首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rhodococcus sp. R14-2, isolated from Chinese Jin-hua ham, produces a novel extracellular cholesterol oxidase (COX). The enzyme was extracted from fermentation broth and purified 53.1-fold based on specific activity. The purified enzyme shows a single polypeptide band on SDS-PAGE with an estimated molecular weight of about 60 kDa, and has a pI of 8.5. The first 10 amino acid residues of the NH2-terminal sequence of the enzyme are A-P-P-V-A-S-C-R-Y-C, which differs from other known COXs. The enzyme is stable over a rather wide pH range of 4.0–10.0. The optimum pH and temperature of the COX are pH 7.0 and 50°C, respectively. The COX rapidly oxidizes 3β-hydroxysteroids such as cholesterol and phytosterols, but is inert toward 3α-hydroxysteroids. Thus, the presence of a 3β-hydroxyl group appears to be essential for substrate activity. The Michaelis constant (Km) for cholesterol is estimated at 55 μM; the COX activity was markedly inhibited by metal ions such as Hg2+ and Fe3+ and inhibitors such as p-chloromercuric benzoate, mercaptoethanol and fenpropimorph. Inhibition caused by p-chloromercuric benzoate, mercuric chloride, or silver nitrate was almost completely prevented by the addition of glutathione. These suggests that -SH groups may be involved in the catalytic activity of the present COX.  相似文献   

2.
Two novel extracellular cholesterol oxidases designated CO1 and CO2, from Bacillus sp. SFF34, were purified 5.6 and 5.9-fold giving Mr values of 36 and 37 kDa. The optimum temperature for the activity was 60 °C (CO1) and 40 °C (CO2), and the optimum pH was 6.25 (CO1) and 6 (CO2) over 30 min reaction time. The apparent K m values for cholesterol were 6.76 mM (CO1) and 4.50 mM (CO2). Both the enzymes could oxidize 5-cholestane, 5-cholestane-3-ol-7-one, coprostane, dihydrocholesterol, hecogenin, -sitosterol and stigmasterol.  相似文献   

3.
Rhodococcus sp. TMP2 is an alkane-degrading strain that can grow with a branched alkane as a sole carbon source. TMP2 degrades considerable amounts of pristane at 20 degrees C but not at 30 degrees C. In order to gain insights into microbial alkane degradation, we characterized one of the key enzymes for alkane degradation. TMP2 contains at least five genes for membrane-bound, non-heme iron, alkane hydroxylase, known as AlkB (alkB1-5). Phylogenetical analysis using bacterial alkB genes indicates that TMP2 is a close relative of the alkane-degrading bacteria, such as Rhodococcus erythropolis NRRL B-16531 and Q15. RT-PCR analysis showed that expressions of the genes for AlkB1 and AlkB2 were apparently induced by the addition of pristane at a low temperature. The results suggest that TMP2 recruits certain alkane hydroxylase systems to utilize a branched alkane under low temperature conditions.  相似文献   

4.
Extracellular cholesterol oxidase (COX) (EC 1.1.3.6) was produced by Rhodococcus sp. GK1 cells grown in a defined mineral salt medium containing a mixture of phytosterols (sitosterol, campesterol, stigmasterol) as the sole source of carbon and energy. In the same time, the sterols acted as enzyme inducers. The medium was enriched with yeast extract in order to stimulate enzyme secretion. COX was purified from the culture supernatants by affinity-like chromatography on a column packed with kieselguhr and cholesterol. Enzyme bound onto the column was eluted with 0.05 M phosphate buffer pH 7.0 containing Triton X-100 at 0.1% (w/v). Some properties of the purified COX were determined. Its specific activity at pH 7.0 and 30 °C, was around 5.5 units mg–1. The molecular mass of the enzyme, as estimated by SDS-PAGE, was 59 kDa. Its isoelectrofocusing point was around pH 8.9. The C-5 double bond and the alkyl chain moiety in sterol molecules were necessary for an adequate oxidation of the sterol 3-ol. Enzyme inhibition by the ions (0.1 mM): AsO2 , Ba2+, Co2+, Cd2+, Cu2+, N3 , Ni2+, and Pb2+ was negligible (around 10%). However, COX inhibition by 0.1 mM of either Zn2+, 2-[(ethylmercurio)-thio]benzoic acid, or Hg2+ was 18%, 22% and 93% respectively. Inhibition of activity by Hg2+ was significant, even at 1 M. The purified COX (0.1–0.15 mg ml–1 in 0.05 M phosphate pH 7.0) was relatively heat-stable at temperatures up to 50 °C. At this temperature, the half-life of its activity was around 70 min. However, 90% of the enzyme initial activity was lost by 20 min incubation at 60 °C. The aminoacid sequence of the COX N-terminal segment was: H2N–Ala–Pro–Pro–Val–Ala–Ser–X–Arg–Tyr–X–(Phe)– (X might be 2 Cys residues).  相似文献   

