首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report some of the neural and muscular circuitry that allows honeybees to control head movements. We studied neck motor neurons with cell bodies in the suboesophageal ganglion, axons in the first cervical nerve (IK1) and terminals in neck muscles 44 and 51 (muscle classification: Snodgrass in Smithsonian Misc Coll 103:1-120, 1942). We show that muscle 44 actually comprises five separate bundles of muscle fibres (subunits), while muscle 51 is split into two subunits. Eight motor neurons innervate muscles 44 and 51. Two motor neurons have cell bodies in the ventral-median cell body group (one innervates a subunit in muscle 44, the other a subunit in muscle 51). One motor neuron has a ventrally located contralateral cell body (innervating a subunit in muscle 44) and five have laterally located ipsilateral cell bodies. Of the five lateral cells, one innervates a subunit in muscle 51, three selectively innervate subunits in muscle 44 and one co-innervates a subunit in muscle 44 with the contralateral cell. Extracellular recordings revealed three types of visually driven, direction-selective cell-types in each IK1 tuned for leftward, rightward and downward motion over the eyes. The spatiotemporal tuning of the units is similar to that of other visual interneurons in the bee brain.  相似文献   

2.
Summary During sexual pursuit, male flies Sarcophaga bullata, stabilize the image of a pursued target on the dorso-frontal acute zone of their compound eyes. By retinotopic projection, this region is represented in the upper frontal part of the lobula where it is sampled by ensembles of male-specific motion- and flicker-sensitive interneurons. Intracellular recordings of descending neurons, followed by biocytin injection, demonstrate that male-specific neurons are dye-coupled to specific descending neurons and that the response characteristics of these descending neurons closely resemble those of male-specific lobula neurons. Such descending neurons are biocytin-coupled in the thoracic ganglia, revealing their connections with ipsilateral frontal nerve motor neurons supplying muscles that move the head and with contralateral basalar muscle motor neurons that control wing beat amplitude. Recordings from neck muscle motor neurons demonstrate that although they respond to movement of panoramic motion, they also selectively respond to movement of small targets presented to the male-specific acute zone. The present results are discussed with respect to anatomical and physiological studies of sex-specific interneurons and with respect to sex-specific visual behavior. The present study, and those of the two preceding papers, provide a revision of Land and Collett's hypothetical circuit underlying target localization and motor control in males pursuing females.  相似文献   

3.
Summary The highly mobile cyclopic compound eye of Daphnia magna is rotated by six muscles arranged as three bilateral pairs. The three muscles on each side of the head share a common origin on the carapace and insert dorsally, laterally and ventrally on the eye. The dorsal and ventral muscles are each composed of two muscle fibers and the lateral muscle is composed of from two to five fibers, with three the most common number. Individual muscle fibers are spindle-shaped mononucleated cells with organized bundles of myofilaments. Lateral eye-muscle fibers are thinner than those of the other muscles but are otherwise similar in ultrastructure. Two motor neurons innervate each dorsal and each ventral muscle and one motor neuron innervates each lateral muscle. The cell bodies of the motor neurons are situated dorsally in the supraesophageal ganglion (SEG) and are ipsilateral to the muscles they innervate. The dendritic fields of the dorsal-muscle motor neurons are ipsilateral to their cell bodies; those of the ventral-muscle motor neurons are bilateral though predominantly contralateral. The central projections of the lateral-muscle motor neurons are unknown. In the dorsal and ventral muscles one motor axon synapses principally with one muscle fiber; in each lateral muscle the single motor axon branches to, and forms synapses with, all the fibers. The neuromuscular junctions, characterized by pre- and postsynaptic densities and clear vesicles, are similar in all the eye muscles.  相似文献   

