首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The gene cluster that codes for feedback-resistant aspartate kinase (lysCα and lysCβ) and aspartate semialdehyde dehydrogenase (asd) was cloned from a mutant strain of Corynebacterium glutamicum. Its functional analysis by subcloning, enzyme assays, and type of aspartate kinase regulation enabled the isolation of a fragment for separate expression of the feedback-resistant kinase without aspartate semialdehyde dehydrogenase expression. This was used together with other clones constructed (J. Cremer, L. Eggeling, and H. Sahm, Mol. Gen. Genet. 220:478-480, 1990) to overexpress individually each of the six genes that convert aspartate to lysine. Analysis of lysine formation revealed that overexpression of the feedback-resistant kinase alone suffices to achieve lysine formation (38 mM). Also, sole overexpression of wild-type dihydrodipicolinate synthase resulted in lysine formation but in a lower amount (11 mM). The other four enzymes had no effect on lysine secretion. With a plasmid overexpressing both relevant enzymes together, a further increase in lysine yield was obtained. This shows that of the six enzymes that convert aspartate to lysine the kinase and the synthase are responsible for flow control in the wild-type background and can be useful for construction of lysine-producing strains.  相似文献   

2.
3.
Activity and regulation of key enzymes of the lysine biosynthetic pathway were investigated inBrevibacterium linens, a natural excretor of lysine, its lysine-overproducing homoserine auxotroph (Hom(-1)) and its auxotrophic and multianalogue-resistant high-yielding mutant (AEC NV 20(r)50). The activity of aspartate kinase (AK) and aspartaldehydate dehydrogenase (AD) was maximum during the mid-exponential phase of growth and decreased therafter. The mutants showed 10 and 20% more activity of AK and AD than the wild-type lysine excretor.B. linens (natural excretor) has a single AK and AD repressed and inhibited bivalently by lysine and threonine. Lysine slightly repressed and inhibited dihydrodipicolinate synthase (DS) and diaminopimelate decarboxylase (DD) of the wild type and of the mutant Hom(-1). The mutant AEC NV 20(r)50 showed DS and DD to be insensitive to lysine inhibition and repression. Persistence of a major part of the maximal activity of these enzymes during the late stationary phase of growth allowed prolonged synthesis and excretion of lysine. Stepwise addition of resistance to the different analogues of lysine in the mutant AEC NV20(r)50 resulted in an increase of enzyme activity and reduced repressibilities of enzymes that contributed to the high yield of lysine.  相似文献   

4.
Methanobacterium thermoautotrophicum, an archaebacterium, possesses the first and last enzymes of the diaminopimelic acid pathway for lysine biosynthesis, dihydrodipicolinate synthase, and diaminopimelate decarboxylase. It does not have saccharopine dehydrogenase, the last enzyme of the aminoadipate pathway for lysine biosynthesis. The dihydrodipicolinate synthase is inhibited but not repressed by lysine. We conclude that this microbe uses the diaminopimelate pathway for synthesis of lysine.Deceased.  相似文献   

5.
6.
The amino acid L-lysine is produced on a large scale using mutants of Corynebacterium glutamicum. However, as yet recombinant DNA techniques have not succeed in improving strains selected for decades by classic mutagenesis for high productivity. We here report that seven biosynthetic enzymes were assayed and oversynthesis of the dihydrodipicolinate synthase resulted in an increase of lysine accumulation from 220 mM to 270 mM. The synthase, encoded by dapA, is located at the branch point of metabolite distribution to either lysine or threonine and competes with homoserine dehydrogenase for the common substrate aspartate semialdehyde. When graded dapA expression was used, as well as quantification of enzyme activities, intracellular metabolite concentrations and flux rates, a global response of the carbon metabolism to the synthase activity became apparent: the increased flux towards lysine was accompanied by a decreased flux towards threonine. This resulted in a decreased growth rate, but increased intracellular levels of pyruvate-derived valine and alanine. Therefore, modulating the flux at the branch point results in an intrinsically introduced growth limitation with increased intracellular precursor supply for lysine synthesis. This does not only achieve an increase in lysine yield but this example of an intracellularly introduced growth limitation is proposed as a new general means of increasing flux for industrial metabolite overproduction. Received: 8 August 1997 / Received revision: 2 October 1997 / Accepted: 14 October 1997  相似文献   