5.
An aerobic bacterial strain, designated R04, belonging to the genus Rhodococcus has been isolated and characerized by 16S rDNA analysis. The capability of this strain to degrade seven different polychlorinated biphenyls (CBs), 500 ppm 3-CB, 3,4-CB, 4,4-CB, 2,4,6-CB, 2,4,5-CB, 2,3,4,5-CB and 3,4,3,4-CB in liquid medium, was evaluated. After 5 days of incubation, the concentration of chloride increased to 0.35 mM in cultures containing 3-CB and R04, whereas in cultures with 3,4-CB, 2,3,4,5-CB or 3,4,3,4-CB plus R04 the chloride content increased to 0.1 mM. However, non-stoichiometric amounts of chloride were produced in cultures with R04 and 4,4-CB, 2,4,6-CB and 2,4,5-CB. The spectrum of supernatants from R04 grown on seven PCBs had a UV-visible (UV-VIS) absorption at 200–500 nm, characteristic of biphenyl-derived cleavage products. Gas-chromatographic (GC) analysis showed that R04 was able to transform 100% of 3-CB and 3,4-CB after 1 day of incubation, and 95% of 4,4-CB, 2,4,6-CB, 2,4,5-CB, 2,3,4,5-CB and 3,4,3,4-CB after 5 days of incubation. The position of the chlorine substituents on the rings strongly influenced the degradation of polychlorinated biphenyls (PCBs) and their intermediate metabolites by Rhodococcus sp. R04. The degradation of PCBs was further evaluated by monitoring intermediate metabolites of PCBs.  相似文献   

6.
甾短杆菌胆固醇氧化酶基因在大肠杆菌中的表达   总被引:1,自引:0,他引:1  
为了实现胆固醇氧化酶在大肠杆菌中的表达,将甾短杆菌Brevibacterium sp.DGCDC-82胆固醇氧化酶基因用PCR的方法去掉信号肽序列,连接到质粒pTrc99a,遗过筛选得到了表达胆固醇氧化酶的重组菌JMl09/pTrc99a—COD。经IPTG诱导后表达出相对分子质量约为5.5×10^4的蛋白质。分别考察了诱导温度、时间、IPTG浓度等因素对重组菌表达的胆固醇氧化酶的影响。在优化条件下,该胆固醇氧化酶的酶活可以达到700U/L。酶学特性分析表明其反应的最适pH为7.5,最适温度为40℃。  相似文献   

7.
《Process Biochemistry》2014,49(12):2149-2157
The cell-bound cholesterol oxidase from the Rhodococcus sp. NCIM 2891 was purified three fold by diethylaminoethyl–sepharose chromatography. The estimated molecular mass (SDS-PAGE) and Km of the enzyme were ∼55.0 kDa and 151 μM, respectively. The purified cholesterol oxidase was immobilized on chitosan beads by glutaraldehyde cross-linking reaction and immobilization was confirmed by Fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray analysis. The optimum temperature (45 °C, 5 min) for activity of the enzyme was increased by 5 °C after immobilization. Both the free and immobilized cholesterol oxidases were found to be stable in many organic solvents except for acetone. Fe2+ and Pb2+ at 0.1 mM of each acted as inhibitors, while Ag+, Ca2+, Ni2+ and Zn2+ activated the enzyme at similar concentration. The biotransformation of cholesterol (3.75 mM) with the cholesterol oxidase immobilized beads (3.50 U) leads to ∼88% millimolar yield of cholestenone in a reaction time of 9 h at 25 °C. The immobilized enzyme retains ∼67% activity even after 12 successive batches of operation. The biotransformation method thus, shows a great promise for the production of pharmaceutically important cholestenone.  相似文献   

