首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The pH dependence of the apparent tetramer to dimer dissociation constant has been determined at 20 degrees for both oxy- and deoxyhemoglobins A and Kansas. These measurements were made by three different procedures: gel chromatography, sedimentation velocity, and kinetic methods in either of three buffer systems: 0.05 M cacodylate, Tris, or glycine with 1 mM EDTA and 0.1 M NaCl between pH 6.5 and 11. The tetramer-dimer dissociation constant of human oxyhemoglobin A decreases from about 3.2 X 10(-6) M at pH 6.0 to about 3.2 X 10(-8) M at pH 8.5. The slope of this line indicates that the dissociation of tetramer to dimer is accompanied by the uptake of about 0.6 protons per mol of tetramer in this region. The corresponding dissociation constant for deoxyhemoglobin in the same pH region increases apparently almost linearly from 1.0 x 10(-12) M at pH 6.5 to about 1.0 x 10(-5) M at pH 11. To dimer is associated with the release of about 1.6 protons per mol of tetramer. Comparison of these data with the known proton release accompanying the oxygenation of tetramers confirms that the pH dependence of oxygen binding by dimers must be very small. The present data predict that the overall proton release or uptake per oxygen bound by dimer should be less than 0.1. The tetramer-dimer dissociation equilibria of oxy- and deoxyhemoglobins above pH 8.5 have identical pH dependences. In this range the dissociation constant of deoxy-Hb is about one-tenth that of oxyhemoglobin. Human oxyhemoglobin Kansas is known to have an enhanced tetramer-dimer dissociation compared with that of hemoglobin A. Below pH 8.5 the tetramer-dimer dissociation constant of Hb Kansas is about 400 times greater than that of HbA in the absence of phosphate buffers. In contrast, the tetramer-dimer dissociation constants of deoxyhemoglobins A and Kansas appear to be identical. These findings are consistent with previous structural observations on these hemoglobins. The data on the tetramer-dimer dissociation of human hemoglobin were used to calculate the total free energy of binding of oxygen to the tetramer and the median oxygen pressure on the basis of fundamental linkage relations and a pH-independent estimate of the total free energy of binding oxygen to dimer. Simulated oxygen binding curves were generated with the equations of Ackers and Halvorson (Ackers, G. K., and Halvorson, H. (1974) Proc. Natl. Acad. Sci. U.S.A. 71, 4312-4316) by making two assumptions: (a) that the dimers are noncooperative and pH-independent in O2 binding and (b) that the distribution of cooperative energy in the oxygenation of tetramers is independent of pH. We have compared these simulations with experimental data obtained at low protein concentrations (30 to 124 muM heme) to show that the variation in oxygen affinity with pH can be described in terms of the subunit equilibria. We conclude that an accurate analysis of the contributions of individual oxygen binding steps to the Bohr effect cannot be made without considering the contributions of the dimers to oxygen binding...  相似文献   

2.
Hemoglobin Alberta has an amino acid substitution at position 101 (Glu----Gly), a residue involved in the alpha 1 beta 2 contact region of both the deoxy and oxy conformers of normal adult hemoglobin. Oxygen equilibrium measurements of stripped hemoglobin Alberta at 20 degrees C in the absence of phosphate revealed a high affinity (P50 = 0.75 mm Hg at pH 7), co-operative hemoglobin variant (n = 2.3 at pH 7) with a normal Bohr effect (- delta log P50/delta pH(7-8) = 0.65). The addition of inositol hexaphosphate resulted in a decrease in oxygen affinity (P50 = 8.2 mm Hg at pH 7), a slight increase in the value of n and an enhanced Bohr effect. Rapid mixing experiments reflected the equilibrium results. A rapid rate of carbon monoxide binding (l' = 7.0 X 10(5) M-1 S-1) and a slow rate of overall oxygen dissociation (k = 15 s-1) was seen at pH7 and 20 degrees C in the absence of phosphate. Under these experimental conditions the tetramer stability of liganded and unliganded hemoglobin Alberta was investigated by spectrophotometric kinetic techniques. The 4K4 value (the liganded tetramer-dimer equilibrium dissociation constant) for hemoglobin Alberta was found to be 0.83 X 10(-6) M compared to a 4K4 value for hemoglobin A of 2.3 X 10(-6) M, indicating that the Alberta tetramer was less dissociated into dimers than the tetramer of hemoglobin A. The values of 0K4 (the unliganded tetramer-dimer equilibrium dissociation constant) for hemoglobin Alberta and hemoglobin A were also measured and found to be 2.5 X 10(-8) M and 1.5 X 10(-10) M, respectively, demonstrating a greatly destabilized deoxyhemoglobin tetramer for hemoglobin Alberta compared to deoxyhemoglobin A. The functional and subunit dissociation properties of hemoglobin Alberta appear to be directly related to the dual role of the beta 101 residue in stabilizing the tetrameric form of the liganded structure, while concurrently destabilizing the unliganded tetramer molecule.  相似文献   

