首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
4,6-Difluoroserotonin, a serotonin analog with an acidic 5-hydroxyl proton (pK alpha = 7.97) relative to serotonin (pK alpha = 10.73), was tested as a substrate for the biogenic amine transporter of bovine chromaffin granules and the plasma membrane serotonin transporter of human blood platelets. The platelet serotonin transporter transports this analog with identical rates as those for serotonin, both at pH 6.7, where the hydroxyl group is predominantly protonated and at pH 9, where it is largely dissociated. In contrast, the chromaffin granule biogenic amine transporter prefers the form of 4,6-difluoroserotonin with a protonated 5-hydroxyl group. Thus, the KM for 4,6-difluoroserotonin increases, and Vmax decreases (relative to the values for serotonin) as the pH increases from 7 to 9. This effect may reflect a specific requirement for the protonated hydroxyl group in substrate translocation, as opposed to binding, since the KI for 4,6-difluoroserotonin inhibition of serotonin transport is the same as the KM for serotonin from pH 7 to 9.  相似文献   

2.
The effect of harmaline, a plant alkaloid has been studied on rat intestinal brush border sucrase activity. Stimulation of sucrase activity by Na+ was found to be pH-dependent. At neutral pH, 20 mM Na+ stimulated sucrase activity by reducing K(m) by 30%, while at acidic pH (5.2), the activity increased 4-fold compared to Na+-free enzyme. At 1.0 mM, harmaline markedly inhibited (67%) the enzyme activity at pH 5.2 in the absence of Na+. However, inhibition was reduced in presence of 20 mM sodium, whereas 4.0 mM harmaline was required to inhibit the enzyme activity by 65%. In the absence of Na+ ions, harmaline inhibition of sucrase activity was of competitive type, but it changed to non-competitive type in presence of 20 mM Na+ at pH 5.2. Sucrase-harmaline interactions as a function of pH, both in presence and absence of Na+ revealed a shift in pH optima of the enzyme towards a higher pH in presence of 4 mM and 1 mM harmaline respectively. The observed inhibition was reversible in nature and was only partially overcome by sodium, lithium, potassium, cesium, rubidium and ammonium ions. These findings suggest that harmaline also inhibits rat brush border sucrase and that the presence of Na+ site is not a pre-requisite for the inhibition.  相似文献   

3.
Kinetic studies with myo-inositol monophosphatase from bovine brain   总被引:3,自引:0,他引:3  
A J Ganzhorn  M C Chanal 《Biochemistry》1990,29(25):6065-6071
The kinetic properties of myo-inositol monophosphatase with different substrates were examined with respect to inhibition by fluoride, activation or inhibition by metal ions, pH profiles, and solvent isotope effects. F- is a competitive inhibitor versus 2'-AMP and glycerol 2-phosphate, but noncompetitive (Kis = Kii) versus DL-inositol 1-phosphate, all with Ki values of approximately 45 microM. Activation by Mg2+ follows sigmoid kinetics with Hill constants around 1.9, and random binding of substrate and metal ion. At high concentrations, Mg2+ acts as an uncompetitive inhibitor (Ki = 4.0 mM with DL-inositol 1-phosphate at pH 8.0 and 37 degrees C). Activation and inhibition constants, and consequently the optimal concentration of Mg2+, vary considerably with substrate structure and pH. Uncompetitive inhibition by Li+ and Mg2+ is mutually exclusive, suggesting a common binding site. Lithium binding decreases at low pH with a pK value of 6.4, and at high pH with a pK of 8.9, whereas magnesium inhibition depends on deprotonation with a pK of 8.3. The pH dependence of V suggests that two groups with pK values around 6.5 have to be deprotonated for catalysis. Solvent isotope effects on V and V/Km are greater than 2 and 1, respectively, regardless of the substrate, and proton inventories are linear. These results are consistent with a model where low concentrations of Mg2+ activate the enzyme by stabilizing the pentacoordinate phosphate intermediate. Li+ as well as Mg2+ at inhibiting concentrations bind to an additional site in the enzyme-substrate complex. Hydrolysis of the phosphate ester is rate limiting and facilitated by acid-base catalysis.  相似文献   

