首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many sea urchin genera exhibit cryptic covering behaviors. One such behavior has been documented in the sea urchin Tripneustes gratilla, and previous studies have theorized that this behavior serves as protection from UV radiation. However, other hypotheses have been presented such as protection from predators or added weight to help T. gratilla resist strong currents. A field study was conducted in October-November 2015 in Moorea, French Polynesia to assess urchin covering behavior in natural habitats. The study found that urchins partially underneath rocks covered more, and with more algae, than urchins totally underneath rocks. To test if this behavior was driven by light intensity, a series of 30-minute experimental trials were run on 10 individuals in bright and dim conditions. Individuals were given red and clear plastic, and percent cover of each was recorded. These tests were repeated once fifty percent of spines had been removed from the urchin, in order to determine whether spine loss affects T. gratilla covering behavior. The study found that urchins had a distinct preference for cover that best protects them from UV radiation. Spine loss did not significantly affect urchin ability to cover, and urchins with removed spines still preferred opaque cover. Additionally, covering behavior was mapped onto a phylogeny of echinoderms to determine how it might have evolved. Understanding urchin covering behavior more fully is a step towards an understanding of the evolution of cryptic behavior across species.  相似文献   

2.
3.
The appearance, in situ activity and structure of the primary spines of the two deep sea echinothuriid sea urchins Phormosoma placenta and Araeosoma belli are described with particular reference to the unusual, fleshy, aboral spines. Oral primary spines of both species are clearly but differently adapted for movement over soft substrata. The aboral spines of both species bear fleshy extensions which are composed of gelatinous material in both species and are not poison sacs. Field experiments showed that the fleshy parts of the aboral spines of P. placenta are palatable to shallow-water fish. However, the aboral spines are shown to have stored within the hollow ossicle of the spine secretory material likely to be irritant in function. The structure of the tip of the spine ossicle of both species suggests that they may act like hypodermic needles. We conclude that the aboral spines of both species are probably defensive in function but remain equivocal over the exact role of the massive fleshy extensions found in P. placenta. Other possible non-defensive functions are briefly discussed.  相似文献   

4.
Growth of the skeleton of regenerating spines of the sea urchin, Strongylocentrotus purpuratus, was studied with the light and scanning electron microscopes during the formation of a growth ring or cycle. Growth was initiated about three days after fracture and was linear between 5 and about 40 days after fracture, with a mean rate of 0.16 mm/day. There-after, a decline in growth rate was observed, being attributed to abrasion. The new skeleton first appeared as minute, conical ?micro-spines”? on the fractured surface of the spine shaft initiating regeneration of the inner zone of meshwork. Subsequent growth of micro-spines of both the developing inner zone of meshwork, and an outer zone of radiating wedges, formed a conical fenestrated skeleton on the fractured surface of the shaft. Further deposition of micro-spines along the shaft, initially at the level of fracture, formed meshwork which gradually became solidified externally resulting in a new cycle about 60 days after fracture. In contrast, a new cycle was initiated at the milled ring in non-fractured spines during total regeneration on bare tubercles, demonstrating that growth of spines also takes place in the absence of fracture. Experiments conducted in vitro demonstrate that spine regeneration is not a polar phenomenon.  相似文献   

5.
The spines of pencil and lance urchins Heterocentrotus mammillatus and Phyllacanthus imperialis were studied as a modelof light-weight material with high impact resistance.The complex and variable skeleton construction ("stereom") of body andspines of sea urchins consists of highly porous Mg-bearing calcium carbonate.This basically brittle material with pronouncedsingle-crystal cleavage does not fracture by spontaneous catastrophic device failure but by graceful failure over the range of tensof millimeter of bulk compression instead.This was observed in bulk compression tests and blunt indentation experiments onregular,infiltrated and latex coated sea urchin spine segments.Microstructural characterization was carried out using X-raycomputer tomography,optical and scanning electron microscopy.The behavior is interpreted to result from the hierarchicstructure of sea urchin spines from the rnacroscale down to the nanoscale.Guidelines derived from this study see ceramics withlayered porosity as a possible biomimetic construction for appropriate applications.  相似文献   

