首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Ultrastructural examination of the podium of the asteroid echinoderm Stylasterias forreri reveals that cells of the coelomic epithelium and cells of the retractor muscle are, in fact, components of a single epithelium. The basal lamina of this unified epithelium adjoins the connective tissue layer of the podium.The principal epithelial cells in the coelomic lining are the flagellated adluminal cells and the myofilament-bearing retractor cells. Adluminal cells interdigitate extensively with each other and form zonular intermediate and septate junctions at their apicolateral surfaces. The adluminal cells emit processes which extend between the underlying retractor cells and terminate on the basal lamina of the epithelium. Retractor cells exhibit unregistered arrays of thick and thin myofilaments. The periphery of the retractor cell is characteristically thrown into keel-like folds which interdigitate with the processes of neighboring cells. Specialized intermediate junctions bind the retractor cells to each other and anchor the retractor cells to the basal lamina of the epithelium. The retractor cells are not surrounded by external laminae or connective tissue envelopes.It is concluded that the coelomic lining in the podium of S. forreri is a bipartite epithelium and that the retractor cells of the podium are myoepithelial in nature. There are no detectable communicating (gap) junctions between the epithelial cells of the coelomic lining.This investigation was supported by general research funds from the Department of Anatomy of the University of Southern California (R.L.W.) and by Research Operating Grant A0484 from the Natural Sciences and Engineering Research Council of Canada (M.J.C.). Ms. Aileen Kuda and Mr. Steve Osborne provided technical assistance. A portion of this study was conducted at the Friday Harbor Laboratories of the University of Washington, and the authors gratefully acknowledge the cooperation and hospitality of the Director, Dr. A.O. Dennis Willows  相似文献   

2.
Summary An analysis of the ultrastructure of the tube feet of three species of sea urchins (Strongylocentrotus franciscanus, Arbacia lixula and Echinus esculentus) revealed that the smooth muscle, although known to be cholinoceptive, receives no motor innervation.The muscle fibers are attached to a double layer of circular and longitudinal connective tissue which surrounds the muscle layer and contains numerous bundles of collagen fibers. On its outside, the connective tissue cylinder is invested by a basal lamina of the outer epithelium to which numerous nerve terminals are attached. These are part of a nerve plexus which surrounds the connective tissue cylinder. The plexus itself is an extension of a longitudinal nerve that extends the whole length of the tube foot. It is composed of axons, but nerve cell bodies and synapses are conspicuously lacking, suggesting that the axons and terminals derive from cells of the radial nerve. Processes of the epithelial cells penetrate the nerve plexus and attach to the basal lamina. There is no evidence that the epithelial cells function as sensory cells.On the basis of supporting evidence it is suggested that the transmitter released by the nerve terminals diffuses to the muscle cells over a distance of several microns and in doing so affects the mechanical properties of the connective tissue.Supported by the Sonderforschungsbereich 138 of the Deutsche Forschungsgemeinschaft  相似文献   

3.
Summary The water vascular system of sea urchins is examined with special reference to the valves positioned between the radial vessel and the ampullae of the tube feet. The lips of the valve protrude into the ampulla. Thus the valve functions mainly like a check valve that allows the unidirectional flow of fluid towards the ampulla. Each ampulla-tube foot compartment acts as a semi-autonomous hydraulic system. The lumina of the ampulla and the tube foot are lined with myoepithelia except for the interconnecting channels that pierce the ambulacral plate. The contraction of the ampulla results in an increasing hydraulic pressure that protrudes the tube foot, provided that the valve is closed. The retraction of the tube foot results in a backflow of fluid independent of the condition of the valve. The lips of the valve are folds of the hydrocoel epithelium. The pore slit lies in the midline. The perradial faces of the lips are covered with the squamous epithelium of the lateral water vessel. The ampullar faces are specialized parts of the ampulla myoepithelium. Turgescent cells which form incompressible cushions take the place of the support cells. The valve myocytes run parallel to the pore slit and form processes that run along the base of the ampulla and the perradial channel up to the podial retractor muscle. The findings lead to the hypothesis of multiple control of the ampulla-tube foot system: (1) The mutual activity of the ampulla and the tube foot is indirectly controlled by the lateral and podial nerves which release transmitter substances that diffuse through the connective tissue up to the muscle layers. (2) A muscle-to-muscle conduction causes the simultaneous contraction of the ampulla or the podial retractor muscles. (3) The valve muscles are directly controlled by the processes of the valve myocytes which make contact with the podial retractor. In extreme conditions a backflow of hydrocoel fluid towards the radial water vessel occurs.  相似文献   