8.
Benzene was metabolized by Rhodococcus sp. 33 through the intradiol cleavage (ortho-) pathway producing cis-benzene glycol, catechol and cis, cis-muconic acid as the intermediates. This is the first elucidation of the pathway by which benzene is degraded by a gram-positive organism. The enzyme assays have also suggested that Rhodococcus 33 does not have a fully functional tricarboxylic acid cycle but may have an operational glyoxylate bypass.  相似文献   

9.
Summary Two highly alkalophilic bacteria, and potent producers of alkaline pullulanase, were isolated from Korean soils. The two isolates, identified asBacillus sp. S-1 andMicrococcus sp. Y-1, grow on starch under alkaline conditions and effectively secrete extracellular pullulanases. The two isolates were extremely alkalophilic since bacterial growth and enzyme production occurred at pH values ranging from pH 6.0 to 12.0 forMicrococcus sp. Y-1 and pH 6.0 to 10.0 forBacillus sp. S-1. Both strains secrete enzymes that possess amylolytic and pullulanolytic acitivities. Extracellular crude enzymes of both isolates gave maltotriose as the major product formed from soluble starch and pullulan hydrolysis. Compared to other alkalophilic microbes such asMicrococcus sp. (0.57 units ml–1),Bacillus sp. KSM-1876 (0.56 units ml–1) andBacillus No. 202-1 (1.89 units ml–1) these isolates secreted extremely high concentrations (7.0 units ml–1 forBacillus sp. S-1 and 7.6 units ml–1 forMicrococcus sp. Y-1) of pullulanases in batch culture. The pullulanase activities from both strains were mostly found in the culture medium (85–90%). The extracellular enzymes of both bacteria were alkalophilic and moderately thermoactive; optimal activity was detected at pH 8.0–10.0 and between 50 and 60°C. Even at pH 12.0, 65% of original Y-1 pullulanase activity and 10% of S-1 pullulanase activity remained. The two newly isolated strains had broad pH ranges and moderate thermostability for their enzyme activities. These result strongly indicate that these new bacterial isolates have potential as producers of pullulanases for use in the starch industry.  相似文献   

10.
The chemolithoautotroph, Arthrobacter sp.15b oxidizes arsenite to arsenate using a membrane bound arsenite oxidase. The enzyme arsenite oxidase is purified to its homogeneity and identified using MALDI-TOF MS analysis. Upon further characterization, it was observed that the enzyme is a heterodimer showing native molecular mass as ~100 kDa and appeared as two subunits of ~85 kDa LSU and 14 kDa SSU on SDS–PAGE. The V max and K m values of the enzyme was found to be 2.45 μM (AsIII)/min/mg) and 26 μM, respectively. The purified enzyme could withstand wide range of pH and temperature changes. The enzyme, however, gets deactivated in the presence of 1 mM of DEPC suggesting the involvement of histidine at the binding site of the enzyme. The peptide analysis of large sub unit of the enzyme showed close match with the arsenite oxidases of Burkholderia sp. YI019A and arsenite oxidase, Mo-pterin containing subunit of Alcaligenes faecalis. The small subunit, however, differed from other arsenite oxidases and matched only with 2Fe–2S binding protein of Anaplasma phagocytophilum. This indicates that Rieske subunits containing the iron–sulfur clusters present in the large as well as small subunits of the enzyme are integral part of the protein.  相似文献   

