首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Soluble 3′,5′-nucleotide phosphodiesterase (PDE) activity is described in chicken epiphyseal and articular cartilage. Kinetic studies of these enzymes demonstrate a high and low Km for the substrates, adenosine 3′,5′-cyclic monophosphate (cyclic AMP) and guanosine 3′,5′-cyclic monophosphate (cyclic GMP). Epiphyseal and articular PDE activities are inhibited by those anti-inflammatory agents which are potent inhibitors of the enzyme, prostaglandin synthetase (PS). Specificity of this inhibition is indicated by the activity of these agents against the low Km enzyme. Other anti-inflammatory agents with significantly less potency as PS inhibitors or with no activity against prostaglandin synthetase are found to be either inactive or relatively less potent as inhibitors of cartilage PDE activity. A variety of other anti-inflammatory or anti-rheumatic agents, which are not known to affect prostaglandin synthetase activity, are poor inhibitors of cartilage PDE activity. These data provide insight into the mechanism of action of certain anti-inflammatory agents and into the relationships between prostaglandins and inflammatory reactions.  相似文献   

2.
We have identified an endogenous inhibitor of cyclic nucleotide phosphodiesterase (PDE) activity in cultured human epithelial cells. The inhibitor was non-dialyzable, inactivated by trypsin and boiling, but stable to a 60° C, 30 min. treatment. Separation of inhibitor from PDE was achieved by blue dextran affinity chromatography. PDE was eluted from this column by EDTA, while the inhibitor remained bound and was subsequently eluted with buffer containing cyclic GMP. The inhibitor was active against PDE from several sources including both Ca++ dependent and Ca++ independent forms from bovine brain and retina respectively. These characteristics differentiate the PDE inhibitor from human epithelial cells from those previously described from various bovine tissues.  相似文献   

3.
The complete amino acid sequence of the cyclic GMP stimulated cyclic nucleotide phosphodiesterase (cGS-PDE) of bovine heart has been determined by analysis of five digests of the protein; placement of the C-terminal 330 residues has been confirmed by interpretation of the corresponding partial cDNA clone. The holoenzyme is a homodimer of two identical N alpha-acetylated polypeptide chains of 921 residues, each with a calculated molecular weight of 103,244. The C-terminal region, residues 613-871, of the cGS-PDE comprises a catalytic domain that is conserved in all phosphodiesterase sequences except those of PDE 1 from Saccharomyces cerevisiae and a secreted PDE from Dictyostelium. A second conserved region, residues 209-567, is homologous to corresponding regions of the alpha and alpha' subunits of the photoreceptor phosphodiesterases. This conserved domain specifically binds cGMP and is involved in the allosteric regulation of the cGS-PDE. This regulatory domain contains two tandem, internal repeats, suggesting that it evolved from an ancestral gene duplication. Common cyclic nucleotide binding properties and a distant structural relationship provide evidence that the catalytic and regulatory domains within the cGS- and photoreceptor PDEs are also related by an ancient internal gene duplication.  相似文献   

4.
Purified calmodulin-stimulated cyclic nucleotide phosphodiesterase from brain, a homodimer of 59-kDa subunits, was activated by limited proteolysis with trypsin, alpha-chymotrypsin, Pronase, or papain and could not be further stimulated by addition of Ca2+ and calmodulin. Proteolysis increased Vmax and had little effect on the Km for cGMP. Treatment with alpha-chymotrypsin in the presence of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) produced, sequentially, 57- and 45-kDa peptides from the bovine and 55-, 53-, and 38-kDa peptides from the ovine enzyme. This protease-treated phosphodiesterase exhibited a Stokes radius of 3.9 nm and an S20,w value of 4.55; comparison with the hydrodynamic properties observed for native enzyme (4.3 nm, 5.95 S) strongly suggests a dimeric protein of Mr approximately 80,000-90,000. The proteolyzed species does not interact significantly with calmodulin immobilized on agarose, nor does it show complex formation with 2-dimethylaminonaphthalene-1-sulfonyl-calmodulin even at micromolar concentrations of protein. Proteolysis, in the presence of calmodulin plus Ca2+, fully activated phosphodiesterase, producing the same intermediate peptides; however, final peptides from the bovine and ovine enzymes were 47 and 42 kDa, respectively, indicating a new, specific conformation of the enzyme. When EGTA was added to such incubations, these peptides were cleaved to those of the size seen when proteolysis was carried out entirely in the presence of EGTA. The initial rate of activation was increased by the presence of Ca2+ and calmodulin, suggesting that, in complex, phosphodiesterase exhibits a site with increased susceptibility to proteolysis. Since calmodulin can still interact with a fully activated form of the enzyme, it appears that retention of calmodulin binding can occur concomitantly with damage to that portion of the phosphodiesterase molecule responsible for suppression of its basal catalytic activity.  相似文献   