4.
1. 2-Oxoaldehyde dehydrogenase was purified from sheep liver and gave one band on polyacrylamide-gel electrophoresis. 2. The enzyme was completely dependent for its activity on the presence of Tris or one of a number of related amines, all of general structure: (See article). When more than one R group was hydrogen no enzyme activity was observed. 3. Only one of these amines is known to exist in living tissues and large concentrations of all amines were required for maximum activity. L-2-Aminopropan-1-ol was the most effective amine on the basis of substrate Km and Vmax. values and the amine Km values. 4. The enzyme was activated by phosphate which lowered the Km values for methylglyoxal, amine and NAD+. 5. The pH optimum of the enzyme was 9.3 and there was no activity at pH values below 7.8. A search for activators that might produce activity at pH 7.4 proved unsuccessful. 6. The enzyme was inhibited by rather large concentrations of barbiturates (6-46 mM) and nitro-alcohol analogues of the activating amines (66-139 mM).  相似文献   

5.
L J Hyland  T A Tomaszek  T D Meek 《Biochemistry》1991,30(34):8454-8463
The pH dependence of the peptidolytic reaction of recombinant human immunodeficiency virus type 1 protease has been examined over a pH range of 3-7 for four oligopeptide substrates and two competitive inhibitors. The pK values obtained from the pKis vs pH profiles for the unprotonated and protonated active-site aspartyl groups, Asp-25 and Asp-25', in the monoprotonated enzyme form were 3.1 and 5.2, respectively. Profiles of log V/K vs pH for all four substrates were "bell-shaped" in which the pK values for the unprotonated and protonated aspartyl residues were 3.4-3.7 and 5.5-6.5, respectively. Profiles of log V vs pH for these substrates were "wave-shaped" in which V was shifted to a constant lower value upon protonation of a residue of pK = 4.2-5.2. These results indicate that substrates bind only to a form of HIV-1 protease in which one of the two catalytic aspartyl residues is protonated. Solvent kinetic isotope effects were measured over a pH (D) range of 3-7 for two oligopeptide substrates, Ac-Arg-Ala-Ser-Gln-Asn-Tyr-Pro-Val-Val-NH2 and Ac-Ser-Gln-Asn-Tyr-Pro-Val-Val-NH2. The pH-independent value for DV/K was 1.0 for both substrates, and DV = 1.5-1.7 and 2.2-3.2 at low and high pH (D), respectively. The attentuation of both V and DV at low pH (D) is consistent with a change in rate-limiting step from a chemical one at high pH (D) to one in which a product release step or an enzyme isomerization step becomes partly rate-limiting at low pH (D). Proton inventory data is in accord with the concerted transfer of two protons in the transition state of a rate-limiting chemical step in which the enzyme-bound amide hydrate adduct collapses to form the carboxylic acid and amine products.  相似文献   

