首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In airway smooth muscle (ASM), ACh induces propagating intracellular Ca2+ concentration ([Ca2+]i) oscillations (5-30 Hz). We hypothesized that, in ASM, coupling of elevations and reductions in [Ca2+]i to force generation and relaxation (excitation-contraction coupling) is slower than ACh-induced [Ca2+]i oscillations, leading to stable force generation. When we used real-time confocal imaging, the delay between elevated [Ca2+]i and contraction in intact porcine ASM cells was found to be approximately 450 ms. In beta-escin-permeabilized ASM strips, photolytic release of caged Ca2+ resulted in force generation after approximately 800 ms. When calmodulin (CaM) was added, this delay was shortened to approximately 500 ms. In the presence of exogenous CaM and 100 microM Ca2+, photolytic release of caged ATP led to force generation after approximately 80 ms. These results indicated significant delays due to CaM mobilization and Ca2+-CaM activation of myosin light chain kinase but much shorter delays introduced by myosin light chain kinase-induced phosphorylation of the regulatory myosin light chain MLC20 and cross-bridge recruitment. This was confirmed by prior thiophosphorylation of MLC20, in which force generation occurred approximately 50 ms after photolytic release of caged ATP, approximating the delay introduced by cross-bridge recruitment alone. The time required to reach maximum steady-state force was >15 s. Rapid chelation of [Ca2+]i after photolytic release of caged diazo-2 resulted in relaxation after a delay of approximately 1.2 s and 50% reduction in force after approximately 57 s. We conclude that in ASM cells agonist-induced [Ca2+]i oscillations are temporally and spatially integrated during excitation-contraction coupling, resulting in stable force production.  相似文献   

2.
3.
Airway hyperresponsiveness occurs after inhalation of O3 in dogs. The purpose of this study was to examine the responsiveness of trachealis smooth muscle in vitro to electrical field stimulation, exogenous acetylcholine, and potassium chloride from dogs with airway hyperresponsiveness after inhaled O3 in vivo and to compare this with the responsiveness of trachealis muscle from control dogs. In addition, excitatory junction potentials were measured with the use of single and double sucrose gap techniques in both groups of dogs to determine whether inhaled O3 affects the release of acetylcholine from parasympathetic nerves in trachealis muscle. Airway hyperresponsiveness developed in all dogs after inhaled O3 (3 ppm for 30 min). The acetylcholine provocative concentration decreased from 4.11 mg/ml before O3 inhalation to 0.66 mg/ml after O3 (P less than 0.0001). The acetylcholine provocative concentration increased slightly after control inhalation of dry room air. Airway smooth muscle showed increased responses to both electrical field stimulation and exogenous acetylcholine but not to potassium chloride in preparations from dogs with airway hyperresponsiveness in vivo. The increased response to electrical field stimulation was not associated with a change in excitatory junctional potentials. These results suggest that a postjunctional alteration in trachealis muscle function occurs after inhaled O3 in dogs, which may account for airway hyperresponsiveness after O3 in vivo.  相似文献   

4.
In this article the electrophysiological events which are believed to underly agonist-induced contraction and relaxation of airway smooth muscle are reviewed, with special emphasis on the indispensable role of the Ca ion. The contribution made by Na, K, Ca and Cl to, and the role that the electrogenic Na:K-dependent ATPase plays in, the maintenance of the resting membrane potential in both normal and sensitised airway smooth muscle cells is described together with the permeability changes that occur in the plasmalemma in response to excitatory and inhibitory agonists. In addition, the currently available evidence for the existence of potential-sensitive and receptor-operated Ca channels in respiratory smooth muscle, and how such channels may be involved in the regulation of airway calibre, is critically assessed.  相似文献   

5.
6.
Excitation-contraction (EC) coupling in striated muscles is mediated by the cardiac or skeletal muscle isoform of voltage-dependent L-type Ca(2+) channel (Ca(v)1.2 and Ca(v)1.1, respectively) that senses a depolarization of the cell membrane, and in response, activates its corresponding isoform of intracellular Ca(2+) release channel/ryanodine receptor (RyR) to release stored Ca(2+), thereby initiating muscle contraction. Specifically, in cardiac muscle following cell membrane depolarization, Ca(v)1.2 activates cardiac RyR (RyR2) through an influx of extracellular Ca(2+). In contrast, in skeletal muscle, Ca(v)1.1 activates skeletal muscle RyR (RyR1) through a direct physical coupling that negates the need for extracellular Ca(2+). Since airway smooth muscle (ASM) expresses Ca(v)1.2 and all three RyR isoforms, we examined whether a cardiac muscle type of EC coupling also mediates contraction in this tissue. We found that the sustained contractions of rat ASM preparations induced by depolarization with KCl were indeed partially reversed ( approximately 40%) by 200 mum ryanodine, thus indicating a functional coupling of L-type channels and RyRs in ASM. However, KCl still caused transient ASM contractions and stored Ca(2+) release in cultured ASM cells without extracellular Ca(2+). Further analyses of rat ASM indicated that this tissue expresses as many as four L-type channel isoforms, including Ca(v)1.1. Moreover, Ca(v)1.1 and RyR1 in rat ASM cells have a similar distribution near the cell membrane in rat ASM cells and thus may be directly coupled as in skeletal muscle. Collectively, our data implicate that EC-coupling mechanisms in striated muscles may also broadly transduce diverse smooth muscle functions.  相似文献   