4.
Global visual motion elicits an optomotor response of the eye that stabilizes the visual input on the retina. Here, we analyzed the neck motor system of the blowfly to understand binocular integration of visual motion information underlying a head optomotor response. We identified and characterized two cervical nerve motor neurons (called CNMN6 and CNMN7) tuned precisely to an optic flow corresponding to pitch movements of the head. By means of double recordings and dye coupling, we determined that these neurons are connected ipsilaterally to two vertical system cells (VS2 and VS3), and contralaterally to one horizontal system cell (HSS). In addition, CNMN7 turned out to be connected to the ipsilateral CNMN6 and to its contralateral counterpart. To analyze a potential function of this circuit, we performed behavioral experiments and found that the optomotor pitch response of the fly head was only observable when both eyes were intact. Thus, this neural circuit performs two visuomotor transformations: first, by integrating binocular visual information it enhances the tuning to the optic flow resulting from pitch movements of the head, and second it could assure an even head declination by coordinating the activity of the CNMN7 neurons on both sides.  相似文献   

5.
Male silkworm moths, Bombyx mori, move their heads side-to-side during zigzag walking toward a source of sex pheromone. High-speed video analysis revealed that changes in walking direction were synchronized with this head turning. Thus the direction of the walking is indicated by the direction of the head turning. Head turning was regulated by neck motor neurons which innervate the cervical ventral muscles and the ventral muscles through the second cervical nerve. To determine the role of the `flipflop' state transition in spike activity carried by descending interneurons from the brain to the thoracic ganglion, we recorded pheromonal responses simultaneously from flipflop descending interneurons and a single cervical ventral 1 neck motor neuron. The activity of the cervical ventral 1 neck motor neuron was synchronized to that of the flipflop descending interneurons. The cervical ventral 1 neck motor neuron was morphologically identified using confocal imaging. Our results demonstrate that the flipflop signals play an important role in instructing turning signals during the pheromone-mediated behavior in a male B. mori. Accepted: 11 June 1998  相似文献   

6.
Summary In the fly, Calliphora erythrocephala, a cluster of three Y-shaped descending neurons (DNOVS 1–3) receives ocellar interneuron and vertical cell (VS4–9) terminals. Synaptic connections to one of them (DNOVS 1) are described. In addition, three types of small lobula plate vertical cell (sVS) and one type of contralateral horizontal neuron (Hc) terminate at DNOVS 1, as do two forms of ascending neurons derived from thoracic ganglia. A contralateral neuron, with terminals in the opposite lobula plate, arises at the DNOVS cluster and is thought to provide heterolateral interaction between the VS4–9 output of one side to the VS4–9 dendrites of the other. DNOVS 2 and 3 extend through pro-, meso-, and metathoracic ganglia, branching ipsilaterally within their tract and into the inner margin of leg motor neuropil of each ganglion. DNOVS 1 terminates as a stubby ending in the dorsal prothoracic ganglion onto the main dendritic trunks of neck muscle motor neurons. Convergence of VS and ocellar interneurons to DNOVS 1 comprises a second pathway from the visual system to the neck motor, the other being carried by motor neurons arising in the brain. Their significance for saccadic head movement and the stabilization of the retinal image is discussed.  相似文献   

7.
This study investigates the neuroanatomy of the defense gland and a related muscle in the stick insect Peruphasma schultei with axonal tracing and histological sections. The gland is innervated by three neurons through the Nervus anterior of the suboesophageal ganglion (SOG), the ipsilateral neuron (ILN), the contralateral neuron (CLN) and the prothoracic intersegmental neuron (PIN). The ILN has a large soma which is typical for motoneurons that cause fast contraction of large muscles and its dendrites are located in motor-sensory and sensory neuropile areas of the SOG. The CLN might be involved in the coordination of bilateral or unilateral discharge as its neurites are closely associated to the ILN of the contralateral gland. Close to the ejaculatory duct of the gland lies a dorsal longitudinal neck muscle, musculus pronoto-occipitalis (Idlm2), which is likely indirectly involved in gland discharge by controlling neck movements and, therefore, the direction of discharge. This muscle is innervated by three ventral median neurons (VMN). Thus, three neuron types (ILN, CLN, and PIN) innervate the gland muscle directly, and the VMNs could aid secretion indirectly. The cytoanatomy of motorneurons innervating the defense gland and neck muscle are discussed regarding the structure and functions of the neuropile in the SOG. As a basis for the neuroanatomical study on the defense gland we assembled a map of the SOG in Phasmatodea.  相似文献   