6.
R A Bednar 《Biochemistry》1990,29(15):3684-3690
The reactivity of simple alkyl thiolates with N-ethylmaleimide (NEM) follows the Br?nsted equation, log kS- = log G + beta pK, with G = 790 M-1 min-1 and beta = 0.43. The rate constant for the reaction of the thiolate of 2-mercaptoethanol with NEM is 10(7) M-1 min-1, whereas the rate constant for the reaction of the protonated thiol is less than 0.0002 M-1 min-1. The intrinsic reactivity of the protonated thiol (SH) is over (5 X 10(10]-fold less than the thiolate (S-) and makes a negligible contribution to the reactivity of thiols toward NEM. The rate of NEM modification of chalcone isomerase was conveniently measured by following the concomitant loss in enzymatic activity. The pseudo-first-order rate constants for inactivation show a linear dependence on the concentration of NEM up to 200 mM and yield no evidence for noncovalent binding of NEM to the enzyme. Evidence is presented demonstrating that the modification of chalcone isomerase by NEM is limited to a single cysteine residue over a wide range of pH. Kinetic protection against inactivation and modification by NEM is provided by competitive inhibitors and supports the assignment of this cysteine residue to be at or near the active site of chalcone isomerase. The pH dependence of inactivation of the enzyme by NEM indicates a pK of 9.2 for the cysteine residue in chalcone isomerase. At high pH, the enzymatic thiolate is only (3 X 10(-5))-fold as reactive as a low molecular weight alkyl thiolate of the same pK, suggesting a large steric inhibition of reaction on the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
We used isothermal titration calorimetry in the temperature range 21-25 degrees C to investigate the effect of pH on the calorimetric enthalpy (delta H(cal)) for sequence specific DNA-binding of the glucocorticoid receptor DNA-binding domain (GR DBD). Titrations were carried out in solutions containing 100 mM NaCl, 1 mM dithiothreitol, 5% glycerol by volume, and 20 mM Tris, Hepes, Mops, or sodium phosphate buffers at pH 7.5. A strong dependence of delta H(cal) on the buffer ionization enthalpy is observed, demonstrating that the DNA binding of the GR DBD is linked to proton uptake at these conditions. The apparent increase in the pK(a) for an amino acid side chain upon DNA binding is supported by the results of complementary titrations, where delta H(cal) shows a characteristic dependence on the solution pH. delta H(cal) is also a function of the NaCl concentration, with opposite dependencies in Tris and Hepes buffers, respectively, such that a similar delta H(cal) value is approached at 300 mM NaCl. This behavior shows that the DNA-binding induced protonation is inhibited by increased concentrations of NaCl. A comparison with structural data suggests that the protonation involves a histidine (His451) in the GR DBD, because in the complex this residue is located close to a DNA phosphate at an orientation that is consistent with a charged-charged hydrogen bond in the protonated state. NMR spectra show that His451 is not protonated in the unbound protein at pH 7.5. The pH dependence in delta H(cal) can be quantitatively described by a shift of the pK(a) of His451 from approximately 6 in the unbound state to close to 8 when bound to DNA at low salt concentration conditions. A simple model involving a binding competition between a proton and a Na(+) counterion to the GR DBD-DNA complex reproduces the qualitative features of the salt dependence.  相似文献   

8.
Dihydrofolate reductase (DHFR) is the subject of intensive investigation since it appears to be the primary target enzyme for "antifolate" drugs, such as methotrexate and trimethoprim. Fluorescence quenching and stopped-flow fluorimetry show that the ester bond-containing tea polyphenols (-)-epigallocatechin gallate (EGCG) and (-)-epicatechin gallate (ECG) are potent and specific inhibitors of DHFR with inhibition constants (K(I)) of 120 and 82 nM, respectively. Both tea compounds showed the characteristics of slow-binding inhibitors of bovine liver DHFR. In this work, we have determined a complete kinetic scheme to explain the slow-binding inhibition and the pH effects observed during the inhibition of bovine liver DHFR by these tea polyphenols. Experimental data, based on fluorimetric titrations, and transient phase and steady-state kinetic studies confirm that EGCG and ECG are competitive inhibitors with respect to 7,8-dihydrofolate, which bind preferentially to the free form of the enzyme. The origin of their slow-binding inhibition is proposed to be the formation of a slow dissociation ternary complex by the reaction of NADPH with the enzyme-inhibitor complex. The pH controls both the ionization of critical catalytic residues of the enzyme and the protonation state of the inhibitors. At acidic pH, EGCG and ECG are mainly present as protonated species, whereas near neutrality, they evolve toward deprotonated species due to ionization of the ester-bonded gallate moiety (pK = 7.8). Although DHFR exhibits different affinities for the protonated and deprotonated forms of EGCG and ECG, it appears that the ionization state of Glu-30 in DHFR is critical for its inhibition. The physiological implications of these pH dependencies are also discussed.  相似文献   