4.
Summary The radial nerve cord ofMespilia globulus has been examined as an example of echinoid nerve cords. In the radius of echinoids only the ectoneural component of the nerve cord is present which is a derivative of the ectoderm. The nerve cord runs in the interior of the body and is accompanied by the epineural canal. In echinoids, the neuroepithelium makes up the upper and side walls of the epineural canal. Each lateral branch of the nerve cord forms a sort of neural tube. It encloses a branch of the epineural canal which represents an open connection with the sea water. Thus, the epineural canal exhibits numerous openings which probably allow sea water to flow back and forth. This organization is unique in echinoderms. — The neuroepithelium exhibits the organization of an epidermis with well-developed nervous elements. Glial cells are not present. The support cells are the true epithelial cells. Their monociliated cell bodies border the lumen and, by means of cytoplasmic stems that contain a bundle of filaments, they reach up to the basal lamina. The nerve cells and their trunk of nerve fibres fill the spaces between the support cells. — Three types of nerve cells can be distinguished according to their polarity: (1) Primary sensory cells that project a cilium into the epineural canal, the axon hillock region is at the opposite pole. (2) Subluminal cells whose cilium originates in the axon hillock region. (3) Neurones that lie within the trunk of nerve fibres. They are highly stretched in the direction of the nerve cord and are also provided with a cilium. Types 2 and 3 may be homologized with the basal nerve cells of the epidermis. They are possibly multipolar. — The lateral nerve cords make contact with the ampulla and pass the ambulacral plate parallel to the channel that connects the ampulla and the tube foot. The activity of the tube foot-ampulla system is possibly controlled by means of transmitter substances that diffuse through the connective tissue layer between the nerve cord and the myoepithelia of the ampulla and the tube foot respectively.  相似文献   

5.
Summary The organisation of the basiepithelial nerve plexus in the alimentary canal of a starfish and the water vascular system of a sea-urchin is described. The plexus contains varicose aminergic neurones which terminate adjacent to the ciliated epithelial cells. It is proposed that the basiepithelial plexus innervates these cells and controls ciliary beating. The distribution of the basiepithelial plexus in various tissues described by other workers is dicscussed particularly in relation to whether it is the coelomic epithelium or the luminal epithelium which is innervated. It is concluded that where there is both an endothelium and a coelomic epithelium only one is innervated. The muscles, where present, of the viscera are innervated by a separate nervous system. The muscles are always on the opposite side of the non-cellular connective tissue sheath to the basiepithelial plexus.  相似文献   

6.
External muscle and myenteric plexus from the small intestine of adult guinea-pigs were maintained in vitro for 3 or 6 days. Myenteric neurons and smooth muscle cells from such organotypic cultures were examined at the electron-microscopic level. An intact basal lamina was found around the myenteric ganglia and internodal strands. Neuronal membranes, nuclei and subcellular organelles appeared to be well preserved in cultured tissues and ribosomes were abundant. Dogiel type-II neurons were distinguishable by their elongated electron-dense mitochondria, numerous lysosomes and high densities of ribosomes. Vesiculated nerve profiles contained combinations of differently shaped vesicles. Synaptic membrane specializations were found between vesiculated nerve profiles and nerve processes and cell bodies. The majority of nerve fibres were well preserved in the myenteric ganglia, in internodal strands and in bundles running between circular muscle cells. No detectable changes were found in the ultrastructure of the somata and processes of glial cells. Longitudinal and circular muscle cells from cultured tissue had clearly defined membranes with some close associations with neighbouring muscle cells. Caveolae occurred in rows that ran parallel to the long axis of the muscle cells. These results indicate that the ultrastructural features of enteric neurons and smooth muscle of the guinea-pig small intestine are well preserved in organotypic culture.  相似文献   