11.
The 1,3-dinitrobenzene-degrading Rhodococcus strain QT-1 was isolated under nitrogen limiting conditions from contaminated soil samples. Experimental data indicate that 1,3-dinitrobenzene is metabolized via 4-nitrocatechol. Both compounds were oxidized by resting cells and nitro groups were completely eliminated as nitrite. Strain QT-1 utilizes both 1,3-dinitrobenzene and 4-nitrocatechol as source of nitrogen in the absence as well as in the presence of high amounts of ammonia. Growth on 4-nitrocatechol does not induce the enzyme(s) for the initial oxidation of 1,3-dinitrobenzene.Abbreviations TNT 2,4,6-trinitrotoluene - 1,3DNB 1,3-dinitrobenzene - 4NC 4-nitrocatechol - 3NA 3-nitroaniline - NB nutrient broth; td doubling time - OD546 optical density at 546 nm  相似文献   

12.
An endophytic actinobacterium, designated YIM 65003(T), was isolated from a surface sterilized leaf sample of Cercidiphyllum japonicum collected from Yunnan province, south-west China. The morphological and chemotaxonomic properties of the isolate were typical of members of the genus Rhodococcus. Analysis of the 16S rRNA gene sequence revealed that the isolate was most closely related to Rhodococcus fascians DSM 20669(T) (99.6%) and Rhodococcus yunnanensis YIM 70056(T) (99.0%). DNA-DNA hybridization with the above microorganisms (46.3% and 48.8%, respectively), in combination with differences in the biochemical and physiological properties, suggested that strain YIM 65003(T) should be classified within a novel species of the genus Rhodococcus, for which the name Rhodococcus cercidiphylli sp. nov. is proposed, with YIM 65003(T) (=CCTCC AB 207160(T)=DSM 45141(T)) as the type strain. The 16S rRNA gene sequence of strain YIM 65003(T) has been deposited in GenBank under the accession number EU325542.  相似文献   

13.
A newly isolated sucrose-tolerant, lactic acid bacterium, Lactobacillus sp. strain FCP2, was grown on sugar-cane juice (125 g sucrose l−1, 8 g glucose l−1 and 6 g fructose l−1) for 5 days and produced 104 g lactic acid l−1 with 90% yield. A higher yield (96%) and productivity (2.8 g l−1 h−1) were obtained when strain FCP2 was cultured on 3% w/v (25 g sucrose l−1, 2 g glucose l−1 and 1 g fructose l−1) sugar-cane juice for 10 h. Various cheap nitrogen sources such as silk worm larvae, beer yeast autolysate and shrimp wastes were also used as a substitute to yeast extract.  相似文献   

14.
Mycobacterium sp. strain THO100 and Rhodococcus sp. strain TM1 were isolated from a morpholine-containing enrichment culture of activated sewage sludge. Strain THO100, but not strain TM1, was able to degrade alicyclic amines such as morpholine, piperidine, and pyrrolidine. The mixed strains THO100 and TM1 showed a better growth on piperidine as the substrate than the pure strain THO100 because strain TM1 was able to reduce the level of glutaraldehyde (GA) produced during piperidine degradation. GA was toxic to strain THO100 (IC50 = 28.3 μM) but less toxic to strain TM1 (IC50 = 215 μM). Strain THO100 possessed constitutive semialdehyde dehydrogenases, namely Sad1 and Sad2, whose activities toward succinic semialdehyde (SSA) were strongly inhibited by GA. The two isozymes were identified as catalase–peroxidase (KatG = Sad1) and semialdehyde dehydrogenase (Sad2) based on mass spectrometric analyses of tryptic peptides and database searches of the partial DNA sequences of their genes. In contrast, strain TM1 containing another constitutive enzyme Gad1 could oxidize both SSA and GA. This study suggested that strain TM1 possessing Gad1 played a synergistic role in reducing the toxic and inhibitory effects of GA produced in the degradation of piperidine by strain THO100.  相似文献   