3.
Guanidine x HCl (GdnHCl)-induced unfolding of tetrameric N(5)-(L-1-carboxyethyl)-L-ornithine synthase (CEOS; 141,300 M(r)) from Lactococcus lactis at pH 7.2 and 25 degrees C occurred in several phases. The enzyme was inactivated at approximately 1 M GdnHCl. A time-, temperature-, and concentration-dependent formation of soluble protein aggregates occurred at 0.5-1.5 M GdnHCl due to an increased exposure of apolar surfaces. A transition from tetramer to unfolded monomer was observed between 2 and 3.5 M GdnHCl (without observable dimer or trimer intermediates), as evidenced by tyrosyl and tryptophanyl fluorescence changes, sulfhydryl group exposure, loss of secondary structure, size-exclusion chromatography, and sedimentation equilibrium data. GdnHCl-induced dissociation and unfolding of tetrameric CEOS was concerted, and yields of reactivated CEOS by dilution from 5 M GdnHCl were improved when unfolding took place on ice rather than at 25 degrees C. Refolding and reconstitution of the enzyme were optimal at 相似文献   

4.
Self-association of rabbit muscle phosphofructokinase: effects of ligands   总被引:1,自引:0,他引:1  
The effects of ligands on the self-association of rabbit muscle phosphofructokinase (PFK) were investigated by velocity sedimentation at pH 7.0 and 23 degrees C. The concentration dependence of the weight-average sedimentation coefficient was monitored in the presence of these ligands. The mode of association and equilibrium constants characterizing each association step were determined by theoretical fitting of the sedimentation data. The simplest mode of association for the PFK system is M in equilibrium M2 equilibrium M4 in equilibrium M16. Ligands and temperature would perturb the various equilibrium constants without altering the mode of association. The apparent equilibrium constants for the formation of tetramer, K4app, are increased in the presence of 0.1 mM ATP and 1.0 mM fructose 6-phosphate. The value of the sedimentation coefficient for the tetramer, S4 degrees, that would best fit the data is 12.4 S instead of 13.5 S determined in the absence of substrates, thus implying a structural change in the tetramer induced by substrates. Only an insignificant amount of dimer is present under the experimental conditions. The presence of activators, ADP or phosphate, enhances the formation of tetramers, and S4 degrees assumes a value of 13.5 S. Similar results are obtained with decreasing concentrations of proton. The presence of the inhibitor, citrate, however, favors the formation of dimers. The equilibrium constants determined as a function of ADP concentration were further analyzed by the linked-function theory derived by Wyman [Wyman, J. (1964) Adv. Protein Chem. 19, 224--285], leading to the conclusion that the formation of a tetramer involves the binding of two additional molecules of ADP per monomer. Similar analysis results in a conclusion that the formation of a dimer involves the binding of one additional molecule of citrate per phosphofructokinase subunit.  相似文献   