5.
The boiled supernatant fraction from rat cerebrum contained factors which inhibited the basal activity of a Ca2+-dependent phosphodiesterase from rat cerebrum. Two inhibitory fractions were isolated by DEAE-cellulose or Sephadex chromatography and were deemed proteins, based on their sensitivity to trypsin digestion. The inhibitory fractions eluted from DEAE-cellulose columns prior to the Ca2+-dependent activator protein. The inhibitory factors, unlike the activator protein, were stable to heat treatment under alkaline conditions. The inhibitory factors caused both an increase in Km for cyclic GMP and a decrease in V. In the presence of calcium ions and purified activator protein, the Ca2+-dependent phosphodiesterase was not inhibited by the factors, but instead was slightly stimulated. The inhibitory factors caused a slight apparent stimulation of a Ca2+-independent phosphodiesterase from rat cerebrum but this proved instead to be a nonspecific stabilizing effect which was mimicked by bovine serum albumin. After prolonged alkaline treatment, the purified activator protein caused a modest Ca2+-independent activation of Ca2+-dependent phosphodiesterase. The inhibitory factors antagonized the activation of Ca2+-dependent phosphodiesterase by alkaline treated activator protein or by lysophosphatidylcholine. The inhibitory factors had no effect on activity of trypsinized Ca2+-dependent phosphodiesterase. Of various other proteins, only casein mimicked the effects of the inhibitory factors on phosphodiesterase activity.  相似文献   

6.
Cyclic nucleotide phosphodiesterase has been partially purified by calmodulin-Sepharose affinity chromatography from a soluble extract of Neurospora crassa. The phosphodiesterase activity remained bound to the affinity column even in the presence of 6 M urea and could only be eluted by calcium chelation. The enzyme exhibits cAMP and cGMP phosphodiesterase activities. Both activities can be enhanced by calmodulin in a Ca2+-dependent manner. Stimulation of cyclic nucleotide phosphodiesterase by calmodulin can be inhibited by calmodulin antagonists such as pimozide, trifluoperazine and chlorpromazine.  相似文献   

7.
We have investigated the effects of several phosphodiesterase inhibitors on the activity of a cGMP-stimulated cyclic nucleotide phosphodiesterase purified from calf liver supernatant. Theophylline, RO 20-1724, and MY 5445 were not effective inhibitors. With 0.5 microM [3H]cGMP as substrate or with 0.5 microM [3H]cAMP in the presence of 1 microM cGMP, activity was inhibited by papaverine, dipyridamole, isobutylmethylxanthine (IBMX), and cilostamide. With 0.5 microM [3H]cAMP as substrate, however, only cilostamide was inhibitory; papaverine, dipyridamole, and IBMX increased activity. The increase was dependent on both drug and substrate concentration with maximal stimulation (150-180%) at concentrations of cAMP between 0.5 and 2.5 microM. At higher cAMP concentrations, the three drugs were inhibitory; inhibition was maximal at approximately 40 microM and decreased at higher cAMP concentrations. Inhibition of cGMP hydrolysis was maximal at approximately 3 microM and decreased at higher concentrations. Papaverine, IBMX, dipyridamole, and cilostamide inhibited [3H] cGMP hydrolysis competitively with Ki values of 3, 6.5, 7, and 11.5 microM, respectively. Papaverine, IBMX, or dipyridamole reduced the Hill coefficient for cAMP hydrolysis from 1.8 to 1.1-1.2, and Lineweaver-Burk plots were linear or nearly linear. With cilostamide, however, Lineweaver-Burk plots remained curvilinear. Thus, three competitive inhibitors, papaverine, dipyridamole, and IBMX, can mimic substrate and effect allosteric transitions that increase catalytic activity, whereas another, cilostamide, apparently cannot. Differences in the actions of these inhibitors presumably reflect differences in the molecular requirements for effective interaction at catalytic and allosteric sites on phosphodiesterase, i.e. differences in the structure of these sites.  相似文献   