15.
A new bacterial strain PH-06 was isolated using enrichment culture technique from river sediment contaminated with 1,4-dioxane, and identified as belonging to the genus Mycobacterium based on 16S rRNA sequencing (Accession No. EU239889). The isolated strain effectively utilized 1,4-dioxane as a sole carbon and energy source and was able to degrade 900 mg/l 1,4-dioxane in minimal salts medium within 15 days. The key degradation products identified were 1,4-dioxane-2-ol and ethylene glycol, produced by monooxygenation. Degradation of 1,4-dioxane and concomitant formation of metabolites were demonstrated by GC/MS analysis using deuterium labeled 1,4-dioxane (1,4-dioxane-d8). In addition to 1,4-dioxane, this bacterium could also transform structural analogues such as 1,3-dioxane, cyclohexane and tetrahydrofuran when pre-grown with 1,4-dioxane as the sole growth substrate. Our results suggest that PH-06 can maintain sustained growth on 1,4-dioxane without any other carbon sources.  相似文献   

16.
In submerged fermentation of Streptomyces sp. N1 in a shake flask, glucose (3% w/v) and (NH4)2SO4 (0.6% w/v) were found to be suitable for extracellular l-glutamate oxidase (GluOx) (EC.1.4.3.11) production. GluOx production was higher with the addition of further KCl or MgCl2 to the medium within the range of 0 to 0.12% (w/v). The effect of inoculum type, that is, spore inoculation or mycelium inoculation on GluOx biosynthesis was also investigated, and the maximum GluOx production obtained was 2.7 U/ml after 33h fermentation with mycelium inoculation. The results demonstrated a much higher GluOx production and productivity compared with those reported previously.  相似文献   

17.
The degradation of phenol by Rhodococcus sp. P1 was studied in continuous culture systems. The organism could be adapted by slowly increasing concentration, step by step, up to 30.0 g · 1-1 phenol in the influent. The degradation rate reached values of about 0.3 g · g dry mass-1 ·h-1. Large step increases in phenol concentration and addition of further substrates (e.g., catechol) were tolerated up to a certain concentration. With increasing dilution rate and increasing inlet phenol concentration the stability of the system decreased.  相似文献   

18.
Alkaliphilic Bacillus sp. strain 41M-1, isolated from soil, produced xylan-degrading enzymes extracellularly. Optimum pH for the crude xylanase preparation was about pH 9, confirming the production of novel alkaline xylanase(s) by the isolate. Xylanases were induced by xylan, but were not produced in the presence of xylose, arabinose or glucose. Xylanase productivity was influenced by culture pH, and production at pH 10.5 was higher than that at pH 8.0. Zymogram analysis of the culture supernatant showed the alkaline xylanase with a molecular mass of 36 kDa.  相似文献   

19.
A 6.3 kb DNA fragment containing genes responsible for azo-dye decolorization was cloned and expressed in Escherichia coli. The resulting recombinant strain E. coli CY1 decolorized 200 mg azo dye (C.I. Reactive Red 22) l–1 at 28 °C at 8.2 mg g cell–1 h–1, while the host (E. coli DH5) had no color-removal activity. Addition of 0.5 mM isopropyl--d-thiogalacto-pyranoside (IPTG) increased the decolorization rate 3.4-fold. The dependence of the decolorization rate on initial dye concentration essentially followed Monod-type kinetics and the maximal rate occurred with the dye at 600 mg l–1. The decolorization rate of E. coli CY1 was optimal at 40 °C and pH 11. Aeration (increased dissolved O2 level) strongly inhibited the decolorization, but decolorization occurred effectively under static incubation conditions (no agitation was employed). The CY1 strain also exhibited excellent stability during repeated-batch operations.  相似文献   

20.
Glutamate oxidase activity was studied in 1254Streptomyces strains isolated from the zonal soils of various regions of Russia and other countries. Seven strains proved to be producers of extracellular L-glutamate oxidase. The most active producer strain was identified, and the conditions of enzyme biosynthesis were optimized. A multistep mutagenesis-selection procedure allowed a genetically stable strain,Streptomyces sp. Z-11-6, to be obtained, whose glutamate oxidase activity was 40 times higher than that of the original natural isolate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号