5.
Arc repressor is tetrameric when bound to operator DNA   总被引:10,自引:0,他引:10  
B M Brown  J U Bowie  R T Sauer 《Biochemistry》1990,29(51):11189-11195
The Arc repressor of bacteriophage P22 is a member of a family of DNA-binding proteins that use N-terminal residues in a beta-sheet conformation for operator recognition. Here, Arc is shown to bind to its operator site as a tetramer. When mixtures of Arc (53 residues) and an active variant of Arc (78 residues) are used in gel retardation experiments, five discrete protein-DNA complexes are observed. This result is as expected for operators bearing heterotetramers containing 4:0, 3:1, 2:2, 1:3, and 0:4 ratios of the two proteins. Direct measurements of binding stoichiometry support the conclusion that Arc binds to a single 21-base-pair operator site as a tetramer. The Arc-operator binding reaction is highly cooperative (Hill constant = 3.5) and involves at least two coupled equilibria. In the first reaction, two unfolded monomers interact to form a folded dimer (Bowie & Sauer, 1989a). Rapid dilution experiments indicate that the Arc dimer is the kinetically significant DNA-binding species and allow an estimate of the equilibrium dissociation constant for dimerization [K1 = 5 (+/- 3) x 10(-9) M]. The rate of association of Arc-operator complexes shows the expected second-order dependence on the concentration of free Arc dimers, with k2 = 2.8 (+/- 0.7) x 10(18) M-2 s-1. The dissociation of Arc-operator complexes is a first-order process with k-2 = 1.6 (+/- 0.6) x 10(-4) s-1. The ratio of these kinetic constants [K2 = 5.7 (+/- 2.3) x 10(-23) M2] provides an estimate for the equilibrium constant for dissociation of the DNA-bound tetramer to two free Arc dimers and the operator. An independent determination of this complex equilibrium constant [K2 = 7.8 (+/- 4.8) x 10(-23) M2] was obtained from equilibrium binding experiments.  相似文献   

6.
The temperature dependence of the oxygen equilibrium of tadpole hemoglobin has been determined between 0 degrees and 32 degrees for the unfractionated but phosphate-free lysate and between 12 degrees and 32 degrees for each of the four isolated components between pH 6 and 10 in 0.05 M cacodylate, Tris, or glycine buffers containing 0.1 M NaCl and 1 mM EDTA. Under these conditions the Bohr effect (defined as deltalog p50/deltapH) of the unfractionated lysate is positive at low temperatures between pH 6 and 8.5 and is negative above pH 8.5 to 8.8 at any temperature. As the temperature rises the Bohr effect below pH 8.5 changes greatly. In the interval pH 7.0 to 7.5, the magnitude of the Bohr effect decreases from + 0.28 at 0 degrees to zero at about 24 degrees and becomes negative, as in mammalian hemoglobins, above this temperature. Measurements with the isolated components show that the temperature dependence of oxygen binding for Components I and II and for Components III and IV is very similar. For both sets of components the apparent overall enthalpy of oxygenation at pH 7.5 is about -16.4 kcal/mol and -12.6 kcal/mol at pH 9.5. The measured enthalpies include contributions from the active Bohr groups, the buffer ions themselves, the hemoglobin groups contributing buffering, and any pH-dependent, oxygenation-dependent binding of ions such as chloride by the hemoglobin. The apportioning of the total enthalpy among these various processes remains to be determined. Between pH 8 and 10.5 tadpole oxyhemoglobin undergoes a pH-dependent dissociation from tetramer to dimer. The pH dependence of the apparent tetramer-dimer dissociation constant indicates that at pH 9.5 the dissociation of each tetramer is accompanied by the release of approximately 2 protons. In this pH range the oxygen equilibrium measurements indicate that about 0.5 proton is released for each oxygen molecule bound. The results are consistent with the conclusion that one acid group per alphabeta dimer changes its pK from about 10 to 8 or below upon dissociation of the tetramer.  相似文献   

7.
M H Chau  J W Nelson 《FEBS letters》1991,291(2):296-298
The equilibrium constant between reduced glutathione (GSH), oxidized glutathione (GSSG), reduced dithiothreitol (DTTSHSH), and oxidized dithiothreitol (DTTSS) has been directly measured by high performance liquid chromatography analysis of equilibrium mixtures. The equilibrium constant at 25 degrees C for the reaction GSSG + DTTSHSH in equilibrium 2GSH + DTTSS varies from approximately 200 M, below pH 8, to approximately 2800 M, above pH 11. The observed pH dependence is generally consistent with published values of acid dissociation constants of these thiols.  相似文献   