7.
The regulation of dihydrodipicolinate synthase (EC 4.2.1.52) and aspartate kinase (EC 2.7.2.4) was studied in Bacillus subtilis 168. Starvation for lysine gave depression of one aspartate kinase isoenzyme but not of dihydrodipicolinate synthase. Strains resistant to growth inhibition by the lysine analogue thiosine exhibited constitutively derepressed synthesis of one aspartate kinase isoenzyme but had normal levels of dihydrodipicolinate synthase. The data provide strong evidence that lysine is not the signal for derepression of dihydrodipicolinate synthase. Nevertheless, dihydrodipicolinate synthase specific activity increased during sporulation, and it is suggested that this increase may result, in part, from resistance to proteolysis of that enzyme.  相似文献   

8.
The essential amino acids lysine and threonine are synthesized in higher plants by two separate branches of a common pathway. This pathway is primarily regulated by three key enzymes, namely aspartate kinase (AK), dihydrodipicolinate synthase (DHPS) and homoserine dehydrogenase (HSD), but how these enzymes operate in concert is as yet unknown. Addressing this issue, we have expressed in transgenic tobacco plants high levels of bacterial AK and DHPS, which are much less sensitive to feedback inhibition by lysine and threonine than their plant counterparts. Such expression of the bacterial DHPS by itself resulted in a substantial overproduction of lysine, whereas plants expressing only the bacterial AK overproduced threonine. When both bacterial enzymes were expressed in the same plant, the level of free lysine exceeded by far the level obtained by the bacterial DHPS alone. This increase, however, was accompanied by a significant reduction in threonine accumulation compared to plants expressing the bacterial AK alone. Our results suggested that in tobacco plants the synthesis of both lysine and threonine is under a concerted regulation exerted by AK, DHPS, and possibly also by HSD. We propose that the balance between lysine and threonine synthesis is determined by competition between DHPS and HSD on limiting amounts of their common substrate 3-aspartic semialdehyde, whose level, in turn, is determined primarily by the activity of AK. The potential of this molecular approach to increase the nutritional quality of plants is discussed.  相似文献   

9.
Isolation and characterization of dihydrodipicolinate synthase from maize   总被引:1,自引:1,他引:0  
Dihydrodipicolinate synthase (EC 4.2.1.52), the first enzyme specific to lysine biosynthesis in plants, was purified from maize (Zea mays L.) cell suspension cultures and leaves. The subunit molecular weight of maize dihydrodipicolinate synthase was estimated to be 38,000 based on SDS-PAGE. The condensation of l-aspartate semialdehyde and pyruvate by highly purified dihydrodipicolinate synthase exhibited kinetics characteristic of a Ping Pong Bi Bi ordered reaction in which pyruvate binds first to the enzyme. Substrate inhibition evident at higher concentrations of l-aspartate semialdehyde was partially alleviated by increasing concentrations of pyruvate. Pyruvate binding exhibited cooperativity with an apparent number of 2 and 1.86 millimolar concentration required for 50% of maximal activity. The Km for aspartate semialdehyde was estimated to be 0.6 millimolar concentration. Lysine was an allosteric cooperative inhibitor of dihydrodipicolinate synthase with an estimated Hill number of 4 and 23 micromolar concentration required for 50% inhibition. The physical and kinetic data are consistent with a homotetramer model for the native enzyme.  相似文献   

10.
The extent of incorporation of aspartate into dipicolinic acid and into various amino compounds was determined in Bacillus cereus at various times before, during, and near the end of synthesis of dipicolinic acid. The purpose of this study was to gain further information on the in vivo control of the biosynthesis of amino acids derived from aspartate. Control of the lysine biosynthetic pathway was of particular interest with regard to sporulation, owing to the important role of diaminopimelate and dipicolinate in the structure of the spore. As synthesis of dipicolinate was initiated, incorporation of carbon derived from aspartate was funneled preferentially into this compound as compared with others of the aspartate group. Incorporation into lysine essentially stopped just before the synthesis of dipicolinate began. This is consistent with the previously observed disappearance at this time of diaminopimelic acid decarboxylase in cell-free extracts. Synthesis of diaminopimelate continued during the time of synthesis of dipicolinate. The previous suggestion that diaminopimelate might exert negative control on one of the enzymes between dihydrodipicolinate and diaminopimelate is thus considered unlikely. The possibility is discussed that synthesis of dipicolinate is favored by an increase in the rate of synthesis of dihydrodipicolinate rather than by a block in its rate of utilization.  相似文献   