6.
Echinoderms represent a phylum with exceptional regenerative capabilities that can reconstruct both external appendages and internal organs. Mechanistic understanding of the cellular pathways involved in regeneration in these animals has been hampered by the limited genomic tools and limited ability to manipulate regenerative processes. We present a functional assay to investigate mechanisms of tissue regeneration and biomineralization by measuring the regrowth of amputated tube feet (sensory and motor appendages) and spines in the sea urchin, Lytechinus variegatus. The ability to manipulate regeneration was demonstrated by concentration-dependent inhibition of regrowth of spines and tube feet by treatment with the mitotic inhibitor, vincristine. Treatment with the gamma-secretase inhibitor DAPT resulted in a concentration-dependent inhibition of regrowth, indicating that both tube feet and spine regeneration require functional Notch signaling. Stem cell markers (Piwi and Vasa) were expressed in tube feet and spine tissue, and Vasa-positive cells were localized throughout the epidermis of tube feet by immunohistochemistry, suggesting the existence of multipotent progenitor cells in these highly regenerative appendages. The presence of Vasa protein in other somatic tissues (e.g. esophagus, radial nerve, and a sub-population of coelomocytes) suggests that multipotent cells are present throughout adult sea urchins and may contribute to normal homeostasis in addition to regeneration. Mechanistic insight into the cellular pathways governing the tremendous regenerative capacity of echinoderms may reveal processes that can be modulated for regenerative therapies, shed light on the evolution of regeneration, and enable the ability to predict how these processes will respond to changing environmental conditions.  相似文献   

7.
Joe  Ghiold 《Journal of Zoology》1983,200(3):405-419
The action of the aboral podia is one of the key factors controlling the wide distribution of the clypeasteroid Echinarachnius parma. According to field and laboratory studies (Gulf of Maine), E. parma gathers and selects food primarily from its aboral surface, which is naturally orientated just below the nutrient rich, uppermost sediment layer. Compared to Mellita , wider spacing between the aboral spines in E. parma permits silt and larger particles to be ingested and the action of podia allows it to burrow, and thus gather food, in a wider range of sediments. The broad ecologic tolerance of E. parma rather than specialization, facilitated the biological success of this species. The variation in arrangement of podia on the tests of clypeasteroids suggests interspecific differences in feeding and burrowing strategy.  相似文献   

8.
Rich Mooi 《Zoomorphology》1986,106(4):212-223
Summary Histological and ultrastructural techniques have been used to describe the functional morphology of clypeasteroid miliary spines, with special reference to their supposed mucus-secreting role. Mucus cells were not found in the miliary spines of any members of the Arachnoididae, Fibulariidae, Laganidae, Echinarachniidae, Dendrasteridae, Astriclypeidae, or Mellitidae examined in this study. Only members of the Clypeasteridae have mucus-secreting cells in these spines. Characteristics of the skeleton, ultrastructure of the nervous system, and histology of the musculature and epithelia of the base, shaft and tip are also discussed. Miliary spines have two bands of cilia running along the entire length of opposite sides of the shaft. The geometric packing of cilium-bearing cells in these bands is described for the first time, as is the remarkable form of the sacs found at the tips of dendrasterid, astriclypeid, and mellitid miliary spines. These sacs are definitely not mucous sacs, as previously described, but are balloons of single-celled epithelium internally tethered to the skeletal tip by copious quantities of collagenous connective tissue. Miliary spines prevent obstruction of aboral nutritive and ventilatory ciliary currents caused by substrate particles falling to the test surface during burrowing. They do this in two ways: (1) they help generate ciliary currents that sweep finer material off the test, and (2) they contribute to the formation of a spine canopy that mechanically blocks larger particles from falling between the spines. Members of the Clypeasteridae secrete an interspine mucous tent that traps potentially clogging material. The miliary spine sacs of sand dollars are deformable space-fillers that plug holes between primary spines in the aboral canopy, even as the spines rock on their tubercles to push sand backwards over the test. Allometry of spines from Echinarachnius parma suggests that aboral military spines and club-shaped spines exhibit co-ordinated growth that maintains the aboral canopy throughout post-metamorphic ontogeny, and that aboral spins have an overall lower growth rate than spines on the oral surface.  相似文献   

9.
The skeleton of spines and tests of the species of sea urchins Strongylocentrotus intermedius, Mesocentrotus nudus, Scaphechinus mirabilis, and Echinocardium cordatum from the Sea of Japan is composed of a spongy stereom, consisting of calcite with a high content of magnesium. It was found that the tests and spines of the skeletons of sea urchins are composed of calcium–organic composite materials inlaid with other metals: Mg, Fe, Zn, and Rb. In the four species of sea urchins studied, the strength and other mechanical properties of the tests and spines differ and depend on the chemical composition and structural organization of their components. It was shown that the content of volatile substances correlates with their fragility or elasticity. It is revealed that the chemical composition of the tests of two species of the spherical sea urchins S. intermedius and M. nudus indicates significant differences between these two species of sea urchins.  相似文献   