8.
cGMP-stimulated phosphodiesterase (PDE) has been directly photolabeled with [32P]cGMP using UV light. Sequence analysis of peptide fragments obtained from partial proteolysis or cyanogen bromide cleavage indicate that two different domains are labeled. One site, on a Mr = 36,000 chymotryptic fragment located near the COOH terminus, has characteristics consistent with it being close to or part of the catalytic site of the enzyme. This peptide contains a region of sequence that is highly conserved in all mammalian cyclic nucleotide PDEs and has been postulated to contain the catalytic domain of the enzyme. The other site, on a Mr = 28,000 cyanogen bromide cleavage fragment located near the middle of the molecule, probably makes up part of the allosteric site of the molecule. Labeling of the enzyme is concentration dependent and Scatchard analysis of labeling yields a biphasic plot with apparent half labeling concentrations of about 1 and 30 microM consistent with two types of sites being labeled. Limited proteolysis of the PDE by chymotrypsin yields five prominent fragments that separate by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) at Mr = 60,000, 57,000, 36,000, 21,000, and 17,000. Both the Mr = 60,000 and 57,000 apparently have blocked NH2 termini suggesting that the Mr = 57,000 fragment is a subfragment of the Mr = 60,000 fragment. Primary sequence analysis indicates that both the Mr = 21,000 and 17,000 fragments are subfragments of the Mr = 36,000 fragment. Autoradiographs of photolabeled then partially proteolyzed enzyme show labeled bands at Mr = 60,000, 57,000, and 36,000. Addition of 5 microM cAMP prior to photolabeling eliminates photolabeling of the Mr = 36,000 fragment but not the Mr = 60,000 or 57,000 fragments. The labeled site not blocked by cAMP is also contained in a Mr = 28,000 cyanogen bromide fragment of the enzyme that does not overlap with the Mr = 36,000 proteolytic fragment. Limited chymotryptic proteolysis also increases basal activity and eliminates cGMP stimulation of cAMP hydrolysis. The chymotryptic fragments can be separated by either ion exchange high performance liquid chromatography (HPLC) or solid-phase monoclonal antibody treatment. A solid-phase monoclonal antibody against the cGMP-stimulated PDE removes the Mr = 60,000 and 57,000 labeled fragments and any intact, unproteolyzed protein but does not remove the Mr = 36,000 fragment or the majority of activity. Ion exchange HPLC separates the fragments into three peaks (I, II, and III). Peaks I and II contain activity of approximately 40 and 100 units/mg, respectively. Peak II is the undigested or slightly nicked native enzyme.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Soluble cyclic nucleotide phosphodiesterase of rat uterus displays distinct structural and regulatory properties. Like phosphodiesterases from many mammalian sources the soluble uterine enzyme system exhibits nonlinear Lineweaver--Burk kinetics with cyclic adenosine 3':5'-monophosphate (cAMP) as substrate (apparent Kms congruent to 3 and 20 micron) and linear kinetics with cyclic guanosine 3':5'-monophosphate (cGMP) as substrate (apparent Km congruent to 3 micron). Unlike most other mammalian phosphodiesterases, however, numerous separation procedures reveal only a single form of uterine phosphodiesterase which catalyzes the hydrolysis of both cAMP and cGMP. A single form of the enzyme is observed upon sucrose gradient centrifugation (7.9 S), agarose gel filtration, and DEAE-cellulose chromatography at either pH 8.0 OR 6.0. Heat denaturation (50 degrees C) of soluble uterine phosphodiesterase causes the loss of both cAMP and cGMP hydrolytic activities at the same rate. Isoelectric focusing reveals major (pI = 5.2) and minor forms (pI = 5.8) of phosphodiesterase which both catalyze the hydrolysis of the two cyclic nucleotide substrates. In vivo administration of estradiol produces identical decreases in the activities of cAMP and cGMP phosphodiesterase. These results raise the possibility that the uterus contains a single form of soluble phosphodiesterase which catalyzes the hydrolysis of both cAMP and cGMP.  相似文献   

