首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The partial purification (123-fold) of 2-oxoaldehyde dehydrogenase (2-oxoaldehyde:NAD(P)+ oxidoreductase, 1.2.1.23) from rat liver was carried out using a purification procedure which involved (NH4)2SO4 fractionation, DEAE-Sephadex chromatography, Blue-Dextran affinity chromatography and CM-Sephadex chromatography. A single form of the enzyme was observed, mol. wt. approx. 50000 by gel chromatography. 2-Oxoaldehyde dehydrogenase appears to be highly specific for NADP+ and methylglyoxal. No activity is observed in the absence of certain amines which have vicinal amino and hydroxyl groups. The only known amine which activates the enzyme at physiological pH is L-serine methyl ester, suggesting that the regulation of this enzyme in vivo may require a derivative of serine.  相似文献   

4.
Three forms of alpha-D-mannosidase have previously been identified in rat liver, and each is localized in a different subcellular fraction: lysosomes, Golgi membranes, and cytosol. This communication reports the purification and characterization the cytosolic form. The enzyme was purified 12,000-fold in good yield to approximately 90% purity with the aid of the competitive inhibitor mannosylamine and dithioerythritol as stabilizers. The molecular weight of the enzyme is in the range of 372,000 to 490,000 depending on the method used. Since the subunit molecular weight is 110,000 by sodium dodecyl sulfate polyacrylamide electrophoresis, the enzyme is probably a tetramer. The pH optimum was shown to be between 5.5 and 5.9 (in the presence of 1 mM CoCl2) with the substrate p-nitrophenyl-alpha-D-mannoside. Normal Michaelis-Menten kinetics were observed with a Km of 0.14 mM. Mannosylamine was a competitive inhibitor with a Ki of 0.007 mM. The purified enzyme, stabilized by Co2+, Mn2+, and Fe2+ under some conditions, was unstable at low protein concentrations. Since an electrophoresed sample showed a positive periodic acid-Schiff stain, the enzyme may contain carbohydrate. The availability of purified cytosolic alpha-D-mannosidase should now make it possible to carry out substrate specificity, immunological, and structural studies which may shed light on the biological role of this enzyme.  相似文献   

5.
Methylmalonate semialdehyde dehydrogenase was purified from rat liver in order to define the distal portion of valine catabolism and related pathways in mammals. The purified enzyme is active with malonate semialdehyde and consumes both stereoisomers of methylmalonate semialdehyde, implicating a single semialdehyde dehydrogenase in the catabolism of valine, thymine, and compounds catabolized by way of beta-alanine. The oxidation of malonate and methylmalonate semialdehydes by this enzyme is CoA-dependent, the products being acetyl-CoA and propionyl-CoA, respectively. Expected activity with ethylmalonate semialdehyde as substrate was not found. Methylmalonate semialdehyde dehydrogenase was separated on DEAE-Sephacel into two isoforms which differ in mobility during nondenaturing polyacrylamide gel electrophoresis. The two forms are immunologically cross-reactive and exhibit the same N-terminal sequence, suggesting that one form is the product of the other. The monomer molecular mass, determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, was 58 kDa. The native molecular mass, estimated by gel filtration, was 250 kDa, suggesting a tetrameric structure.  相似文献   

6.
The presence of multiple forms of 3 alpha-hydroxysteroid dehydrogenase in the cytosol of male rat livers was demonstrated. The enzyme activity was separated into two fractions (F3 and F4) by DEAE-cellulose chromatography, and further fractionation of F3 into four (I-IV) and F4 into three (I-III) fractions was achieved by subsequent CM-Sephadex chromatography. Six forms (F3-II-IV and F4-I-III) were further purified by chromatofocusing and Red-Sepharose 4B chromatography. Two (F4-II and III) of the isolated enzymes were homogeneous, based on polyacrylamide gel electrophoresis. No shift of pI values was observed, when isoelectric focusing was performed with the F4 enzyme species in the presence of NAD(P)+ or NAD(P)H. All six enzyme species migrated closely with each other on dodecyl sulfate-polyacrylamide gel electrophoresis, from which the molecular masses were estimated to be 32 500 Da. Gel filtration gave similar values for the F4 enzyme species, indicating that each enzyme is a monomeric peptide. All enzyme species were able to catalyse the dehydrogenation of 3 alpha-hydroxysteroids (C19 to C26), and not C27 compound having a 1,5-dimethylhexyl side chain. The catalytic properties with steroids were very similar for five of the enzyme species, but F3-IV especially preferred androsterone. When male rat livers were used for isolation, the enzyme activity ratio of F3 to F4 for androsterone was about 1 to 8, whereas the ratio was about 1 to 20 for female rat livers. Considering the biosynthetic pathway of bile acids, the enzymes isolated here might play a specific role in the conversion of a 3 beta-hydroxy group to a 3 alpha-hydroxy group via a 3-oxo group of an intermediate in the synthesis of bile acids.  相似文献   