9.
A common feature of all the proposed mechanisms for monoamine oxidase is the initiation of catalysis with the deprotonated form of the amine substrate in the enzyme-substrate complex. However, recent steady-state kinetic studies on the pH dependence of monoamine oxidase led to the suggestion that it is the protonated form of the amine substrate that binds to the enzyme. To investigate this further, the pH dependence of monoamine oxidase A was characterized by both steady-state and stopped-flow techniques with protiated and deuterated substrates. For all substrates used, there is a macroscopic ionization in the enzyme-substrate complex attributed to a deprotonation event required for optimal catalysis with a pK(a) of 7.4-8.4. In stopped-flow assays, the pH dependence of the kinetic isotope effect decreases from approximately 13 to 8 with increasing pH, leading to assignment of this catalytically important deprotonation to that of the bound amine substrate. The acid limb of the bell-shaped pH profile for the rate of flavin reduction over the substrate binding constant (k(red)/K(s), reporting on ionizations in the free enzyme and/or free substrate) is due to deprotonation of the free substrate, and the alkaline limb is due to unfavourable deprotonation of an unknown group on the enzyme at high pH. The pK(a) of the free amine is above 9.3 for all substrates, and is greatly perturbed (DeltapK(a) approximately 2) on binding to the enzyme active site. This perturbation of the substrate amine pK(a) on binding to the enzyme has been observed with other amine oxidases, and likely identifies a common mechanism for increasing the effective concentration of the neutral form of the substrate in the enzyme-substrate complex, thus enabling efficient functioning of these enzymes at physiologically relevant pH.  相似文献   

10.
Gadda G  Fitzpatrick PF 《Biochemistry》2000,39(6):1406-1410
Nitroalkane oxidase catalyzes the oxidation of nitroalkanes to aldehydes or ketones with production of nitrite and hydrogen peroxide. pH and kinetic isotope effects with [1, 1-(2)H(2)]nitroethane have been used to study the mechanism of this enzyme. The V/K(ne) pH profile is bell-shaped. A group with a pK(a) value of about 7 must be unprotonated and one with a pK(a) value of 9.5 must be protonated for catalysis. The lower pK(a) value is seen also in the pK(is) profile for the competitive inhibitor valerate, indicating that nitroethane has no significant external commitments to catalysis. The (D)(V/K)(ne) value is pH-independent with a value of 7.5, whereas the (D)V(max) value increases from 1.4 at pH 8.2 to a limiting value of 7.4 below pH 5. The V(max) pH profile decreases at low and high pH, with pK(a) values of 6.6 and 9.5, respectively. Imidazole, which activates the enzyme, affects the V(max) but not the V/K(ne) pH profile. In the presence of imidazole at pH 7 the (D)V(max) value increases to a value close to the intrinsic value, consistent with cleavage of the carbon-hydrogen bond of the substrate being fully rate-limiting for catalysis in the presence of imidazole.  相似文献   

11.
Initial rate studies of ethanol oxidation catalyzed by yeast alcohol dehydrogenase (EC 1.1.1.1) were carried out in the presence of varying concentrations of aliphatic amines over the pH range from 8.0 to 10.5. Aliphatic amines either activate or inhibit the enzyme depending on whether the pH is greater or less than 9.5 suggesting that the protonated amines activate and the nonprotonated amines inhibit the enzyme. Aliphatic amines activate yeast alcohol dehydrogenase by decreasing Kb while they inhibit the enzyme by increasing both Ka and Kia. When both protonated and nonprotonated amines are present in solution, either overall activation or inhibition will be observed depending on the relative concentration of the two amine species.  相似文献   