11.
Summary When studying mutants affecting lysyl-tRNA synthetase or tRNALys (hisT, hisW), a lack of correlation is clearly observed between the amount of lysyl-tRNA and the level of derepression of several lysine biosynthetic enzymes. This excludes the possible role of lysyl-tRNA as the specific corepressor of the lysine regulon. However, the level of derepression of DAP-decarboxylase, the last enzyme of the lysine pathway, is very low in the hisT mutant; this indicates that tRNALys is a secondary effector involved in the regulation of the synthesis of this enzyme.Abbreviations DAP diaminopimelate - KRS lysyl-tRNA synthetase - L-lysine tRNA ligase (AMP) (EC6.1.16) - AK III lysinesensitive aspartokinase (EC 2.7.24) - ASA-dehydrogenase aspartic semialdehyde dehydrogenase (EC 1.2.1.10) - DHDP-reductase dihydrodipicolinic acid reductase - DAP-decarboxylase diaminopimelate decarboxylase (EC 4.1.1.20) - AK I threonine-sensitive aspartokinase - HDHI threonine-sensitive homoserine dehydrogenase  相似文献   

12.
The aspartate‐derived amino acid pathway in plants is an intensively studied metabolic pathway, because of the biosynthesis of the four essential amino acids lysine, threonine, isoleucine and methionine. The pathway is mainly controlled by the key regulatory enzymes aspartate kinase (AK; EC 2.7.2.4), homoserine dehydrogenase (HSDH; EC 1.1.1.3) and 4‐hydroxy‐tetrahydrodipicolinate synthase (EC 4.3.3.7), formerly referred to as dihydrodipicolinate synthase (DHDPS). They are encoded by isoenzyme families and it is not known why such families are evolutionarily maintained. To gain more insight into the specific roles and regulation of the isoenzymes, we inhibited DHDPS in Arabidopsis thaliana with the chemical compound (N,N‐dimethylglycinatoboranyloxycarbonylmethyl)‐dimethylamine‐borane (DDAB) and compared the short‐term effects on the biochemical and biomolecular level to the long‐term adaptations in dhdps knockout mutants. We found that DHDPS2 plays a crucial role in controlling lysine biosynthesis, thereby stabilizing flux through the whole aspartate pathway. Moreover, DHDPS2 was also shown to influence the threonine level to a large extent. In addition, the lysine‐sensitive AKs, AKLYS1 and AKLYS3 control the short‐ and long‐term responses to perturbed lysine biosynthesis in Arabidopsis thaliana.  相似文献   

13.
14.
The Gram-positive bacterium Corynebacterium glutamicum is used for the industrial production of amino acids, e.g. of l-glutamate and l-lysine. In the last 10 years, genetic engineering and amplification of relevant structural genes have become fascinating methods for the construction of strains with desired genotypes. By cloning and expressing the various genes of the l-lysine pathway in C. glutamicum we could demonstrate that an increase of the flux of l-aspartate semialdehyde to l-lysine could be obtained in strains with increased dehydrodipicolinate synthase activity. By combined overexpression of deregulated aspartate kinase and dihydrodipicolinate synthase, the l-lysine secretion could be increased (10–20%). Recently we detected that in C. glutamicum two pathways exist for the synthesis of dl-diaminopimelate and l-lysine. Mutants defective in one pathway are still able to synthesize enough l-lysine for growth, but the l-lysine secretion is reduced to 50–70%. Using NMR spectroscopy, we could calculate how much of the l-lysine secreted into the medium is synthesized via each pathway. Amplification of the feedback inhibition-insensitive homoserine dehydrogenase and homoserine kinase in a high l-lysine overproducing strain enabled channelling of the carbon flow from the intermediate aspartate semialdehyde towards homoserine, resulting in a high accumulation of l-threonine. For a further flux from l-threonine to l-isoleucine the allosteric control of threonine dehydratase must be eliminated. In addition to all steps considered so far to be important for amino acid overproduction, the secretion into the culture medium also has to be noted. Recently it could be demonstrated that l-glutamate, l-lysine and l-isoleucine are not secreted via passive diffusion but via specific active carrier systems. Analysis of lysine-overproducing C. glutamicum strains indicates that this secretion carrier has a strong influence on the overproduction of this amino acid. Thus, for the construction of strong amino acid overproducing strains by using the gene cloning techniques, the overexpression of the genes for the export systems also seems necessary.  相似文献   