10.
Development of dendritic spines is important for synaptic function, and alteration in spine morphogenesis is often associated with mental disorders. Rich2 was an uncharacterized Rho-GAP protein. Here we searched for a role of this protein in spine morphogenesis. We found that it is enriched in dendritic spines of cultured hippocampal pyramidal neurons during early stages of development. Rich2 specifically stimulated the Rac1 GTPase in these neurons. Inhibition of Rac1 by EHT 1864 increased the size and decreased the density of dendritic spines. Similarly, Rich2 overexpression increased the size and decreased the density of dendritic spines, whereas knock-down of the protein by specific si-RNA decreased both size and density of spines. The morphological changes were reflected by the increased amplitude and decreased frequency of miniature EPSCs induced by Rich2 overexpression, while si-RNA treatment decreased both amplitude and frequency of these events. Finally, treatment of neurons with EHT 1864 rescued the phenotype induced by Rich2 knock-down. These results suggested that Rich2 controls dendritic spine morphogenesis and function via inhibition of Rac1.  相似文献   

11.
Defensive delicacies: Sea urchins and their predators in the Mediterranean Sea Despite their various defense mechanisms, sea urchins always attract predators that are able to counter these mechanisms. In the Mediterranean Sea, these predators are often invertebrates, such as gastropods, decapods, and seastars, but also fish, including sea breams. Cassid gastropods use mucus to agglutinate the defensive spines and pedicellaria, and drill the calcareous tests with the aid of sulfuric acid. Large crustaceans, such as spiny lobsters and spider crabs, crush the tests of sea urchins with their armored claws and walking legs. Starfish ingest small sea urchins completely, or evert their stomachs to digest the urchins extra‐intestinally. Fish, especially sea breams, first bite off the spines and then crush the urchins test with their specialized teeth. In some cases, recognizable traces, like drill holes, scratch marks, indentations, or breakage patterns remain on the urchins hard parts allowing these events to be reconstructed in the fossil record.  相似文献   

12.
Summary Population dynamics of the epizoic bivalve Lissarca notorcadensis living on spines of cidaroid sea urchins in the Weddell Sea were investigated. Total production (somatic & gonad) of the suspension feeding bivalve ranged between 16.5 and 487.4 mg AFDM y–1 per sea urchin. Annual sedimentation rates are not sufficient to maintain the production of the Lissarca sub-populations carried by the sea urchins, and resuspension of organic matter is most likely to be an important food source. The ratio of the number of freshly settled juveniles to the number of embryos brooded is between 0.054 and 0.207 and seems negatively related to the biomass already present, indicating intraspecific competition for space. Interspecific competition for space is caused by the strong preference of L. notorcadensis as well as other epizoa (colonial anthozoans and bryozoans) for the spines located on the aboral hemispere of the sea urchins.AWI Publication No. 572  相似文献   

13.
14.
Adult tissues of the sea urchin, Strongylocentrotus purpuratus, were analyzed for the products of a set of genes whose expression, in the embryo, is restricted to the skeletogenic primary mesenchyme (PM). Three embryonic PM-specific mRNAs were found to be abundant in adult skeletal tissues (test and lantern), but not in a variety of soft tissues. Homologous mRNAs were also found in skeletal tissues of the congeneric sea urchin, S. droebachiensis, as well as a more distantly related echinoid, Dendraster excentricus, and an asteroid, Evasterias troschellii. The distributions of two of these RNAs were analyzed in regenerating spines of adult S. purpuratus using in situ hybridization. These gene products were localized primarily in the calcoblasts that accumulated at the regeneration site. In nonregenerating spines SpLM 18 RNAs, the most abundant of these gene products, were localized in a small population of noncalcoblast cells scattered through the spine shaft, and were absent from calcoblasts. These observations suggest that a program of gene expression associated with the process of calcification is conserved both developmentally through the period of metamorphosis and evolutionarily among the echinoderms.  相似文献   

15.
16.
Gerres infasciatus sp. nov. is described from the holotype and two paratypes, 125–140 mm in standard length (SL), collected off Samut Prakan, northern Gulf of Thailand. The species is similar toG. filamentosus Cuvier andG. macracanthus Bleeker in general appearance, having an elongated second dorsal fin spine, but differs from them in having 39 or 40 pored lateral line scales, the first and second soft dorsal fin ray tips yellow in fresh specimens, a narrow, faint dusky-yellowish margin on the upper membrane of the spinous dorsal fin (between 4th–9th spines), the distal part of the pelvic fin (between 1st–5th soft rays) white for 1/3–1/2 of each ray length (lost after preservation), bands absent on the body in both fresh and preserved specimens, a smaller orbit diameter (11.4–12.4% of SL), a longer second dorsal fin spine (48.0–68.9% of SL), and shorter second and third anal fin spines (10.7–11.2% and 10.4–11.3% of SL), respectively.  相似文献   