8.
Dissociation of alpha beta and alpha gamma dimers of human hemoglobins (Hb) A and F into monomers was studied by alpha chain exchange (Shaeffer, J. R., McDonald, M. J., Turci, S. M., Dinda, D. M., and Bunn, H. F. (1984) J. Biol. Chem. 259, 14544-14547). Unlabeled carbonmonoxy-Hb A was incubated with trace amounts of preparatively purified, native, 3H-alpha subunits in 10 mM sodium phosphate, pH 7.0, at 25 degrees C. At appropriate times, free alpha monomers were separated from Hb A tetramers by anion exchange high performance liquid chromatography. Transfer of radioactivity from the alpha chain pool into Hb A was measured, yielding a first order dimer dissociation rate constant, k2 = (3.2 +/- 0.3) X 10(-3) h-1. The Arrhenius plot of k2 was linear between 7 and 37 degrees C, yielding an enthalpy of activation of 23 kcal/alpha beta dimer. As the chloride concentration was raised from 0 to 0.2 M, the dissociation rate increased 3-fold; with higher salt concentrations, however, the rate gradually returned to baseline. This rate was not altered by raising the pH from 6.5 to 7.2, but as pH was further raised to 8.4, kappa 2 increased about 3-fold. Hb F, which has an increased stability at alkaline pH, dissociated into alpha and gamma monomers 3 times more slowly than Hb A. Moreover, the dimer-monomer dissociation of Hb F was characterized by a significantly reduced pH dependence. These results demonstrate that both alpha beta and alpha gamma dimers of Hb A and Hb F dissociate reversibly into monomers under physiologic conditions. The differential pH dependence for dimer dissociation between Hb A and Hb F suggests that specific amino acid replacement at the alpha 1 gamma 1 interface confers increased resistance to alkaline denaturation.  相似文献   

9.
Binding sites for [3H]cAMP on purified regulatory dimers of type II A-kinase (II-R2) are independent as assessed by equilibrium binding (KD = 6 +/- 1.3 nM at pH 7.2, 25 degrees; nH = 1.0) and by the lack of effect of unlabeled cAMP on dissociation rate (kd = 1.0 X 10(-3) sec -1 at pH 7.2, 25 degrees). In contrast, binding sites for [3H]cGMP on purified G-kinase displayed positively cooperative interactions in both equilibrium and dissociation assays with convex upward Scatchard plots, an nH of 1.6 and a dissociation rate (kd = 6.2 X 10(-3) sec-1 at pH 6.8, 0 degree) which was slowed by excess unlabeled cGMP (kd = 1.13 X 10(-3) sec-1 at pH 6.8, degree). Calculated transition state free energies of dissociation revealed that dissociation of nucleotide from G-kinase in the presence of cGMP was restrained by an energy barrier (20.8 kcal.mol-1) similar to that of II-R2 (20.9 kcal.mol-1), whereas dissociation from G-kinase without excess nucleotide occurred more easily (18.9 kcal.mol-1).  相似文献   

10.
West FW  Seo HS  Bradrick TD  Howell EE 《Biochemistry》2000,39(13):3678-3689
R67 dihydrofolate reductase (DHFR) is an R-plasmid-encoded enzyme that confers clinical resistance to the antibacterial drug trimethoprim. This enzyme shows no sequence or structural homology to the chromosomal DHFRs. The active form of the protein is a homotetramer possessing D(2) symmetry and a single active-site pore. Two tryptophans occur per monomer: W38 and its symmetry-related residues (W138, W238, and W338) occur at the dimer-dimer interfaces, while W45 and its symmetry-related partners (W145, W245, and W345) occur at the monomer-monomer interfaces. Two single-tryptophan mutant genes were constructed to determine the structural and functional consequences of four mutations per tetramer. The W45F mutant retains full enzyme activity and the fluorescence environment of the unmutated W38 residues clearly monitors ligand binding and a pH dependent tetramer right harpoon over left harpoon 2 dimers equilibrium. In contrast, four simultaneous W38F mutations at the dimer-dimer interfaces result in tetramer destabilization. The ensuing dimer is relatively inactive, as is dimeric wild-type R67 DHFR. A comparison of emission spectra indicates the fluorescent signal of wild-type R67 DHFR is dominated by the contribution from W38. Equilibrium unfolding/folding curves at pH 5.0, where all protein variants are dimeric, indicate the environment monitored by the W38 residue is slightly less stable than the environment monitored by the W45 residue.  相似文献   