7.
Baŀuk  P.  Fujiwara  T.  Matsuda  S. 《Cell and tissue research》1985,239(1):51-60
Summary The parasympathetic ganglia of the guinea-pig trachea have been investigated by scanning and transmission electron microscopy. They are covered by a continuous perineurium and connective tissue is found between the neural elements. Blood vessels inside the ganglia have continuous endothelia and are sometimes accompanied by pericytes and a sheath of perineurial cells. Individual neuronal cell bodies and large processes are almost completely covered by a thin layer of satellite cells, except for very small areas that directly face the basal lamina and connective tissue space. Nerve fibres are also completely and individually ensheathed by Schwann cell processes; naked fibres are not found. In some regions of the nerve cell body, there are complex interdigitations between short neuronal processes and satellite cells. Large differences in the size of neurons may indicate the presence of different neuronal populations. Nerve endings containing mainly small clear vesicles are the most common type, and these form synapses on dendrites, but some profiles have many large granular vesicles. These ganglia resemble other parasympathetic, sympathetic and sensory ganglia and not the enteric ganglia. However, an unusual feature of the cytoplasm of the satellite and Schwann cells is the abundance of 10 nm intermediate filaments.  相似文献   

8.
The aim of this study was to investigate the ultrastructure of the interface zone between the nervous tissue and the connective vascular sheath that surround the central ganglia of the terrestrial snail of Megalobulimus abbreviatus and test its permeability using lanthanum as an electron dense tracer. To this purpose, ganglia from a group of snails were fixed by immersion in a 2% colloidal lanthanum solution, and a second group of animals was injected in the foot with either a 2%, 10% or 20% lanthanum nitrate solution and then sacrificed 2 or 24 h after injection. Ganglia from both groups were processed for transmission electron microscopy. The vascular endothelium, connective tissue and basal lamina of variable thickness that ensheathe the nervous tissue and glial cells of the nervous tissue constitute the interface zone between the haemolymph and the neurones. The injected lanthanum reached the connective tissue of the perineural capsule; however, it did not permeate into the nervous tissue because the basal lamina interposed between both tissues interrupted this passage. Moreover, the ganglia fixed with colloidal lanthanum showed electron dense precipitates between the glial processes in the area adjacent to the basal lamina. It can be concluded from these findings that, of the different components of the haemolymph-neuronal interface, only the basal lamina, between the perineural capsule and the nervous tissue, limits the traffic of substances to and from the central nervous system of this snail.  相似文献   

9.
Summary Ultrastructural data are presented on the histological organization of coelomic lining in the podia of ten species of the five major groups of extant echinoderms. Further evidence of the incorporation of podial retractor muscle cells (myocytes) into a monociliated myoepithelial coelomic lining is provided. In the podia of the crinoid Nemaster rubinginosa and the ophiuroid Ophiophragmus wurdemani as well as in the feeding tentacles of the holothurian Leptosynapta tenuis, coelomic linings are organized as simple myoepithelia consisting of non-contractile peritoneal cells (peritoneocytes) and myocytes. Coelomic linings in the holothurian Thyonella gemmata, the echinoids Eucidaris cf. tribuloides and Lytechinus variegatus, and the asteroids Asterias forbesi and Astropecten sp. are pseudostratified or bipartite pseudostratified myoepithelia consisting of subapical myocytes and apically situated peritoneocytes. The ophiuroid podia of Ophioderma brevispinum and Ophiothrix angulata exhibit transitions from simple myoepithelia to partially pseudostratified epithelia. Intermediate forms between the extremes in myoepithelial organization also occur in the podial lining of single species (e.g. Eucidaris cf. tribuloides). These data supplement recent ultrastructural studies on the podial lining of echinoderms and, in conjunction with published ultrastructural data on the myoepithelial organization of other coelomic linings in echinoderms and in other coelomates, suggest myoepithelial organization of the coelomic lining is a plesiomorph feature in Bilateria.  相似文献   