7.
8.
The effect of extracellular Cl (Cl-o) removal on contractions evoked by a selective muscarinic agonist, cis-2-methyl-4-dimethylaminomethyl 1,3-dioxolane methiodide (CD), and high K+ depolarizations in the isolated guinea pig ileal longitudinal muscle was studied. The replacement of Cl-o with impermeant anions, such as isethionate (Ise-), was found to selectively inhibit a portion of the initial phasic response to K+ and CD, leaving the secondary and sustained tonic responses unchanged. In Ca2+-free solutions, the loss of contractile responses to high K+ was faster and more pronounced in Cl--free compared with Cl--containing solutions. Furthermore, the uptake of Ca2+, as represented by 45Ca2+, from the saline solution was delayed and reduced in Ise--containing Cl-o-free solutions. Replacement of Cl-o with other impermeant anions, such as gluconate and methylsulphate, had a similar action on contractile activity as for Ise-replacement. Cl-o replacement with permeant anions, such as nitrate, however, did not significantly inhibit the phasic response and sometimes increased the tonic response to K+. These results indicate that there is a Cl-o-dependent Ca2+ pool in the guinea pig ileal longitudinal muscle and we speculate that this Cl-o-dependent Ca2+ pool is associated with membrane structures, such as calveolae, which would thus offer a degree of protection to depletion by removal of extracellular Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The effects of Ca2+ free solutions (0 mM Ca2+/5mM EGTA) and low Ca2+ media (no added Ca2+) on the 100 mM K+ and 10(-5) M ACh contractions of the flounder intestine were examined. Ca2+-free solutions abolished the K+-contractions and reduced the normal ACh response to a smaller transient event. Low Ca2+ media blocked the prolonged tonic phase of the K+-contractions more readily than the initial phasic component. It was concluded that both ACh and K+ stimulate Ca2+ entry into the cell and that the phasic component of the K+-contraction relies on a more tightly bound extracellular Ca2+-fraction than that utilized during the tonic phase. ACh can also mobilize an intracellular Ca2+-store. Ultrastructural studies suggested that this ACh-releasable intracellular Ca2+-store may reside on the inner surface of the plasma membrane or within the peripheral S.R.  相似文献   

10.
11.
Evidence for contributions of airway smooth muscle (ASM) to the hyperresponsiveness of newborn and juvenile airways continues to accumulate. In our laboratory, 3 novel paradigms of hyperresponsiveness of newborn and young ASM have recently emerged using a guinea pig model of maturation in 3 age groups: 1 week (newborn), 3 weeks (juvenile), and 2-3 months (adult). The first paradigm includes evidence for a natural decline after newborn and juvenile life of the velocity of ASM shortening associated with a decrease in regulatory myosin light chain phosphorylation and a parallel decline in the content of myosin light chain kinase. Associated with the decrease in ASM shortening with age is an increase in the internal resistance to shortening. Dynamic stiffness is shown to relate inversely to the expression of myosin light chain kinase. This suggests that developmental changes in shortening relate inversely to the stiffness of the ASM early in shortening, suggesting a dynamic role for the cytoskeleton in facilitating and opposing ASM shortening. This relationship can be approximated as (dP/dt)max approximately (dP/dL)passive x (dL/dt)max (the maximal rate of increase of active stress generation approximately to the passive stiffness x the maximal shortening velocity). The second paradigm demonstrates that newborn ASM, unlike that in adults, does not relax during prolonged electric field stimulation. The impaired relaxation is related to changes in prostanoid synthesis and acetylcholinesterase function. The third paradigm demonstrates that, whereas oscillatory strain serves to transiently relax adult ASM, in newborns it induces (after the initial relaxation) a sustained potentiation of active stress. This is related to developmental changes in the prostanoid release. Together, these paradigms demonstrate that ASM contributes by multiple mechanisms to the natural hyperresponsiveness of newborn and juvenile airways. Future studies will elaborate the mechanisms and extend these paradigms to ASM hyperresponsiveness following sensitization in early life.  相似文献   