11.
M J Chen  K H Mayo 《Biochemistry》1991,30(26):6402-6411
Platelet factor 4 (PF4) monomers (7800 daltons) form dimers and tetramers in varying molar ratios under certain solution conditions [Mayo, K. H., & Chen, M. J. (1989) Biochemistry 28, 9469]. The presence of a simplified aromatic region (one Tyr and two His) and resolved monomer, dimer, and tetramer Y60 3,5 ring proton resonances makes study of PF4 aggregate association/dissociation thermodynamics and kinetics possible. PF4 protein subunit association/dissociation equilibrium thermodynamic parameters have been derived by 1H NMR (500MHz) resonance line-fitting analysis of steady-state Y60 3,5 ring proton resonance monomer-dimer-tetramer populations as a function of temperature from 10 to 40 degrees C. Below 10 degrees C and above 40 degrees C, resonance broadening and overlap severely impaired analysis. Enthalpic and entropic contributions to dimer association Gibb's free energy [-5.1 kcal/mol (30 degrees C)] are +2.5 +/- 1 kcal/mol and +26 +/- 7 eu, respectively, and for tetramer association Gibb's free energy [-5.7 kcal/mol (30 degrees C)], they are -7.5 +/- 1 kcal/mol and -7 +/- 3 eu, respectively. These thermodynamic parameters are consistent with low dielectric medium electrostatic/hydrophobic interactions governing dimer formation and hydrogen bonding governing tetramer formation. Association/dissociation kinetic parameters, i.e., steady-state jump rates, have been derived from exchange-induced line-width increases and from 1H NMR (500 MHz) saturation-transfer and spin-lattice (Tl) relaxation experiments. From dissociation jump rates and equilibrium constants, association rate constants were estimated. For dimer and tetramer equilibria at 30 degrees C, unimolecular dissociation rate constants are 35 +/- 10 s-1 for dimer dissociation and 6 +/- 2 s-1 for tetramer dissociation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
A method has been devised which permits the observation of the loss of active sites promoted by aggregation of alpha-chymotrypsin. When alpha-chymotrypsin in unbuffered solution at pH 7 is mixed with buffered proflavin by stopped flow instrumentation to give a final pH of 3.89, a decrease in active sites occurs, as measured by a decrease in enzyme-dye complex. The decrease in the rate of active sites shows a linear dependence on the square of the concentration of active sites remaining at equilibrium. The kinetic data of the reaction have been correlated with equilibrium measurements. Rate constants for formation and dissociation of dimer are 9.45 X 10(3) M(-1)S(-1) and 1.9 S(-1),, respectively. Calculation of Kdis for dimer from rate constants gives a value of 2.01 X 10(-4) M, while direct determination of Kdis gives a value of 1.44 X 10(-4) M.  相似文献   