10.
This study deals with ultrastructural analysis of interneuronal and neuromuscular relations in a representative of archiannelid Nerilla sp. with primitive intraepidermal type of the nervous system. A particular attention has been paid to the area of ventral ciliate groove and the associated site of epidermis. In the ciliate groove, sensory and motor cilia are revealed and described. Sites of axonal terminals of the sensory cells supplied with cilia are noted in the epidermal nerve plexus. Epidermal-muscular cells and nerve terminals on them are revealed. Various interneuronal contact variants both of non-synaptic and of typically synaptic types are described. An attention is drawn to the rare presence of contacts of the gap junction type among interneuronal contacts in Nerilla sp. In sufficiently differentiated synapses of the chemical type, phenomena of exocytosis are described. There are shown specific features of innervation of longitudinal (somatic) musculature of the neril-lid body, including input of synaptic vesicles into the basal lamina substance and their translocation into the depth of the muscular layer.  相似文献   

11.
Summary The interstitial cells associated with the myenteric plexus of the rabbit colon were studied by scanning and transmission electron microscopy. It was demonstrated that the interstitial cells were stellate or fusiform in shape and located over the ganglia, over nerve bundles and between muscle cells. They were characterized by many slender processes, and resemble fibroblasts. No basal lamina was observed between the interstitial cells and muscle cells. It was concluded that structural features of the interstitial cells are distinctly different from those of neurons, Schwann cells, or of smooth muscle cells, while they show clear similarities to those of fibroblasts. By scanning electron microscopy the shapes and the relations of these cells could be demonstrated in great detail.  相似文献   

12.
Summary Tube feet of the sea urchin Strongylocentrotus franciscanus were studied with the scanning electron microscope (SEM). By use of fractured preparations it was possible to obtain views of all components of the layered tube-foot wall.The outer epithelium was found to bear tufts of cilia possibly belonging to sensory cells. The nerve plexus was clearly revealed as being composed of bundles of varicose axons. The basal lamina, which covers the outer and inner surfaces of the connective tissue layer, was found to be a mechanically resistant and elastic membrane. The connective tissue appears as dense bundles of (collagen) fibers. The luminal epithelium (coelothelium) is a single layer of flagellated collar cells.There is no indication that the muscle fibers, which insert on the inner basal lamina of the connective tissue layer are innervated by axons from the basiepithelial nerve plexus.The results agree with previous conclusions concerning tube-foot structure based on transmission electron microscopy, and provide additional information, particularly with regard to the outer and inner epithelia.This investigation was supported by the Sonderforschungsbereich 138 of the Deutsche Forschungsgemeinschaft. The work was carried out at the Friday Harbor Laboratories of the University of Washington. The authors are indebted to the Director, Professor A.O.D. Willows for use of the facilities, and to Drs. Christopher Reed and Tom Schroeder for invaluable instruction and assistance  相似文献   

13.
Summary We have studied the layers of the muscular coat of the guinea-pig small intestine after enzymatic and chemical removal of extracellular connective tissue. The cells of the longitudinal muscle layer are wider, have rougher surfaces, more finger-like processes and more complex terminations, but fewer intercellular junctions than cells in the circular muscle layer. A special layer of wide, flat cells with a dense innervation exists at the inner margin of the circular muscle layer, facing the submucosa. The ganglia of the myenteric and submucosal plexuses are covered by a smooth basal lamina, a delicate feltwork of collagen fibrils, and innumerable connective tissue cells. The neuronal and glial cell processes at the surface of ganglia form an interlocking mosaic, which is loosely packed in newborn and young animals, but becomes tightly packed in adults. The arrangement of glial cells becomes progressively looser along finer nerve bundles. Single varicose nerve fibres are rarely exposed, but multiaxonal bundles are common. Fibroblast-like cells of characteristic shape and orientation are found in the serosa; around nerve ganglia; in the intermuscular connective tissue layer and in the circular muscle, where they bridge nerve bundles and muscle cells; at the submucosal face of the special, flattened inner circular muscle layer; and in the submucosa. Some of these fibroblast like cells correspond to interstitial cells of Cajal. Other structures readily visualized by scanning electron microscopy are blood and lymphatic vessels and their periendothelial cells. The relationship of cellular elements to connective tissue was studied with three different preparative procedures: (1) freeze-cracked specimens of intact, undigested intestine; (2) stretch preparations of longitudinal muscle with adhering myenteric plexus; (3) sheets of submucosal collagen bundles from which all cellular elements had been removed by prolonged detergent extraction.  相似文献   