7.
A monomeric 3 alpha-hydroxysteroid dehydrogenase with a molecular weight of 34,000 was purified to apparent homogeneity from mouse liver cytosol. The enzyme catalyzed the reversible oxidation of the 3 alpha-hydroxy group of C19-, C21-, and C24-steroids, reduced a variety of carbonyl compounds, and was inhibited by SH-reagents, synthetic estrogens, anti-inflammatory drugs, prostaglandins, and delta 4-3-ketosteroids. Although these properties are similar to those of the enzyme from rat liver cytosol, the mouse enzyme exhibited low dehydrogenase activity toward benzene dihydrodiol and some alicyclic alcohols, it showed a strict cofactor specificity for NADP(H), and high substrate inhibition was observed in the reverse reaction. In addition, dexamethasone, deoxycorticosterone, and medroxyprogesterone acetate inhibited the mouse enzyme competitively at low concentrations and noncompetitively at high concentrations, whereas hexestrol, indomethacin, and prostaglandin A1 were competitive inhibitors. Steady-state kinetic measurements in both directions indicated that the reaction proceeds through an ordered bi bi mechanism with the cofactors binding to the free enzyme. The 3-ketosteroid substrates inhibited the enzyme uncompetitively at elevated concentrations, suggesting that the substrates bind to the enzyme.NADPH complex and to the enzyme NADP+ complex.  相似文献   

8.
Nicotinamide adenine dinucleotide- and nicotinamide adenine dinucleotide phosphate-dependent dehydrogenase activities from rat liver mitochondria have been copurified to homogeneity using combined DEAE, Sepharose, and affinity chromatographic procedures. The enzyme has a native molecular weight of 240,000 and subunit molecular weight of 60,000. The enzyme is tetrameric consisting of four identical subunits as revealed by electrophoresis and terminal analyses. A partial summary of physical properties is provided. The amino acid composition by acid hydrolysis is reported. Specific activities for various NAD(P)+ analogs and alkanal substrates were compared. The action of the effectors chloral hydrate, disulfiram, diethylstilbestrol, and Mg2+ and K+ ions were also investigated.  相似文献   

9.
Purification of the glucocorticoid receptor from rat liver cytosol.   总被引:12,自引:0,他引:12  
The [3H]-triamcinolone acetonide-labeled glucocorticoid receptor from rat liver cytosol was purified to 85% homogeneity according to sodium dodecyl sulfate gel electrophoresis. It consisted of one subunit with a molecular weight of 89,000 and had one ligand-binding site per molecule. The purification involved sequential chromatography on phosphocellulose, DNA-cellulose twice, and Sephadex G-200. Between the two chromatography steps on DNA-cellulose, the receptor was heat activated. The receptor was affinity eluted from the second DNA-cellulose column with pyrodixal 5'-phosphate. The purification achieved in the first three chromatographic steps varied between 60 and 95% homogeneity in different experiments. After chromatography on the second DNA-cellulose column, the steroid.receptor complex had a Stokes radius of 6.0 nm and a sedimentation coefficient of 3.4 S in 0.15 M KCl. In the absence of KCl, the sedimentation coefficient was 3.6 S. After concentration on hydroxylapatite, the steroid.receptor complex was analyzed by isoelectric focusing in polyacrylamide gel. The radioactivity was shown to focus together with the major protein band with pI 5.8. Following limited proteolysis with trypsin, the radioactivity, together with the major protein band, focused at pI 6.2 as previously described for the unpurified steroid.receptor complex.  相似文献   