13.
The stabilizing effects of Ca2+ and Mg2+ ions on the decameric structure of hemocyanins from two representative chitons, Stenoplax conspicua and Mopalia muscosa were investigated by light-scattering molecular weight measurements, ultracentrifugation, absorbance, and circular dichroism methods. The dissociation profiles at any given pH resulting from the decrease in divalent ion concentration, investigated at a fixed protein concentration of 0.1 g.liter-1, could be fitted by a decamer-to-dimer-to monomer scheme of subunit dissociation. The initial decline in the light-scattering molecular weight curves required one or two apparent binding sites per hemocyanin dimer formed as intermediate dissociation product, with apparent dissociation constants (kD,2) for Ca2+ ions of 0.7 to 7 X 10(-4) M, not very different from the value of 2.5 X 10(-4) M obtained by Makino by equilibrium dialysis for the hemocyanin of the opistobranch, Dolabella auricularia. The binding of Mg2+ ion to S. conspicua and M. muscosa hemocyanins appears to be both weaker than the binding of Ca2+ and more pH dependent, with kD,2 values ranging from the 3 X 10(-4) to 4 X 10(-2) M at pH 8.5 to 9.5. The dissociation the decameric hemocyanin species (sedimentation coefficient ca. 60 S) is also observed in the ultracentrifugation with the initial appearance of 18-20 S dimers, followed by a shift in equilibrium to monomeric species of lower sedimentation rates of 11-12 S as the divalent ion concentration is reduced below 1 X 10(-4) M Ca2+ and Mg2+. The dissociation of dimers to monomers in the second step of the reaction is characterized by one or two binding sites per subunit and a somewhat stronger affinity for divalent ions, indicated by apparent dissociation constants (kD,1) of 0.7 X 10(-4) to 3 X 10(-3) M. Circular dichroism and absorbance measurements at 222 and 346 nm suggest no significant changes in the conformation of the hemocyanin subunits produced by the different stages of subunit dissociation.  相似文献   

14.
The Escherichia coli single strand binding (SSB) protein is an essential protein required for DNA replication and involved in recombination and a number of repair processes. It is a stable homotetramer in solution; however the ssb-1 mutation (His-55 to Tyr) destabilizes the tetramer with respect to monomers and this defect seems to explain the observed phenotype (Williams, K. R., Murphy, J. B., and Chase, J. W. (1984) J. Biol. Chem. 259, 11804-11811). We report a quantitative study of the SSB-1 monomer-tetramer equilibrium in vitro as a function of temperature, pH, NaCl, MgCl2, urea, and guanidine hydrochloride concentrations. The self-assembly equilibrium was monitored by the increase in intrinsic protein fluorescence anisotropy accompanying the formation of the tetramer. The experimental isotherms indicate that SSB-1 dimers are not highly populated at equilibrium, hence the formation of the tetramer is well-described as a one-step association of four monomers. At 25 degrees C, pH 8.1, the monomer concentration for 50% tetramer dissociation is (MT)1/2 = 0.87 microM, corresponding to a monomer-tetramer equilibrium constant, KT = 3 +/- 1 x 10(18) M-3. The tetramerization constant, KT, is highly dependent upon temperature and pH, with delta H0 = -51 +/- 7 kcal/mol (pH 8.1) and delta H0 = -37 +/- 5 kcal/mol (pH 6.9). There is no effect of NaCl on the monomer-tetramer association in the range from 0.20 to 1.0 M; however, MgCl2 decreases the stability of the SSB-1 tetramer. In the presence of high concentrations of the single-stranded oligonucleotide, dT(pT)15, the tetramerization constant is slightly increased indicating that binding of the oligonucleotide to the SSB-1 monomer promotes the assembly process, although not dramatically. The large negative delta H0 that is associated with formation of the tetramer provides a likely explanation for the temperature sensitivity of the ssb-1 mutation.  相似文献   

15.
D D Haas  B R Ware 《Biochemistry》1978,17(23):4946-4950
Diffusion studies by photon correlation of scattered laser light confirm the dissociation of the tetrameric form of human carboxyhemoglobin to dimers above pH 10 and provide new estimates of the subunit dissociation equilibrium constants in this pH range. Electrophoretic light-scattering experiments under the same conditions reveal that the electrophoretic mobilities of tetramers and dimers are indistinguishable to within instrumental resolution (ca. 7% in these experiments). The data imply an increase of the electrical charge on the dimer of at least 2.8 to 4.4 net negative charges upon dissociation. Mechanisms for the accumulation of negative charge by the dimer upon dissociation of the tetramer are proposed.  相似文献   