10.
《Phytochemistry》1986,25(10):2305-2307
The carrot phytoalexin, 6-methoxymellein, was isolated and purified from carrot root slices infected by the fungus Chaetomium globosum. It inhibited the basal and calmodulin-promoted activity of cyclic nucleotide phosphodiesterase. The inhibition of calmodulin-promoted diesterase activity was reduced by increasing the concentration of calmodulin or calcium while the inhibition of basal diesterase activity was reversed by the addition of magnesium to the assay mixture of the enzyme.  相似文献   

11.
A Ca2+-dependent cyclic nucleotide phosphodiesterase has been identified in homogenates of C-6 glial tumor cells. The Ca2+-dependent phosphodiesterase was resolved by ECTEOLA-cellulose chromatography into two fractions. One fraction contained a protein regulator of the enzyme which was identical to a homogeneous Ca2+-binding protein (CDR) from porcine brain by the criteria of electrophoretic migration, biological activity, heat stability, and behavior in diverse chromatographic systems. The second fraction contained deactivated enzyme (CDR-dependent phosphodiesterase) which regained full activity upon the readdition of both Ca2+ and CDR. In subcellular fractionation experiments both the CDR and the Ca2+-dependent phosphodiesterase were predominantly located in the 100,000g supernatant fraction.The apparent Km values of the phosphodiesterase for cyclic AMP (cAMP) and cyclic GMP (cGMP) were 10 and 1.2 μm, respectively, when CDR was not rate limiting. Minor increases in the apparent Km for cAMP were observed at rate-limiting concentrations of CDR. At the ratio of CDR to CDR-dependent enzyme present in the C-6 cell homogenate, half-maximal activation was conferred by 4 μm Ca2+ for the hydrolysis of 25 μm cGMP and by 8 μm Ca2+ for the hydrolysis of 25 μm cAMP. Increased ratios of CDR to CDR-dependent phosphodiesterase increased the sensitivity of the enzyme to Ca2+. The enzyme was more sensitive to CDR with cGMP as substrate than with cAMP, and more sensitive at high than at low cyclic nucleotide substrate concentrations. The quantity of enzyme in the assay also influenced the amount of CDR required for half-maximal activation.  相似文献   

12.
The kinetic properties of cyclic nucleotide phosphodiesterase isolated from the cytoplasmic fraction of lymphoblastoma QOS cells were studied. It was demonstrated that the enzyme can be activated in the presence of micromolar concentrations of cGMP. The kinetic properties of the enzyme are characterized by the nonlinear dependence of the cAMP hydrolysis rate on the substrate concentration. The curve becomes linear in the presence of cGMP. The molecular mass of phosphodiesterase as determined from gel filtration data is 80,0000 Da.  相似文献   

13.
It is shown, that p-aminobenzoic acid and its derivatives (p-acetylaminobenzoic acid and p-aminobenzoic acid hydrazide) in the concentration of 10(-6) M are the potent inhibitors (40% below the control specimens) of the phosphodiesterase activity of cyclic nucleotides in the soluble fraction of the adult rat uterus. These drugs exerted no action on the adenylate cyclase activity in membrane fractions. The inhibition is only specific to the uterus enzyme and is not revealed for other tissues. The inhibition is found to be of incompetitive character Ki for p-aminobenzoic acid hidrazide being equal to 3.2 microM.  相似文献   

14.
The role of estradiol receptor was studied in the inhibitory effect of hormone on the cyclic nucleotide phosphodiesterase from immature Wistar rat uterus. It was shown that the preparative separation of the enzyme and hormone receptor by ultracentrifugation in isokinetic sucrose density gradient results in a 2.5-3-fold decrease of the estradiol effect on phosphodiesterase. This effect is completely restored after adding the separated estradiol receptor to the phosphodiesterase devoid of it. The effect of estradiol on the phosphodiesterase activity depends on a degree of receptor component aggregation: the action of estradiol on the enzyme intensities after transformation of receptor into the dissociated form (4S) and removes in the presence of the receptor component associated form (8S).  相似文献   