12.
Moderate cooling of smooth muscle can modulate force production and may contribute to pathophysiological conditions, but the mechanisms underlying its effects are poorly understood. Interestingly, cooling increases force in rat ureter, but decreases it in guinea pigs. Therefore, this study used ureteric smooth muscle as a model system to elucidate the mechanisms of the effects of cooling on excitation-contraction coupling. Simultaneous recordings of force, intracellular [Ca(2+)], and electrical activity were made in intact ureter and ionic currents measured in isolated cells. The increase in force amplitude in rat ureter with cooling was found to be due to a significant increase in the duration of the Ca(2+) transient. This in turn was due to a marked prolongation of the action potential. In guinea pigs, both these parameters were much less affected by cooling. Examination of membrane currents revealed that differences in ion channel contribution to the action potential underlie these differences. In particular, cooling potentiated Ca(2+)-activated Cl(-) currents, which are present in rat but not guinea pig ureteric smooth muscle, and prolonged the plateau of the action potential and Ca(2+) entry. The force-Ca(2+) relationship revealed that the increased duration of the Ca(2+) transient was sufficient in the rat, but not in the guinea pig, to overcome kinetic lags produced in both species by cooling and potentiate force. Ca(2+) entry and release processes were largely temperature-insensitive, but the rate of relaxation was very temperature-sensitive. Effects of cooling on myosin light chain phosphatase, confirmed in experiments using calyculin A, appear to be the predominant mechanisms affecting relaxation. Thus, smooth muscle is diverse in its response to temperature, even when experimental variables, such as the mode of stimulation, are removed. Although the biochemical and mechanical events accompanying contraction are likely to be affected in similar ways by temperature, differences in electrical events lead to subsequent differences in these processes between smooth muscles.  相似文献   

13.
Although airway remodeling and inflammation in asthma can amplify the constriction response of a single airway, their influence on the structural changes in the whole airway network is unknown. We present a morphometric model of the human lung that incorporates cross-sectional wall areas corresponding to the adventitia, airway smooth muscle (ASM), and mucosa for healthy and mildly and severely asthmatic airways and the influence of parenchymal tethering. A heterogeneous ASM percent shortening stimulus is imposed, causing distinct constriction patterns for healthy and asthmatic airways. We calculate lung resistance and elastance from 0.1 to 5 Hz. We show that, for a given ASM stimulus, the distribution of wall area in asthmatic subjects will amplify not only the mean but the heterogeneity of constriction in the lung periphery. Moreover, heterogeneous ASM shortening that would produce only mild changes in the healthy lung can cause hyperresponsive changes in lung resistance and elastance at typical breathing rates in the asthmatic lung, even with relatively small increases in airway resistance. This condition arises when airway closures occur randomly in the lung periphery. We suggest that heterogeneity is a crucial determinant of hyperresponsiveness in asthma and that acute asthma is more a consequence of extensive airway wall inflammation and remodeling, predisposing the lung to produce an acute pattern of heterogeneous constriction.  相似文献   

14.
15.
Lowering the extracellular K+ content from 6 to 0.6 mM causes a rise, and elevation from 6 to 8.5 mM a fall of 45Ca++ efflux from the vascular smooth muscle cells of the arteria carotis communis of cattle. In contrast, a level of 17 mM K+ has no influence. Removal of extracellular calcium does not block these effects. 10(-4) M ouabain also induces a rise in Ca++ efflux, additional potassium reduction then being without effect; 10(-9) M ouabain is of no influence. The 45Ca++ efflux kinetics correlates with the activity of the isolated Na,K-ATPase. Tonus increases of the vascular strips by 10(-4) M ouabain and potassium deficiency cannot be blocked by 4 mM lanthanum or removal of extracellular calcium. Unlike sodium, potassium stimulates the active Ca++ binding and the activity of the Ca-ATPase of the microsomal fraction. The ative Ca++ binding of the mitochondria is stimulated by both ions. It is postulated that the activity of the plasma membrane Na,K-pump is able to regulate the tonus of big arteries through alteration of Ca++ storage processes.  相似文献   