14.
NGIWYamide is a peptide recently isolated from the sea cucumber Apostichopus japonicus. It stiffens the connective tissue of the holothurian body wall. Localization of NGIWYamide was investigated by immunohistochemical staining with antiserum raised against NGIWYamide. In holothurian nervous systems NGIWYamide-like immunoreactivity (NGIWYa-LI) was observed in the hyponeural and ectoneural regions of the radial nerve cord, as well as in the circumoral nerve ring, podial nerves, tentacular nerves, the basiepithelial nerve plexus of the intestine and in cellular processes running through the body wall dermis. Labelled nerve fibres from the hyponeural part of the radial nerve running towards the circular muscle and from the podial nerve into the body wall dermis suggest that NGIWYamide controls both muscle and connective tissue. We examined the effect on muscle activity of the sea cucumber. NGIWYamide (10-7 to 10-4 M) caused contraction of the longitudinal body wall muscle. Tentacles showed contraction only at a higher dose (10-4 M). NGIWYamide (10-4 M) inhibited spontaneous contraction of the intestine.  相似文献   

15.
Summary The calcified body wall of an ophiuroid was investigated by a new method and compared with that of other echinoderms. The previous opinion that the epidermis of ophiuroid arm shields consists of a reduced syncytium continuous with the underlying dermis is incorrect. The epidermis is distinctly separated from the dermis by a basal layer and consists of (1) supporting cells which bear the cuticle, (2) ciliated cells (hitherto unknown and probably sensory), (3) gland cells, and (4) nerve cells with the basal nerve plexus. The overall structure of the epidermis is a three-dimensional tube system (marked by the basal lamina) which penetrates the dermal tissue of the scale's pore space and continues with nerve cords situated below the scale. This arrangement is unique in echinoderms.The dermal sclerocytes largely conform with those of the echinoid Eucidaris. The mineral skeleton is produced intracellularly or intrasyncytially. Moreover, dermal sclerocytes were found to release extracellular microfibrils which have nothing to do with calcite deposition. The attachment of the cuticle to the dermis is achieved by means of epidermal coupling areas. Collagen fibers fasten the scale to the underlying connective tissue sheath. The supposed fibrocytes within this sheath resemble sclerocytes. Each collagen bundle is provided with a strand of nerve fibers which, in contrast to the basal nerve plexus, are naked. They are said to infuence the mechanical properties of the connective tissue.Structures associated with cilia occur in cell types which normally lack a cilium. This finding suggests that most echinoderm cells are potentially monociliate.Abbreviations A apical shield - asp secretory products - B bacteria - bb basal body - bl basal lamina - C ciliated cell - ca coupling area - ci cilium, - cf collagen fibrils - cs cell surface - CTS connective tissue sheath - cu i inner cuticular layer - cu m middle cuticular layer - dp distal processes (Sc) - EC epineural canal - G Golgi complex - gv granular vesicle - H haemal vessel - hb homogeneous body - hl horizontal lamina (Su) - j cell junction - L lateral shield - le boundary layer (Sc) - lo distal lobe (Su) - M intervertebral muscle or its attachment - m mitochondrium - mf microfibrils - mu mucus - mv microvilli - mvb multivesicular body - N nerve cell - n nucleus - nf neurofibrils - ng neurogranules - nn naked neurofibrils - O oral shield - P tube foot - Pc phagocyte - pg pigment granules - rl rootlet - RN radial nerve - RV radial vessel - Sc sclerocyte - sh cytoplasmic sheath (Sc) - sj septate junction - Su supporting cell - sv secretory vesicle - T calcite trabeculum - V vertebral ossicle - v vesicle (Su)  相似文献   