8.
For sensory signals to control an animal's behavior, they must first be transformed into a format appropriate for use by its motor systems. This fundamental problem is faced by all animals, including humans. Beyond simple reflexes, little is known about how such sensorimotor transformations take place. Here we describe how the outputs of a well-characterized population of fly visual interneurons, lobula plate tangential cells (LPTCs), are used by the animal's gaze-stabilizing neck motor system. The LPTCs respond to visual input arising from both self-rotations and translations of the fly. The neck motor system however is involved in gaze stabilization and thus mainly controls compensatory head rotations. We investigated how the neck motor system is able to selectively extract rotation information from the mixed responses of the LPTCs. We recorded extracellularly from fly neck motor neurons (NMNs) and mapped the directional preferences across their extended visual receptive fields. Our results suggest that-like the tangential cells-NMNs are tuned to panoramic retinal image shifts, or optic flow fields, which occur when the fly rotates about particular body axes. In many cases, tangential cells and motor neurons appear to be tuned to similar axes of rotation, resulting in a correlation between the coordinate systems the two neural populations employ. However, in contrast to the primarily monocular receptive fields of the tangential cells, most NMNs are sensitive to visual motion presented to either eye. This results in the NMNs being more selective for rotation than the LPTCs. Thus, the neck motor system increases its rotation selectivity by a comparatively simple mechanism: the integration of binocular visual motion information.  相似文献   

9.
The projections of nerves 6 and 7 of the locust suboesophageal ganglion (SOG) were stained by axonal filling with cobalt chloride. Nerve 6 contains two motoneurons which innervate neck muscles 50 and 51. Sensory neurons innervating hairs on the dorso-occipital region of the head also enter the ganglion through nerve 6 and terminate in a small bilateral plexus. The projections of the head hairs in nerve 6 do not overlap the arborizations of the motoneurons or the neurons of nerve 7, but lie in the same area as descending sensory neurons from wind-sensitive hairs of the front of the head. One branch of nerve 7 (7B) contains two fibres which innervate the salivary gland. These 'salivary' neurons (labelled SN1 and SN2) have their cell bodies in the ganglion. The second branch, 7A, contains sensory neurons from the submentum of the labium, which form four sensory plexuses, two dorsal and two ventral. The sensory plexuses from the submentum have specific regions of overlap with the salivary neurons and with the neck muscle motoneurons. We interpret these as indicating a flow of information from labial receptors signalling head and mouthpart movement to neurons involved in salivation and head movement. We further postulate that the anatomical separation of the various sensory plexuses is indicative of functional localization within the ganglion.  相似文献   

10.
We simultaneously investigated eye and head movements and postural adjustment during orienting by measuring load force exerted by four limbs in cats. When light is moved from the fixation point to the target position, the head first begins moving towards the target position, and the eye moves in the opposite direction due to the vestibulo-ocular reflex (VOR). Later, the eye moves quickly in the target direction by saccade, synchronous with the remaining rapid head orientation movement. Head movement is classified as either 'head rotation' or 'head translation'. During head rotation, the load force in ipsilateral limb to the target position decreased, and that in the contralateral limb increased. During head translation, on the contrary, load force in the ipsilateral limb increased and that in the contralateral limb decreased. This phenomenon was observed in fore- and hindlimbs. The latencies of head movement are very similar with those of the load force change in many trials, and in case in which the head movement has short latency, the amount of load force change is larger. In contrast, when head movement has long latency, the amount of load force change is smaller. In a previous study, we recorded two types of neurons from ponto-medullary reticular formation. The firing of these neurons was related with head movement. The cervical reticulospinal neuron (C-RSN) in ponto-medullary reticular formation got off collateral to both neck and forelimb motoneurons. These types were named phasic neuron (PN) and phasic sustained neuron (PSN). We discuss the relation between load changes and the two types of neurons and postural adjustment during orienting.  相似文献   