10.
From the cytosol fraction (supernatant fluid at 105,000 g) of chicken liver, 3 alpha-hydroxysteroid dehydrogenase was purified to an apparently homogeneous state by differential precipitation with ammonium sulfate, followed by column chromatographies with DE 51, DEAE-Toyopearl, and Sephadex G-100. Finally the dehydrogenase was purified 103-fold on the basis of the cytosol fraction. Polyacrylamide gel electrophoretic analysis in the presence of sodium dodecyl sulfate (SDS) revealed that molecular weight of the purified enzyme was 66 kDa, while that of the native dehydrogenase in the absence of SDS was estimated as 660 kDa or more from the peak of the enzyme in elution profile from Sephacryl S-200 column chromatography. The dehydrogenase required NADPH specifically for reduction of 3-oxo group of 5 beta-androstanedione (Km = 1.6 microM). Optimal temperature for 3-oxo reduction was 50 C in incubation for 10 min.  相似文献   

11.
Aldehyde dehydrogenase was purified 187-fold from cytosol of rat testis by chromatographic methods and gel filtration with a yield of about 50%. The enzyme exhibits absolute requirement for exogenous sulfhydryl compounds and strong dependence on temperature. Addition of 0.4mM Ca2 or Mg2 ions results in 50% inhibition. Optimally active at pH 8.5 and 50 degrees C, aldehyde dehydrogenase displays broad substrate specificity; saturation curves with acetaldehyde and propionaldehyde are non-hyperbolic, with Hill coefficients comprised between 0.8 and 0.7. Strong substrate inhibition can be observed with both aromatic and long-chain alyphatic aldehydes. According to mathematical models, Km decreases from 246 microM for acetaldehyde to 4 microM for capronaldehyde and Ki decreases from about 4mM for butyraldehyde to 0.2 mM for capronaldehyde.  相似文献   

12.
13.
Protein Z was purified from rabbit liver cytosol by affinity chromatography on oleic acid-agarose and preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. After removal of sodium dodecyl sulfate, the renatured protein was found to bind heme and bilirubin with a Kd of approximately 1 microM which produced large red shifts in their absorption spectra. On isoelectric focusing, rabbit protein Z exhibited two main bands with pI around 6.0.  相似文献   

14.
15.
16.
Branched-chain alpha-ketoacid dehydrogenase kinase was purified to homogeneity from rat liver and rat heart. The initial step was the purification of rat liver and heart branched-chain alpha-ketoacid dehydrogenase complex with high kinase activity by a modification of a method described previously. Preservation of high kinase activity during purification of the complex required the presence of fresh dithiothreitol throughout the procedure. The kinase was released from the complex by oxidation of dithiothreitol with potassium ferricyanide and purified by high-speed centrifugation, immunoadsorption chromatography, and DEAE-Sephacel chromatography. Both kinase preparations gave only one polypeptide band with a molecular weight of 44,000 on polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Phosphorylation and inactivation of the branched-chain alpha-ketoacid dehydrogenase complex by the purified kinase was inhibited by alpha-chloroisocaproate and dichloroacetate, established inhibitors of the phosphorylation of the branched-chain alpha-ketoacid dehydrogenase complex. The kinase did not exhibit autophosphorylation and does not correspond to the same protein as pyruvate dehydrogenase kinase. The kinase phosphorylated histone (type II-S), but this reaction was slow relative to the phosphorylation of the branched-chain alpha-ketoacid dehydrogenase complex and was not inhibited by alpha-chloroisocaproate.  相似文献   

17.
Rats were treated with 3-methylcholanthrene (MC) and DT-diaphorase from liver was partially purified on an azodicoumarol-Sepharose 6B column and applied to an FPLC-chromatofocusing column in order to resolve isoforms. Six peaks showing significant DT-diaphorase activity were eluted from this column with a pH gradient between 7.30 to 4.80. The amino acid compositions of the two major peaks (II and VIb) were found to be nearly identical, suggesting existence of isoforms rather than isozymes of DT-diaphorase. The isoforms of DT-diaphorase showed broad substrate specificities towards four different quinones (menadione, vitamin K-1, benzo(a)pyrene 3,6-quinone and cyclized-dopamine ortho-quinone), although quantitative differences in the specific activities were also found. All isoforms are glycoproteins but contain different carbohydrates. Thus isoform II reacts with biotinylated lectins which are specific for N-acetylgalactosamine, mannose, fucose and galactosyl(beta-1,3)N-acetylgalactosamine, while isoform VIb reacts only with biotinylated lectins specific for mannose and N-acetylgalactosamine. Separation of DT-diaphorase isoforms from control rat liver cytosol using FPLC-chromatofocusing revealed that the induction of the isoforms is not uniform, since isform II was not found and the major isoform was composed of three peaks, whereas the major isoform of DT-diaphorase from liver cytosol of rats treated with 3-methylcholanthrene was composed of only two peaks.  相似文献   