15.
Matthews  Benjamin F.  Widholm  Jack M. 《Planta》1978,141(3):315-321
Aspartokinase (EC 2.7.2.4), homoserine-dehydrogenase (EC 1.1.1.3) and dihydrodipicolinic-acid-synthase (EC 4.2.1.52) activities were examined in extracts from 1-year-old and 11-year-old cell suspension cultures and whole roots of garden carrot (Daucus carota L.). Aspartokinase activity from suspension cultures was inhibited 85% by 10 mM L-lysine and 15% by 10mM L-threonine. In contrast, aspartokinase activity from whole roots was inhibited 45% by 10 mM lysine and 55% by 10 mM threonine. This difference may be based upon alterations in the ratios of the two forms (lysine-and threonine-sensitive) of aspartokinase, since the activity is consistently inhibited 100% by lysine+threonine. Only one form each of homoserine dehydrogenase and of dihydrodipicolinic acid synthase was found in extracts from cell suspension cultures and whole roots. The regulatory properties of either enzyme were identical from the two sources. In both the direction of homoserine formation and aspartic--semialdehyde formation, homoserine dehydrogenase activities were inhibited by 10mM threonine and 10 mM L-cysteine in the presence of NADH or NADPH. KCl increased homoserine dehydrogenase activity to 185% of control values and increased the inhibitory effect of threonine. Dihydrodipicolinic acid synthase activities from both sources were inhibited over 80% by 0.5 mM lysine. Aspartokinase was less sensitive to inhibition by low concentrations of lysine and threonine than were dihydrodipicolinic acid synthase and homoserine dehydrogenase to inhibition by the respective inhibitors.  相似文献   

16.
AIM: To enhance L-lysine secretion in Lactobacillus plantarum. METHODS AND RESULTS: An S-2-aminoethyl-L-cystein (AEC)-resistant mutant of L. plantarum was isolated, and it produced L-lysine at considerably higher level than the parent strain. Aspartokinase in the mutant has been desensitized to feedback inhibition by L-lysine. The nucleotide sequence analysis of thrA2 that codes for aspartokinase in the mutant predicted a substitution of glutamine to histidine at position 421. L-Lysine-insensitive aspartokinase, together with aspartate semialdehyde dehydrogenase, dihydrodipicolinate synthase, and dihydrodipicolinate reductase genes, was cloned from L. plantarum DNA to a shuttle vector, pRN14, and the genes were then transformed individually into the AEC-resistant mutant and the parent strain. The overexpression of the genes led to the increase in the activity of enzymes they encode in vitro. However, only the strain overexpressing aspartokinase or dihydrodipicolinate synthase produced more L-lysine. CONCLUSIONS: The desensitization of aspartokinase to L-lysine in L. plantarum led to the overproduction of L-lysine. The overexpression of L-lysine-insensitive aspartokinase or dihydrodipicolinate synthase enhanced L-lysine secretion in L. plantarum. SIGNIFICANCE AND IMPACT OF THE STUDY: The use of the L-lysine-overproducing strain of L. plantarum in food or feed fermentation may increase the L-lysine content of fermented products.  相似文献   