11.
1. Responses of motor neurons in larvae and pupae of Manduca sexta to stimulation of tactile sensory neurons were measured in both semi-intact, and isolated nerve cord preparations. These motor neurons innervate abdominal intersegmental muscles which are involved in the production of a general flexion reflex in the larva, and the closure reflex of the pupal gin traps. 2. Larval motor neurons respond to stimulation of sensory neurons innervating abdominal mechanosensory hairs with prolonged, tonic excitation ipsilaterally, and either weak excitation or inhibition contralaterally (Figs. 4A, 6). 3. Pupae respond to tactile stimulation of mechanosensory hairs within the gin traps with a rapid closure reflex. Motor neurons which innervate muscles ipsilateral to the stimulus exhibit a large depolarization, high frequency firing, and abrupt termination (Figs. 2, 4B). Generally, contralateral motor neurons fire antiphasically to the ipsilateral motor neurons, producing a characteristic triphasic firing pattern (Figs. 7, 8) which is not seen in the larva. 4. Pupal motor neurons can also respond to sensory stimulation with other types of patterns, including rotational responses (Fig. 3A), gin trap opening reflexes (Fig. 3B), and 'flip-flop' responses (Fig. 9). 5. Pupal motor neurons, like larval motor neurons, do not show oscillatory responses to tonic current injection, nor do motor neurons of either stage appear to interact synaptically with one another. Most pupal motor neurons also exhibit i-V properties similar to those of larval motor neurons (Table 1; Fig. 10). Some pupal motor neurons, however, show a marked non-linear response to depolarizing current injection (Fig. 11).  相似文献   

12.
H Bravo  O Inzunza 《Acta anatomica》1985,122(2):99-104
The topographic distribution of the neurones that innervate the muscles that advance the nictitating membrane in birds was studied using intra-axonal retrograde transport of horseradish peroxidase. The motor neurones are distributed in the oculomotor complex of the ipsilateral and contralateral sides. In the ipsilateral side, the neurones innervating the pyramidalis muscles were located in the dorsolateral, dorsomedial and ventromedial subnuclei, while those neurones innervating the quadratus muscle were found in the dorsomedial and dorsolateral subnuclei. In the contralateral side the neurones innervating both the pyramidalis and quadratus were distributed in the ventromedial and ventrolateral subnuclei. The sensory neurones were found in the trigeminal ganglion and trigeminal mesencephalic nucleus.  相似文献   

13.
Injections of horseradish peroxidase (HRP) were made into the ipsilateral temporal muscle and contralateral masseter muscle of 10 cats in order to identify and characterize neurons in the nucleus of the mesencephalic root of the trigeminal nerve that innervate muscle receptors in the orofacial periphery. Neurons labelled by HRP injections and unlabelled cells from 5 control cats were measured with a computer-based image analyzer, and their position was mapped on a stereotaxic graph. Cells that innervate the masseter and temporal muscles were identified throughout the rostrocaudal extent of the nucleus. There was no indication of a somatotopic pattern nor of a specific segregation within the nucleus for cells innervating muscle receptors. The nucleus contained small, rounded unipolar neurons located primarily in the dorsal border of the periaqueductal gray (PAG) matter in the rostral part of the nucleus and larger oval unipolar neurons which were scattered throughout the nucleus, but were predominant in the pontine portion of the nucleus. HRP injections labelled both large and small cells, as well as occasional multipolar cells. The last-mentioned tended to be located in the lateral margins of the PAG. The mean geometric values obtained for the control group were: area 552.7 microns2 perimeter 110.3 microns; maximum diameter 36.0 microns. and diameter of an equivalent circle 26.1 microns. The mean values of the labelled neurons were: area 606.6 microns2; perimeter 100.1 microns; maximum diameter 36.0 microns, and diameter of an equivalent circle 27.2 microns.  相似文献   