18.
Dihydropyrimidine dehydrogenase was isolated from cytosolic pig liver extracts and purified 3100-fold to apparent homogeneity. Purification made use of ammonium sulfate fractionation, precipitation with acetic acid and chromatography on DEAE-cellulose and 2',5'-ADP-Sepharose with 28% recovery of total activity. The native enzyme has a molecular mass of 206 kDa and is apparently composed of two similar, if not identical, subunits. Proteolytic cleavage reveals two fragments with apparent molecular masses of 92 kDa and 12 kDa. The C-terminal 12-kDa fragment seems to be extremely hydrophobic. The enzyme contains tightly associated compounds including four flavin nucleotide molecules and 32 iron atoms/206-kDa molecule. The iron atoms are probably present in iron-sulfur centers. The flavins released from the enzyme were identified as FAD and FMN in equal amounts. An isoelectric point of 4.65 was determined for the dehydrogenase. Apparent kinetic parameters were obtained for the substrates thymine, uracil, 5-aminouracil, 5-fluorouracil and NADPH.  相似文献   

19.
Two cyclic AMP-independent protein kinases (ATP: protein phosphotransferase, EC 2.7.1.37) (casein kinase 1 and 2) have been purified from rat liver cytosol by a method involving chromatography on phosphocellulose and casein-Sepharose 4B. Both kinases were essentially free of endogeneous protein substrates and capable of phosphorylating casein, phosvitin and I-form glycogen synthase, but were inactive on histone IIA, protamine and phosphorylase b. They were neither stimulated by cyclic AMP, Ca2+ and calmodulin, nor inhibited by the cyclic AMP-dependent protein kinase inhibitor protein. The casein and glycogen synthase kinase activities of each enzyme decreased at the same rate when incubated at 50 degrees C. Casein kinase 1 and casein kinase 2 showed differences in molecular weight, sensitivity to KCl, Km for casein and phosvitin and Ka for Mg2+, whereas their Km values for ATP and I-form glycogen synthase were similar. The phosphorylation of glycogen synthase by these kinases correlated with a decrease in the +/- glucose 6-phosphate activity ratio (independence ratio). However, casein kinase 1 catalyzed the incorporation of about 3.6 mol of 32P/85000 dalton subunit, decreasing the independence ratio from 83 to about 15, whereas the phosphorylation achieved by casein kinase 2 was only about 1.9 mol of 32P/850000 dalton subunit, decreasing the independence ratio to about 23. The independence ratio decrease was prevented by the presence of casein but was unaffected by phosphorylase b. These data indicate that casein/glycogen synthase kinases 1 and 2 are different from cyclic AMP-dependent protein kinase and phosphorylase kinase.  相似文献   

20.
Formaldehyde hydrogenase and formate dehydrogenase were purified 130-fold and 19-fold respectively from Candida boidinii grown on methanol. The final enzyme preparations were homogenous as judged by acrylamide gel electrophoresis and by sedimentation in an ultracentrifuge. The molecular weights of the enzymes were determined by sedimentation equilibrium studies and calculated as 80000 and 74000 respectively. Dissociation into subunits was observed by treatment with sodium dodecylsulfate. The molecular weights of the polypeptide chains were estimated to be 40000 and 36000 respectively. The NAD-linked formaldehyde dehydrogenase specifically requires reduced glutathione for activity. Besides formaldehyde only methylglyoxal served as a substrate but no other aldehyde tested. The Km values were found to be 0.25 mM for formaldehyde, 1.2 mM for methylglyoxal, 0.09 mM for NAD and 0.13 mM for glutathione. Evidence is presented which demonstrates that the reaction product of the formaldehyde-dehydrogenase-catalyzed oxidation of formaldehyde is S-formylglutathione rather than formate. The NAD-linked formate dehydrogenase catalyzes specifically the oxidation of formate to carbon dioxide. The Km values were found to be 13 mM for formate and 0.09 mM for NAD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号