) may be responsible for the observed pK values. In this study, the Lys228Arg, His51Gln, and Lys228Arg/His51Gln (to isolate the effect of the catalytic zinc-bound water) mutations were used to test the roles of the residues in coenzyme binding. The steady state kinetic constants at pH 8 for the His51Gln enzyme are similar to those for wild-type ADH. The Lys228Arg and Lys228Arg/His51Gln substitutions decrease the affinity for the coenzymes up to 16-fold, probably due to altered interactions with the arginine at position 228. As determined by transient kinetics, the rate constant for association of NAD(+) with the mutated enzymes no longer decreases at high pH. The pH profile for the Lys228Arg enzyme retains the pK value near 7. The His51Gln and Lys228Arg/His51Gln substitutions significantly decrease the rate constants for NAD(+) association, and the pH dependencies show that these enzymes bind NAD(+) most rapidly at a pH above pK values of 8. 0 and 9.0, respectively. It appears that the pK of 7 in the wild-type enzyme is shifted up by the H51Q substitutions, and the resulting pH dependence is due to the deprotonation of the catalytic zinc-bound water. Kinetic simulations suggest that isomerization of the enzyme-NAD(+) complex is substantially altered by the mutations. In contrast, the pH dependencies for NADH association with His51Gln, Lys228Arg, and Lys228Arg/His51Gln enzymes were the same as for wild-type ADH, suggesting that the binding of NAD(+) and the binding of NADH are controlled differently.  相似文献   

18.
Inactivation of alcohol dehydrogenase by 3-butyn-1-ol   总被引:1,自引:0,他引:1  
Horse liver and yeast alcohol dehydrogenases are rapidly inactivated during their catalysis of the oxidation of 3-butyn-1-ol. In the case of the horse liver enzyme, the inactivation is secondary to covalent modification of the apoenzyme by an electrophilic product that accumulates in the reaction solution and that can also react with water, glutathione, and other enzymes. The modified protein exhibits enhanced ultraviolet absorbance, which is not bleached upon dialysis of the denatured enzyme at pH 7.4 for 24 h. The inactivation by 3-butyn-1-ol is more rapid than that which is afforded by the related alcohols 2-propyn-1-ol and 2-propen-1-ol under identical conditions and no inactivation is seen upon incubation with 3-hydroxypropanoic nitrile plus nicotinamide-adenine dinucleotide.  相似文献   

19.
The pattern of kinetic behaviour of ethanolamine (EA), an ethanol structural analog, in the alcohol dehydrogenase reaction has been studied. EA has been shown to manifest a mixed type inhibition versus ethanol and a noncompetitive behaviour towards the second substrate, NAD. A graphical analysis of the experimental results as well as the construction of secondary graphs provide evidence in favour of a mechanism, according to which the interaction between EA and the enzyme results in a dead-end complex formation (ESI). A direct conversion into reaction products can be achieved only after EA separation from the complex. The Ki value for the E-EA complex is 1.3 mM; that for EA release from the E-EA is 1.8 mM. An analysis of competitive interactions with NAD showed these constants to be equal in values (2 mM). Taking account of real concentrations of tissue EA and of experimental values of Ki, a conclusion is drawn on possible participation of EA in the alcohol dehydrogenase reaction control.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号