12.
Rat intestinal brush border trehalase (EC 3.2.1.28) solubilized by Triton X-100 or Emulphogen BC 720 has been purified almost to homogeneity in a five steps procedure including DEAE cellulose, Sephadex G-200, preparative flat bed electrofocusing and hydroxylapatite. The apparent molecular weight was estimated to be about 65,500 daltons by mannitol density gradient ultracentrifugation. The optimum pH of the enzyme was between 5.5 and 5.7 in phosphate, maleate or citrate buffers. The apparent Km for trehalose was found to be 10 mM in maleate buffer pH 6.0. The isoelectric point was 4.9. Tris, P-aminophenylglucoside, sucrose and maltose are fully competitive inhibitors with Kis of 2.2, 1.8, 7.7 and 170 mM, respectively. The inhibition by Phloridzin appeared to be of the mixed type with a Ki of 1.7 mM. Trehalase is heat stable up to 50 degrees C and the activation energy is 10.96 kcal/mol. Schiff's staining on polyacrylamide gel and interaction with Con-A-Sepharose indicate that rat trehalase is a glycoprotein.  相似文献   

13.
Conduritol C trans-epoxide was found to inactivate human liver alpha-L-fucosidase (alpha-L-fucoside fucohydrolase, EC 3.2.1.51), exhibiting an apparent dissociation constant of 43 mM. The cis-isomer of the inactivator had no apparent effect on the enzyme's activity. The pH profile for the inactivation yielded two apparent pK values of approx. 3.7 and 6.1 alpha-L-Fucose (a competitive inhibitor) was effective in protecting the enzyme from inactivation. These results are consistent with a requirement for two amino acid side chains at the active site involved in the reaction of the enzyme with conduritol C trans-epoxide.  相似文献   

14.
Inhibition of pancreatic phospholipase A2 by surface-active local anesthetics was recently reported by this laboratory to be due to enzyme-anesthetic interaction in the subphase and surface effects. In order to study surface effects in the absence of subphase effects, a long-chain tetracaine analog which was completely insoluble in the subphase, dimethylaminoethyl p-decoxybenzoate, was synthesized. To determine if inhibition was due to the positive surface charge of the analog or some other effect related to structure, the analog's inhibitory effects were compared with those of octadecylamine. Analog-didecanoyl lecithin (PC) monolayers showed nonideal mixing as evidenced by a condensing effect, while octadecylamine-didecanoyl PC monolayers showed ideal mixing. The apparent pK′a of octadecylamine-dioctanoyl PC micelles (1:4) was 9.9, while that of the analog-dioctanoyl PC micelles (1:4) was 7.6. At pH values where both amines were fully protonated, inhibition of both porcine pancreatic and Crotalus adamanteus phospholipase A2 on the mixed films was maximal and similar (94–97%). Inhibition decreased with increasing pH and decreasing surface charge on both mixed films and at pH values where both amines were 50% protonated, inhibition was half-maximal. At pH 8.5, where the analog was unprotonated, no inhibition was observed. Thus, inhibition of phospholipase A2 appears to be due to a positive surface charge alone rather than any effects related to anesthetic structure or spacing in the monolayer.  相似文献   

15.
M Y Yoon  P F Cook 《Biochemistry》1987,26(13):4118-4125
The pH dependence of kinetic parameters and inhibitor dissociation constants for the adenosine cyclic 3',5'-monophosphate dependent protein kinase reaction has been determined. Data are consistent with a mechanism in which reactants selectively bind to enzyme with the catalytic base unprotonated and an enzyme group required protonated for peptide (Leu-Arg-Arg-Ala-Ser-Leu-Gly) binding. Binding of the peptide apparently locks both of the above enzyme residues in their correct protonation state. MgATP preferentially binds fully ionized and requires an enzyme residue (probably lysine) to be protonated. The maximum velocity and V/KMgATP are pH independent. The V/K for Ser-peptide is bell-shaped with pK values of 6.2 and 8.5 estimated. The pH dependence of 1/Ki for Leu-Arg-Arg-Ala-Ala-Leu-Gly is also bell-shaped, giving pK values identical with those obtained for V/KSer-peptide, while the Ki for MgAMP-PCP increases from a constant value of 650 microM above pH 8 to a constant value of 4 mM below pH 5.5. The Ki for uncomplexed Mg2+ obtained from the Mg2+ dependence of V and V/KMgATP is apparently pH independent.  相似文献   