16.
We investigated theoretically and experimentally the Ca2+-contraction coupling in rat tracheal smooth muscle. [Ca2+]i, isometric contraction and myosin light chain (MLC) phosphorylation were measured in response to 1 mM carbachol. Theoretical modeling consisted in coupling a model of Ca2+-dependent MLC kinase (MLCK) activation with a four-state model of smooth muscle contractile apparatus. Stimulation resulted in a short-time contraction obtained within 1 min, followed by a long-time contraction up to the maximal force obtained in 30 min. ML-7 and Wortmannin (MLCK inhibitors) abolished the contraction. Chelerythrine (PKC inhibitor) did not change the short-time, but reduced the long-time contraction. [Ca2+ i responses of isolated myocytes recorded during the first 90 s consisted in a fast peak, followed by a plateau phase and, in 28% of the cells, superimposed Ca2+ oscillations. MLC phosphorylation was maximal at 5 s and then decreased whereas isometric contraction followed a Hill-shaped curve. The model properly predicts the time course of MLC phosphorylation and force of the short-time response. With oscillating Ca2+ signal, the predicted force does not oscillate. According to the model, the amplitude of the plateau and the frequency of oscillations encode for the amplitude of force, whereas the peak encodes for force velocity. The long-time phase of the contraction, associated with a second increase in MLC phosphorylation, may be explained, at least partially, by MLC phosphatase (MLCP) inhibition, possibly via PKC inhibition.  相似文献   

17.
Although we have reported that tracheal smooth muscle from sensitized dogs shows altered mechanical properties, we did not know, because of technical difficulties with the preparation, whether similar changes occur in the properties of sensitized central bronchial smooth muscle (BSM), the site at which the acute asthmatic response is believed to develop. We have now succeeded in developing a cartilage-free BSM preparation that retains optimal mechanical properties. Such strips were obtained from mongrel dogs that had been sensitized to ragweed pollen. Controls were littermates injected with adjuvant alone. Length-tension relationships were obtained for both control and sensitized BSM strips (CBSM and SBSM, respectively). The maximal active stresses were the same (P greater than 0.05) when normalized to muscle fraction in total tissue cross-sectional area [6.2 +/- 0.6 x 10(4) and 5.9 +/- 0.6 x 10(4) (SE) for SBSM and CBSM, respectively]. This suggests that optimal tension is an insensitive indicator of bronchial hyperresponsiveness and that isotonic studies might be more revealing. The maximal shortening velocity (Vo) for SBSM at 2 s [0.35 +/- 0.017 (SE) lo/s, where lo signifies optimal muscle length], in the course of a 10-s contraction, was significantly greater (P less than 0.05) than Vo measured for CBSM (0.27 +/- 0.015 lo/s). However, Vo did not differ at the 8-s point of contraction. The sensitized group demonstrated a statistically significantly greater maximal shortening capacity (0.67 +/- 0.04 lo) than the control group (0.51 +/- 0.04 lo). At 2 s of contraction, 80% of maximal SBSM shortening had been completed and was significantly greater than for CBSM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The role of inositol trisphosphate as a chemical messenger in excitation-contraction coupling is discussed, both in terms of positive and negative results. The evidence presented includes experiments on the effect of inositol trisphosphate in intact and skinned fibers, in calcium release from isolated sarcoplasmic reticulum vesicles, in activation of single calcium release channels incorporated in planar bilayers, and biochemical experiments that have established the presence of all the intermediate steps involved in the metabolism of phosphoinositides, both in intact muscle and in isolated membranes. From these results, it is clear that a role for inositol triphosphate in skeletal muscle function is highly likely; whether this molecule is the physiological messenger in excitation-contraction coupling remains to be established.  相似文献   

19.
The perimeter of the basement membrane (Pbm) of an airway viewed in cross section is used as a marker of airway size because in normal lungs it is relatively constant, despite variations in airway smooth muscle (ASM) shortening and airway collapse. In vitro studies (McParland BE, Pare PD, Johnson PR, Armour CL, Black JL. J Appl Physiol 97: 556-563, 2004; Noble PB, Sharma A, McFawn PK, Mitchell HW. J Appl Physiol 99: 2061-2066, 2005) have suggested that differential stretch of the Pbm between asthmatic and nonasthmatic airways fixed in inflation may occur and lead to an overestimation of ASM thickness in asthma. The relationships between the Pbm and the area of ASM were compared in transverse sections of airways from cases of fatal asthma (F) and from nonasthmatic control (C) cases where the lung tissue had been fixed inflated (Fi; Ci) or uninflated (Fu; Cu). When all available airways were used, the regression slopes were increased in Fu and Cu, compared with Fi and Ci, and increased in Fu and Fi, compared with Cu and Ci, suggesting effects of both inflation and asthma group, respectively. When analyses were limited to airway sizes that were available for all groups (Pbm < 15 mm), the slopes of Fi and Fu were similar, but both were greater than Ci and Cu, which were also similar. It was calculated that the effect of asthma group accounted for 80% and inflation for 20% of the differences between Fi and Ci. We conclude that the effects of inflation on the relationship between Pbm and ASM are small and do not account for the differences observed in ASM between cases of asthma and nonasthmatic controls.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号