17.
Summary Shoot tips, of four potato cultivars (Désirée, Genet, Tigoni, and Tomensa), 3–4 mm in size, were precultured for 2 d on Murashige and Skoog (MS) solid medium, then encapsulated in calcium alginate to produce hollow bead synthetic seed capsules averaging 0.78 cm in diameter. Regeneration and ‘regrowth’ were tested on MS solid medium and on soil in the greenhouse, respectively. The encapsulated shoot tips were stored at 4 and 10°C for up to 390 d. For all cultivars, the encapsulated shoot tips stored at both temperatures for 180 d and at 4°C,for 270 d, 100% regeneration on MS solid medium was recorded. After 360 d in storage at 4°C, 70.8% (Tigoni), 66.7% (Genet), 58.3% (Désirée), and 51.5% (Tomensa) regeneration was recorded on MS medium, reducing to 15% (Tigoni), 25% (Genet), 10% (Désirée), and 0% (Tomensa) regeneration after 390 d in storage. ‘Regrowth’ of 93–100% was recorded for non-stored encapsulated shoot tips, directly transferred on soil in the greenhouse after a 2 wk preculture on MS solid medium with an added fungicide (carbendazim) in the encapsulating gel. The ‘regrown’ shoot tips produced plants showing normal development. The results presented here demonstrate that hollow bead synthetic seed capsules are an alternative propagating method for potato seed production.  相似文献   

18.
The compensatory effects of gravitation at early stages of embryonic development have been investigated using the slow clinorotation of embryoid bodies generated from R1 mouse embryonic stem cells. An analysis of semithin sections (1–2μm) and an electron microscopy study of embryoid bodies revealed cells at different stages of maturation. A significant decrease (compared to the control) in embryonic stem cells undergoing apoptosis, as well as in noticeably reduced hollow areas, were found in clinorotated embryonic bodies. We propose that the lack of large cysts may be caused by the delay in initial differentiation and morphogenesis stages associated with autophagy processes in embryonic bodies.  相似文献   

19.
Excitatory synapses in the brain play key roles in learning and memory. The formation and functions of postsynaptic mushroom-shaped structures, dendritic spines, and possibly of presynaptic terminals, rely on actin cytoskeleton remodeling. However, the cytoskeletal architecture of synapses remains unknown hindering the understanding of synapse morphogenesis. Using platinum replica electron microscopy, we characterized the cytoskeletal organization and molecular composition of dendritic spines, their precursors, dendritic filopodia, and presynaptic boutons. A branched actin filament network containing Arp2/3 complex and capping protein was a dominant feature of spine heads and presynaptic boutons. Surprisingly, the spine necks and bases, as well as dendritic filopodia, also contained a network, rather than a bundle, of branched and linear actin filaments that was immunopositive for Arp2/3 complex, capping protein, and myosin II, but not fascin. Thus, a tight actin filament bundle is not necessary for structural support of elongated filopodia-like protrusions. Dynamically, dendritic filopodia emerged from densities in the dendritic shaft, which by electron microscopy contained branched actin network associated with dendritic microtubules. We propose that dendritic spine morphogenesis begins from an actin patch elongating into a dendritic filopodium, which tip subsequently expands via Arp2/3 complex-dependent nucleation and which length is modulated by myosin II-dependent contractility.  相似文献   

20.
Dendritic spines are actin-rich structures, the formation and plasticity of which are regulated by the Rho GTPases in response to synaptic input. Although several guanine nucleotide exchange factors (GEFs) have been implicated in spine development and plasticity in hippocampal neurons, it is not known how many different Rho GEFs contribute to spine morphogenesis or how they coordinate the initiation, establishment, and maintenance of spines. In this study, we screened 70 rat Rho GEFs in cultured hippocampal neurons by RNA interference and identified a number of candidates that affected spine morphogenesis. Of these, Dock180, which plays a pivotal role in a variety of cellular processes including cell migration and phagocytosis, was further investigated. We show that depletion of Dock180 inhibits spine morphogenesis, whereas overexpression of Dock180 promotes spine morphogenesis. ELMO1, a protein necessary for in vivo functions of Dock180, functions in a complex with Dock180 in spine morphogenesis through activating the Rac GTPase. Moreover, RhoG, which functions upstream of the ELMO1/Dock180 complex, is also important for spine formation. Together, our findings uncover a role for the RhoG/ELMO1/Dock180 signaling module in spine morphogenesis in hippocampal neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号