16.
Tannic acid is a glucoside (penta-m-digallolyl-glucose), which exhibits a wide variety of physiological functions. Around neutral pH, 0.4 mM tannic acid produced 84% inhibition of rat brush border sucrase activity, but 35-40% enzyme inhibition was observed in the rabbit intestine at 0.08 mM concentration. In the mice, 74-77% enzyme inhibition was observed at 0.05 mM concentration of tannic acid. The observed inhibition was reversible in rat intestine. Tannic acid (0.2 mM) also inhibited lactase (18% in adult and 71% in suckling animals), maltase (76%) and trehalase (88%) activities in rat intestine. pH versus activity curves showed that 0.2 mM tannic acid inhibited enzyme activity in rat by 91% at pH 5.5 which was reduced to 14% at pH 8.5 compared to the respective controls. In the rabbit 18-60% enzyme inhibition was noticed below pH 7.0, however at pH 8.5, it was of the order of 38%. Kinetic analysis revealed that tannic acid is a competitive inhibitor of rat brush border sucrase at pH 6.8. Effect of tannic acid together with various -SH group reacting reagents revealed that the enzyme inhibition is additive in nature, suggesting the distinct nature of binding sites on the enzyme for these compounds. The results suggest that tannic acid is a potent inhibitor of intestinal brush border disaccharidases, and could modulate the intestinal functions.  相似文献   

17.
The pH dependence of the kinetic parameters and the primary deuterium isotope effects with nicotinamide adenine dinucleotide (NAD) and also thionicotinamide adenine dinucleotide (thio-NAD) as the nucleotide substrates were determined in order to obtain information about the chemical mechanism and location of rate-determining steps for the Ascaris suum NAD-malic enzyme reaction. The maximum velocity with thio-NAD as the nucleotide is pH-independent from pH 4.2 to 9.6, while with NAD, V decreases below a pK of 4.8. V/K for both nucleotides decreases below a pK of 5.6 and above a pK of 8.9. Both the tartronate pKi and V/Kmalate decrease below a pK of 4.8 and above a pK of 8.9. Oxalate is competitive vs. malate above pH 7 and noncompetitive below pH 7 with NAD as the nucleotide. The oxalate Kis increases from a constant value above a pK of 4.9 to another constant value above a pK of 6.7. The oxalate Kii also increases above a pK of 4.9, and this inhibition is enhanced by NADH. In the presence of thio-NAD the inhibition by oxalate is competitive vs. malate below pH 7. For thio-NAD, both DV and D(V/K) are pH-independent and equal to 1.7. With NAD as the nucleotide, DV decreases to 1.0 below a pK of 4.9, while D(V/KNAD) and D(V/Kmalate) are pH-independent. Above pH 7 the isotope effects on V and the V/K values for NAD and malate are equal to 1.45, the pH-independent value of DV above pH 7. From the above data, the following conclusions can be made concerning the mechanism for this enzyme. Substrates bind to only the correctly protonated form of the enzyme. Two enzyme groups are necessary for binding of substrates and catalysis. Both NAD and malate are released from the Michaelis complex at equal rates which are equal to the rate of NADH release from E-NADH above pH 7. Below pH 7 NADH release becomes more rate-determining as the pH decreases until at pH 4.0 it completely limits the overall rate of the reaction.  相似文献   