16.
S F Scarlata  T Ropp  C A Royer 《Biochemistry》1989,28(16):6637-6641
High-pressure fluorescence polarization was used to investigate subunit interactions of the histone H2A-H2B dimer and the H3/H4 tetramer isolated from calf thymus (CT) and chicken erythrocyte (CE) chromatin. The proteins were individually labeled with the fluorescent probe 5-(dimethylamino)-naphthalene-1-sulfonate (dansyl or DNS), and the fluorescence polarization was measured as a function of pressure. The long fluorescence lifetime of the probe allows for the observation of global rotations of the protein, the rate of which is dependent upon the aggregation state. From the pressure dependence of the dansyl polarization, the Kd of H2A-H2B dissociation of the CE dimer was found to be approximately 1 X 10(-7) M at 2.0 M NaCl. Lowering the salt concentration to 200 mM slightly stabilized the protein to 6 X 10(-8) M. Our data indicate a small negative volume change for the dissociation of the core particle octamer. The (H3)2(H4)2 tetramer, as was shown in the previous paper (Royer et al., 1989), also formed predominantly dimers of tetramers at higher protein or salt concentrations. In the study presented here, we found the dissociation constant for the H3/H4 octamer to dimer transition to be 1 X 10(-21) M3 (C1/2 = 4 X 10(-8) M) at 2 M NaCl for the CT preparation. Decreasing the salt concentration to 200 mM reduced the stability of the CT H3/H4 octamer to 9 X 10(-21) M3 (C1/2 = 8 X 10(-8) M). The dimer of the CE tetramer also dissociated upon application of pressure in 2 M salt.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The molecular weights of different aggregational states of phosphoenolpyruvate carboxylase purified from the leaves of Zea mays have been determined by measurement of the molecular diameter using a Malvern dynamic light scattering spectrometer. Using these data to identify the monomer, dimer, tetramer, and larger aggregate(s) the effect of pH and various ligands on the aggregational equilibria of this enzyme have been determined. At neutral pH the enzyme favored the tetrameric form. At both low and high pH the tetramer dissociated, followed by aggregation to a "large" inactive form. The order of dissociation at least at low pH appeared to be two-step: from tetramer to dimers followed by dimer to monomers. The monomers then aggregate to a large aggregate, which is inactive. The presence of EDTA at pH 8 protected the enzyme against both inactivation and large aggregate formation. Dilution of the enzyme at pH 7 at room temperature results in driving the equilibrium from tetramer to dimer. The presence of malate with EDTA stabilizes the dimer as the predominant form at low protein concentrations. The presence of the substrate phosphoenolpyruvate alone and with magnesium and bicarbonate induced formation of the tetramer, and decreased the dissociation constant (Kd) of the tetrameric form. The inhibitor malate, however, induced dissociation of the tetramer as evidenced by an increase in the Kd of the tetramer.  相似文献   

18.
The formation of deoxyhemoglobin was examined by measuring the heme spectral change that accompanies the aggregation of isolated alpha and beta chains. At low hemeconcentrations (less than 10(-5) M), tetramer formation can be described by two consecutive, second order reactions representing the aggregation of monomers followed by the association of alphabeta dimers. At neutral pH, the rates of monomer and dimer aggregation are roughly the same, approximately 5 X 10(5) M(-1) X(-1) at 20 degrees. Raising or lowering the pH results in a uniform decrease of both aggregation rates due presumably to repulsion of positively charged subunits at acid pH and repulsion of negatively charged subunits at alkaline pH. Addition of p-hydroxymercuribenzoate to alpha chains lowers the rate of monomer aggregation whereas addition of mercurials to the beta subunits appears to lower both the rate of monomer and the rate of dimer aggregation. At high heme concentrations (greater than 10(-5) M) or in the presence of organic phosphates, the rate of chain aggregation becomes limited, in part, by the slow dissociation of beta chain tetramers. In the case of inositol hexaphosphate, the rate of hemoglobin formation exhibits a bell-shaped dependence on phosphate concentration. When intermediate concentrations of inositol hexaphosphate (approximately 10(-4 M) are preincubated with beta subunits, a slow first order time course is observed and exhibits a half-time of about 8 min. As more inositol hexaphosphate is added, the chain aggregation reaction begins to occur more rapidly. Eventually at about 10(-2) M inositol hexaphospate, the time course becomes almost identical to that observed in the absence of phosphates. The increase in the velocity of the chain aggregation reaction at high phosphate concentrations suggests strongly that inositol hexaphosphate binds to beta monomers and, if added in sufficiently large amounts, promotes beta4 dissociation. A quantitative analysis of these results showed that the affinity of beta monomers for inositol hexaphosphate is the same as that of alphabeta dimers. Only when tetramers are formed, either alpha2beta2 or beta4, is a marked increase in affinity for inositol hexaphosphate observed.  相似文献   