15.
Peptide mapping of multiple forms of cyclic nucleotide phosphodiesterase   总被引:2,自引:0,他引:2  
Purified multiple forms of 3':5'-cyclic-nucleotide phosphodiesterase (EC 3.1.4.17) were analyzed using two-dimensional tryptic pep]tide mapping of radioiodinated peptides. Comparisons of peptide maps of rat liver insulin-sensitive phosphodiesterase (PDE) with rat brain calmodulin-sensitive PDE suggest that some peptides co-migrate (31-43% co-migration). However, except for a single peptide, bovine retinal rod outer segment PDE, peptide maps appear unrelated to the other two forms (7-12% co-migration). In contrast, peptide maps of a 36,000-dalton proteolysis product of calmodulin-sensitive PDE are highly related to the peptide maps of a rat brain calmodulin-sensitive holoenzyme (73% co-migration). These results suggest that the multiple PDE forms are distinct molecular entities.  相似文献   

16.
In murine thymocytes cyclic nucleotide phosphodiesterase is represented by cAMP- and cGMP-specific forms. cAMP and cGMP phosphodiesterase activities showed anomalous kinetic behaviour indicative of 'low' and 'high' affinity enzyme forms. Sucrose density gradient centrifugation resolved only 'low' affinity forms of cAMP and cGMP phosphodiesterases. Gel filtration on Ultragel Aca 34 column showed that cAMP and cGMP phosphodiesterases are probably oligomeric enzymes. Storage of enzyme preparation at 4 degrees C for 24-48 h led to a decrease of higher molecular weight form and enhancement of cAMP and cGMP phosphodiesterase activities.  相似文献   

17.
The cell-cycle-related activities of the cAMP- and cGMP-dependent phosphodiesterases of Physarum polycephalum were assayed. The activities of plasmodial homogenate and of selected subcellular fractions were measured. The results suggested the presence of both cAMP- and cGMP-dependent phosphodiesterase in the isolated nuclei of P. polycephalum. In addition, they reveal that the cAMP- and cGMP-dependent phosphodiesterase activities of the subcellular fractions fluctuate throughout the cell cycle. The whole-cell homogenates exhibit no cell-cycle-related changes in the presence of 5 X 10(-4) M cGMP. Kinetic data suggest the presence of multiple phosphodiesterase activities in the homogenate and its particulate fractions for the cGMP-dependent enzyme. Multiple cAMP activities are also suggested for the particulate fractions. The Km values indicate that the substrate affinities of the phosphodiesterases from P. polycephalum are similar to those found previously in mammalian systems.  相似文献   

18.
19.
Cyclic nucleotide phosphodiesterase (3',5'-cyclic nucleotide nucleotidohydrolase, EC 3.1.4.17) activity isolated from Phaseolus vulgaris L. cv. Limberg seedlings was partially purified and characterized by fractional (NH4)2SO4 precipitation, DEAE-cellulose chromatography, chromatography on 3',5'-cAMP-agarose, gel permeation chromatography and chromatofocusing. A crude enzyme preparation, a 30–65% (NH4)2SO4 pellet, showed an acidic pH optimum. The enzyme activity was stimulated by imidazole and divalent cations such as Ca2+, Mg2+ and Mn2+, whereas NaF, PPi and Fe3+ were inhibitory. Isobutylmethylxanthine had no significant effect on the plant enzyme. An MI of 42 000 was estimated by gel permeation high performance liquid chromatography. By chromatography on 3',5'-cAMP-agarose a phosphodiesterase was resolved that produced 5'-AMP as sole reaction product.  相似文献   

20.
Bovine brain contains two major calmodulin (CaM) dependent phosphodiesterase isozymes which are homodimeric proteins with subunit molecular masses of 60 and 63 kilodaltons (kDa), respectively. The 60-kDa subunit isozyme can be phosphorylated by cAMP-dependent protein kinase, resulting in a decrease in the enzyme affinity towards CaM. The phosphorylation is blocked by Ca2+ and CaM and reversed by the CaM-stimulated phosphatase (calcineurin). The 63-kDa subunit isozymes can also be phosphorylated, but in this case by a CaM-dependent protein kinase(s). This phosphorylation is also accompanied by a decrease in the isozyme affinity towards CaM and can be reversed by the CaM-dependent phosphatase. Analysis of the complex regulatory properties of the phosphodiesterase isozymes has led to the suggestion that fluxes of cAMP and Ca2+ during cell activations are closely coupled and that the CaM-dependent phosphodiesterase isozymes play key roles in this signal coupling phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号