14.
The activity of neck-muscle motoneurones which control head movements during eye cleaning behaviour was recorded from motor nerves with chronically implanted electrodes in unrestrained crickets. We show that motoneurones of the dorso-ventral muscles displayed strong activity differences between both sides of the neck, with higher discharge frequencies either ipsi- or contralateral to the direction of the head movement. Motoneurones innervating dorsal-longitudinal muscles were equally active on both sides. A single excitatory motoneurone of one dorso-ventral muscle showed a discharge pattern unequivocally related to eye cleaning. Lesions of connectives revealed that this motoneurone is monitored by interneuronal pathways from the suboesophageal ganglion although the primary sensory axons eliciting eye cleaning, project into the prothoracic ganglion.  相似文献   

15.
在蜜蜂被刺激眼的同侧视叶内记录方向选择前进和后退水平运动灵敏的细胞反应。水平前进运动灵敏细胞对同侧前进运动的反应为很强的兴奋和去极化,以及去极化伴随有锋电位发放,同侧的后退运动引起抑制和超极化。在仅刺激对侧眼时,发放的频率不依赖于运动。水平后奶退运动灵敏的细胞对同侧水平后退运动反应出很强的兴奋和去极化,其去极化上伴随有锋电位发放,锋电位达不到零电位而且在其终点没有回射,同侧的前进运动几乎没有反应。  相似文献   

16.
  1. GABA, ACh, and other agents were applied by pressure ejection to the neuropil of the third abdominal ganglion in the isolated nerve cord of Manduca sexta. Intersegmental muscle motor neurons with dendritic arborizations in the same hemiganglion were inhibited by GABA (Fig. 2) and excited by ACh (Fig. 5).
  2. Picrotoxin was a potent antagonist of GABA (Fig. 4A). Bicuculline reduced GABA responses in some motor neurons (Fig. 4C), but had no effect on many other motor neurons. Curare reduced ACh responses (Fig. 6A). Bicuculline was an effective ACh antagonist in most motor neurons tested (Fig. 6B).
  3. Motor neurons with dendrites across the ganglion from the ejection pipette exhibited different responses to GABA and ACh. Contralateral motor neurons often showed smaller, delayed hyperpolarizing GABA responses (Fig. 7). On two occasions, contralateral motor neurons had excitatory responses (Fig. 8). Contralateral motor neurons were hyperpolarized by ACh (Fig. 9). The inhibitory responses had only slightly longer latencies than ipsilateral excitatory ACh responses (Fig. 10A). The contralateral inhibitory ACh responses, but not the ipsilateral excitatory ACh responses, were eliminated by TTX (Fig. 10B).
  4. A model, which includes inhibitory interneurons that cross the ganglionic midline to inhibit their contralateral homologs and motor neurons (Fig. 11), is proposed to account for contralateral responses to GABA and ACh and antagonistic patterns of activity of motor neurons during mechanosensory reflex responses.
  相似文献   

17.
Three theories have been suggested as to the cause of space motion sickness: 1) eye and vestibular sensory mismatch, 2) abnormal shift of body fluids producing increased intracranial pressure and 3) pre-warning signals for unpleasant physical situations by self-produced neurotoxic substances released in the body. We are interested in the possible functional disabilities/incongruities of eye, head and body movements in 0-G. Space motion sickness might be explained from the viewpoint of lack of coordination of the movements of the eye and head. It is important to ascertain the significance of gravity in the maintenance of human visual stability. We will examine the coordination of Japanese Payload Specialist (JPS) eye and head movement by electrooculogram and neck muscle electromyogram recordings, as well as obtaining a subjective evaluation of visual stability from the PS during space flight. We hypothesize that 1) poor performance of the eye movement will be observed, 2) unusual neck muscle activity will be observed and 3) there will be decreased visual stability in micro gravity. We obtained all digital data and VCR taped image data in [TEXT MISSING]  相似文献   