19.
We report the first direct observation of the subunit self-association behavior of highly purified recombinant human immunodeficiency virus type-2 (HIV-2) proteinase. Multiple samples of enzyme were subjected to sedimentation equilibrium analytical ultracentrifugation sequentially at 8.8 degrees C and two pH values in the presence and absence of a C2 symmetric, peptidomimetic inhibitor. At both pH values the enzyme exhibited sedimentation equilibrium behavior which fit a monomer-dimer-tetramer model. In the absence of inhibitor, the apparent Kd for dimer formation was less than approximately 100 microM and the apparent Kd for the weaker dimer-tetramer association was greater than approximately 100 microM. In the presence of inhibitor, at either pH, dimer formation was more strongly favored as indicated by a approximately 5-14-fold decrease in the apparent Kd for dimer formation and a approximately 1.2-4-fold increase in the apparent Kd for tetramer formation. The enhanced formation of dimer and decrease in higher order self-associated forms in the presence of an inhibitor is consistent with inhibitor stabilization of an active dimer. The inhibitor-induced stabilization of the dimeric species is consistent with a model for substrate-induced formation of active proteinase dimers in virion assembly.  相似文献   

20.
The biophysical properties of a tryptophan-shifted mutant of phosphofructokinase from Bacillus stearothermophilus (BsPFK) have been examined. The mutant, designated W179Y/Y164W, has kinetic and thermodynamic properties similar to the wild-type enzyme. A 2-fold decrease in kcat is observed, and the mutant displays a 3-fold smaller K(0.5) for the substrate, fructose-6-phosphate (Fru-6-P), as compared to the wild-type enzyme. The dissociation constant for the inhibitor, phospho(enol)pyruvate (PEP), increases 2-fold, and the coupling parameter, Q(ay), decreases 2-fold. This suggests that while the mutant displays a slightly decreased affinity for PEP, PEP is still an effective inhibitor once bound. The new position of the tryptophan in W179Y/Y164W is approximately 6 A from the Fru-6-P portion of the active site. A 25% decrease in fluorescence intensity is observed upon Fru-6-P binding, and an 80% decrease in fluorescence intensity is observed with PEP binding. In addition, the intrinsic fluorescence polarization increases from 0.327 +/- 0.001 to 0.353 +/- 0.001 upon Fru-6-P binding, but decreases to 0.290 +/- 0.001 when PEP binds. Most notably, the presence of PEP induces dissociation of the tetramer. Dissociation of the tetramer into dimers occurs along the active site interface and can be monitored by the loss in activity or the loss in tryptophan fluorescence that is observed when the enzyme is titrated with PEP. Activity can be protected or recovered by incubating the enzyme with Fru-6-P. Recovery of activity is enzyme concentration dependent, and the rate constant for association is 6.2 +/- 0.3 M(-1) x s(-1). Ultracentrifugation experiments revealed that in the absence of PEP the mutant enzyme exists in an equilibrium between the dimer and tetramer forms with a dissociation constant of 11.8 +/- 0.5 microM, while in the presence of PEP the enzyme exists in equilibrium between the dimer and monomer forms with a dissociation constant of 7.5 +/- 0.02 microM. A 3.1 A crystal structure of the mutant enzyme suggests that the amino acid substitutions have not dramatically altered the tertiary structure of the enzyme. While it is clear that wild-type BsPFK exists as a tetramer under these same conditions, these results suggest that quaternary structural changes probably play an important role in allosteric communication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号