17.
Aspartate availability was increased in Corynebacterium glutamicum strains to assess its influence on lysine production. Upon addition of fumarate to a strain with a feedback-resistant aspartate kinase, the lysine yield increased from 20 to 30 mM. This increase was accompanied by the excretion of malate and succinate. In this strain, fumaric acid was converted to aspartate by fumarate hydratase, malate dehydrogenase, and aspartate amino transferase activity. To achieve the direct conversion of fumarate to aspartate, shuttle vectors containing the aspA+ (aspartase) gene of Escherichia coli were constructed. These constructions were introduced into C. glutamicum, which was originally devoid of the enzyme aspartase. This resulted in an aspartase activity of 0.3 U/mg (70% of the aspartase activity in E. coli) with plasmid pZ1-9 and an activity of up to 1.05 U/mg with plasmid pCE1 delta. In aspA+-expressing strains, lysine excretion was further increased by 20%. Additionally, in strains harboring pCE1 delta, up to 27 mM aspartate was excreted. This indicates that undetermined limitations in the sequence of reactions from aspartate to lysine exist in C. glutamicum.  相似文献   

18.
Aspartate availability was increased in Corynebacterium glutamicum strains to assess its influence on lysine production. Upon addition of fumarate to a strain with a feedback-resistant aspartate kinase, the lysine yield increased from 20 to 30 mM. This increase was accompanied by the excretion of malate and succinate. In this strain, fumaric acid was converted to aspartate by fumarate hydratase, malate dehydrogenase, and aspartate amino transferase activity. To achieve the direct conversion of fumarate to aspartate, shuttle vectors containing the aspA+ (aspartase) gene of Escherichia coli were constructed. These constructions were introduced into C. glutamicum, which was originally devoid of the enzyme aspartase. This resulted in an aspartase activity of 0.3 U/mg (70% of the aspartase activity in E. coli) with plasmid pZ1-9 and an activity of up to 1.05 U/mg with plasmid pCE1 delta. In aspA+-expressing strains, lysine excretion was further increased by 20%. Additionally, in strains harboring pCE1 delta, up to 27 mM aspartate was excreted. This indicates that undetermined limitations in the sequence of reactions from aspartate to lysine exist in C. glutamicum.  相似文献   

19.
The enzymes aspartokinase and homoserine dehydrogenase catalyze the reaction at key branching points in the aspartate pathway of amino acid biosynthesis. Enterococcus faecium has been found to contain two distinct aspartokinases and a single homoserine dehydrogenase. Aspartokinase isozymes eluted on gel filtration chromatography at molecular weights greater than 250,000 and about 125,000. The molecular weight of homoserine dehydrogenase was determined to be 220,000. One aspartokinase isozyme was slightly inhibited by meso-diaminopimelic acid. Another aspartokinase was repressed and inhibited by lysine. Although the level of diaminopimelate-sensitive (DAPs) enzyme was not much affected by growth conditions, the activity of lysine-sensitive (Lyss) aspartokinase disappeared rapidly during the stationary phase and was depressed in rich media. The synthesis of homoserine dehydrogenase was controlled by threonine and methionine. Threonine also inhibited the specific activity of this enzyme. The regulatory properties of aspartokinase isozymes and homoserine dehydrogenase from E. faecium are discussed and compared with those from Bacillus subtilis.  相似文献   

20.
Corynebacterium glutamicum is an important organism for the industrial production of amino acids such as lysine. In the present study time-dependent changes in the oxidative pentose phosphate pathway activity, an important site of NADPH regeneration in C. glutamicum, are investigated, whereby intracellular metabolite concentrations and specific enzyme activities in two isogenic leucine auxotrophic strains differing only in the regulation of their aspartate kinases were compared. After leucine limitation only the strain with a feedback-resistant aspartate kinase began to excrete lysine into the culture medium. Concomitantly, the intracellular NADPH to NADP concentration ratio increased from 2 to 4 in the non-producing strain, whereas it remained constant at about 1.2 in the lysine-producing strain. From these data the in'vivo flux through the pentose phosphate pathway was calculated. These results were used to approximate the total NADPH regeneration by glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and isocitrate dehydrogenase, which agreed fairly well with the calculated demands for biomass formation and lysine biosynthesis. The analysis allowed to conclude that NADPH regeneration in the pentose phosphate pathway is essential for lysine biosynthesis in C. glutamicum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号