16.
Scanning electron microscopy of whole-mount preparations of the tela submucosa in the porcine small intestine, examined after trypsin digestion, fixation and HCl hydrolysis, visualized a clear differentiation of the submucosal plexuses, i.e., the plexus submucosus internus (Meissner) and the plexus submucosus externus (Schabadasch). The distinctive features refer to the topography, number, size and shape of the ganglia and the number and diameter of the nerve strands. The plexus of Meissner is closely apposed to the external surface of the lamina muscularis mucosae by the enveloping connective tissue and by connecting strands penetrating the lamina muscularis mucosae. Three distinctive subdivisions of connecting strands can be identified. Since the glial cells covering the ganglia and connecting strands have been preserved, neither individual neuronal cells nor axons can be observed.  相似文献   

17.
Summary The fine structure of the tentacles of the articulate brachiopod Terebratalia transversa has been studied by light and electron microscopy. The epidermis consists of a simple epithelium that is ciliated in frontal and paired latero-frontal or latero-abfrontal longitudinal tracts. Bundles of unsheathed nerve fibers extend longitudinally between the bases of the frontal epidermal cells and appear to end on the connective tissue cylinder; no myoneural junctions were found. The acellular connective tissue cylinder in each tentacle is composed of orthogonal arrays of collagen fibrils embedded in an amorphous matrix. Baffles of parallel crimped collagen fibrils traverse the connective tissue cylinder in regions where it buckles during flexion of the tentacle.The tentacular peritoneum consists of four cell types: 1) common peritoneal cells that line the lateral walls of the coelomic canal, 2) striated and 3) smooth myoepithelial cells that extend along the frontal and abfrontal sides of the coelomic canal, and 4) squamous smooth myoepithelial cells that comprise the tentacular blood channel.Experimental manipulations of a tentacle indicate that its movements are effected by the interaction of the tentacular contractile apparatus and the resilience of the supportive connective tissue cylinder. The frontal contractile bundle is composed of a central group of striated fibers and two lateral groups of smooth fibers which function to flex the tentacle and to hold it down, respectively. The small abfrontal group of smooth myoepithelial cells effects the re-extension of the tentacle, in conjunction with the passive resiliency of the connective tissue cylinder and the concomitant relaxation of the frontal contractile bundle.The authors wish to express their appreciation to Professor Robert L. Fernald for his advice and encouragement throughout the course of this study. Some of the work was conducted at the Friday Harbor Laboratories of the University of Washington. The authors are indebted to the Director, Professor A.O.D. Willows, for use of the facilities. Part of this study was supported by NIH Developmental Biology Training Grant No. 5-T01-HD00266 and NSF grant BMS 7507689  相似文献   