18.
The aspartyl dyad of free HIV-1 protease has apparent pK(a)s of approximately 3 and approximately 6, but recent NMR studies indicate that the aspartyl dyad is fixed in the doubly protonated form over a wide pH range when cyclic urea inhibitors are bound, and in the monoprotonated form when the inhibitor KNI-272 is bound. We present computations and measurements related to these changes in protonation and to the thermodynamic linkage between protonation and inhibition. The Poisson-Boltzmann model of electrostatics is used to compute the apparent pK(a)s of the aspartyl dyad in the free enzyme and in complexes with four different inhibitors. The calculations are done with two parameter sets. One assigns epsilon = 4 to the solute interior and uses a detailed model of ionization; the other uses epsilon = 20 for the solute interior and a simplified representation of ionization. For the free enzyme, both parameter sets agree well with previously measured apparent pK(a)s of approximately 3 and approximately 6. However, the calculations with an internal dielectric constant of 4 reproduce the large pKa shifts upon binding of inhibitors, but the calculations with an internal dielectric constant of 20 do not. This observation has implications for the accurate calculation of pK(a)s in complex protein environments. Because binding of a cyclic urea inhibitor shifts the pK(a)s of the aspartyl dyad, changing the pH is expected to change its apparent binding affinity. However, we find experimentally that the affinity is independent of pH from 5.5 to 7.0. Possible explanations for this discrepancy are discussed.  相似文献   

19.
Investigation of the catalytic mechanism of yeast inorganic pyrophosphatase   总被引:1,自引:0,他引:1  
P1,P2-Bidentate Co(NH3)4PP was found to be a competitive inhibitor of pyrophosphatase vs. MgPP (Kis = 8.7 mM, pH 7) and, in the presence of Mg2+, an active substrate as well. P1,P2-Bidentate Cr(III) complexes of pyrophosphate, imidodiphosphate, and methylenediphosphonate were also competitive inhibitors vs. MgPP (pH 5.9; Kis = 0.2, 0.2, and 0.4 mM, respectively). In the presence of Mg2+, P1,P2-bidentate Cr(H2O)4PP was found to have a Km 10-fold greater and a turnover number 36-fold smaller than MgPP at pH 5.9. Mg2+, Mn2+, Co2+, Zn2+, Cd2+, Ni2+, and Fe2+ activate the CrPP--pyrophosphatase reaction, while Ca2+ and Ba2+ are not activators but serve as competitive inhibitors vs. Mg2+ (Kis = 0.35 and 2.3 mM). At levels above 0.1 mM, Mn2+, Co2+, and Zn2+ show activator inhibition. Kinetic studies with CrPP and Mg2+ suggest that the kinetic mechanism is rapid equilibrium ordered, with CrPP adding before Mg2+. pH studies of the MgPP/Mg2+ reaction and the CrPP/Mg2+ reaction suggest that the active form of the substrate is (MgPP)2- and that the uncomplexed metal ion cofactor interacts with at least two active-site residues, one possibly via H bonding and the other by direct coordination. The former group (pKa = 5.6) appears on the basis of temperature and solvent perturbation studies to be a carboxylic acid. The MgPP reaction also requires that an active-site residue (pKa = 7.5) be protonated. Temperature and solvent perturbation studies suggest that this residue is an amine. A mechanism accounting for these observations is presented.  相似文献   

20.
Twenty-five analogs of D-glucose were examined as reversible inhibitors of yeast alpha-glucosidase (EC 3.2.1.20). The K(i) values range from 0.38 mM for 6-deoxy-D-glucose (quinovose) to 1.0 M for D-lyxose at pH=6.3 (0.1 M NaCl, 25 degrees ). All the monosaccharides and the three disaccharides (maltose, isomaltose and alpha,alpha-trehalose) were found to be linear competitive inhibitors with respect to alpha-p-nitrophenyl glucoside (pNPG) hydrolysis. Multiple inhibition analysis reveals that there are at least three monosaccharide binding sites on the enzyme. One of these can be occupied by glucose [K(i)=1.8(+/-0.1) mM], one by D-galactose [K(i)=164(+/-11) mM] and one by D-mannose [K(i)=120(+/-9) mM]. The pH dependence for glucose binding closely follows that of V/K [pK(a1)=5.55(+/-0.15), pK(a2)=6.79(+/-0.15)], but the binding of mannose does not. Although the glucose subsite can be occupied simultaneously with the mannose or galactose subsites in the enzyme-product complex, no transglucosylation can be detected between pNPG and either mannose or galactose. This suggests that neither of these nonglucose subsites can be occupied in a productive manner in the covalent glucosyl-enzyme intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号