18.
Cervical spine injuries often happen in dynamic environments (e.g., sports and motor vehicle crashes) where individuals may be moving their head and neck immediately prior to impact. This motion may reposition the cervical vertebrae in a way that is dissimilar to the upright resting posture that is often used as the initial position in cadaveric studies of catastrophic neck injury. Therefore our aim was to compare the “neutral” cervical alignment measured using fluoroscopy of 11 human subjects while resting in a neutral posture and as their neck passed through neutral during the four combinations of active flexion and extension movements in both an upright and inverted posture. Muscle activation patterns were also measured unilaterally using surface and indwelling electromyography in 8 muscles and then compared between the different conditions. Overall, the head posture, cervical spine alignment and muscle activation levels were significantly different while moving compared to resting upright. Compared to the resting upright condition, average head postures were 6–13° more extended, average vertebral angles varied from 11° more extended to 10° more flexed, and average muscle activation levels varied from unchanged to 10% MVC more active, although the exact differences varied with both direction of motion and orientation. These findings are important for ex vivo testing where the head and neck are statically positioned prior to impact – often in an upright neutral posture with negligible muscle forces – and suggest that current cadaveric head-first impact tests may not reflect many dynamic injury environments.  相似文献   

19.
A loss of about half of the trochlear motor neurons occurs during the course of normal development in duck and quail embryos. The role of the size of the target muscle in controlling the number of surviving motor neurons was examined by making motor neurons innervate targets either larger or smaller in size than their normal target. In one experiment the smaller trochlear motor neuron pool of the quail embryo was forced to innervate the larger superior oblique muscle of the duck embryo. This was accomplished by grafting the midbrain of a quail embryo in the place of the midbrain of a duck embryo. Results indicated that no additional quail trochlear motor neurons were rescued in spite of a considerable increase in target size. In another experiment the larger trochlear motor neuron pool of the duck embryo was made to innervate the smaller superior oblique muscle of the quail embryo. This resulted in loss of some additional neurons; however, the number of surviving motor neurons was not proportionate to the reduction in target size. These experiments failed to provide support for the hypothesis that the size of the target muscle controls the number of surviving motor neurons. Although contact with target is necessary for survival of neurons, factors other than the number or size of target cells are involved in the control of motor neuron numbers during development.  相似文献   

20.
To elucidate neural mechanisms underlying walking and jumping in insects, motor neurons supplying femoral muscles have been identified mainly in locusts and katydids, but not in crickets. In this study, the motor innervation patterns of the metathoracic flexor and extensor tibiae muscles in the cricket, Gryllus bimaculatus were investigated by differential back-fills and nerve recordings. Whereas the extensor tibiae muscle has an innervation pattern similar to that of other orthopterans, the flexor has an innervation unique to this species. The main body of the flexor muscle is divided into the proximal, middle and distal regions, which receive morphologically unique terminations from almost non-overlapping sets of motor neurons. The proximal region is innervated by about 12 moderate-sized excitatory motor neurons and two inhibitory neurons while the middle and distal regions are innervated by three and four large excitatory motor neurons, respectively. The most-distally located accessory flexor muscle, inserting on a common flexor apodeme with the main muscle, is innervated by at least four small excitatory (slow-type) and two common inhibitory motor neurons. The two excitatory and two inhibitory motor neurons that innervate the accessory flexor muscle also innervate the proximal bundles of the main flexor muscle. This suggests that the most proximal and distal parts of the flexor muscle participate synergistically in fine motor control while the rest participates in powerful drive of tibial flexion movement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号