18.
Hans Rähr 《Zoomorphology》1981,97(1-2):53-74
Summary The ultrastructure of the blood vessels of Branchiostoma has been studied using selected characteristic vessels as examples. It is shown that the vessels are a part of the original blastocoelic cavity and are delimited either by the basal laminae of adjacent epithelia or by connective tissue developed in the blastocoelic space. A brief account of the kinds of connective tissue is given. The observed contractility of some vessels depends on two types of contractile filaments situated in the basal part of the surrounding coelomic epithelia. Amoebocytelike cells are present in the blood. They may sometimes lie in contact with the wall of the vessels or with each other, but never form a typical endothelium with junctional complexes and a basal lamina of its own. Actually, there is no endothelium in any part of the vascular system. It is suggested that the term endothelium should be reserved for a closed cellular lining (with junctions) on the luminal side of the vessel wall, standing on a basal lamina of its own and forming a barrier for the exchange between blood and surrounding tissue. It is concluded that the principal structure of the vascular system of Branchiostoma is different from that of vertebrates, but the same as that of other coelomate invertebrates. The blood vessels in these animals are typically delimited directly by a basal lamina secreted by epithelia (epidermal, coelomic or intestinal) lying peripheral to this lamina, and a true endothelium is not present (with a few questionable exceptions).Abbreviations ac atrial cavity - ace atrial epithelium - ao aorta - ap atrial plexus - ax axon bundle - bc blood cell - bl basal lamina - bl 1 basal lamina of intestinal epithelium - bl 2 basal lamina of visceral coelomic epithelium - bl 3 basal lamina of parietal coelomic epithelium - bl 4 basal lamina of atrial epithelium - bll basement lamella - cf contractile filaments - co coelomic cavity - coe coelomic epithelium - coe p parietal coelomic epithelium - coe v visceral coelomic epithelium - ct dense connective tissue - dv longitudinal dorsal vessel - ep epidermis - epe epipharyngeal groove epithelium - epg epipharyngeal groove - fb fibroblast (?) - fi collagen fiber - fl fibril layer - go gonad - hd hemidesmosome - ie intestinal epithelium - in intestine proper - ip intestinal plexus - iv afferent intestinal vessel - ld liver diverticulum - lu vascular lumen - me myocoelic epithelium - ml muscle lamella - mp myoseptal plexus - ms myoseptum - my myomer - myc myocoelic cavity - nc notochord - ns notochordal sheath - ph pharynx - suc subchordal coelom - sv subintestinal vessel - svv segmental ventral vessel - vv longitudinal ventral vessel Supported by a grant from the Danish Natural Science Research Council  相似文献   

19.
P Mestres  M Diener  W Rummel 《Acta anatomica》1992,143(4):275-282
The ultrastructure of neurons, glial cells and axons of the mucosal plexus of the rat colon descendens was studied. Serial semithin sections and a re-embedding technique were used in order to localize the ganglia. The ganglia are free of blood vessels and connective tissue. The ratio of neurons to glial cells is approximately 1. Ganglia and nerve strands are enclosed by a basement membrane, without a well-defined perineural connective tissue. The neurons show a structure similar to other enteric plexus. Synaptic contacts were observed frequently in the neuropil, where nerve endings and varicosities show a diverse outfit in vesicles. The glial cells, which contain immunocytochemically detectable glial fibrillary protein, possess the same ultrastructural attributes in the intra- and extraganglionic localizations. In the nerves, axonic profiles and varicosities appear in close relation with glial cells or their processes. The distance between the nerves and their target cells, i.e. the enterocytes, is 0.5 microns or more with interposed basement membranes and fibroblasts.  相似文献   

20.
Summary The distribution of nerve cells with immunoreactivity for the calcium-binding protein, calbindin, has been studied in the small intestine of the guinea-pig, and the projections of these neurons have been analysed by tracing their processes and by examining the consequences of nerve lesions. The immunoreactive neurons were numerous in the myenteric ganglia; there were 3500±100 reactive nerve cells per cm2 of undistended intestine, which is 30% of all nerve cells. In contrast, reactive nerve cells were extremely rare in submucous ganglia. The myenteric nerve cells were oval in outline and gave rise to several long processes; this morphology corresponds to Dogiel's type-II classification. Processes from the cell bodies were traced through the circular muscle in perforating nerve fibre bundles. Other processes ran circumferentially in the myenteric plexus. Removal of the myenteric plexus, allowing time for subsequent fibre degeneration, showed that reactive nerve fibres in the submucous ganglia and mucosa came from the myenteric cell bodies. Operations to sever longitudinal or circumferential pathways in the myenteric plexus indicated that most reactive nerve terminals in myenteric ganglia arise from myenteric cell bodies whose processes run circumferentially for 1.5 mm, on average. It is deduced that the calbindin-reactive neurons are multipolar sensory neurons, with the sensitive processes in the mucosa and with other processes innervating neurons of the myenteric plexus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号