首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We hypothesized that native Leptodora kindtii would be shorter and have smaller feeding baskets in central Ontario lakes with greater abundances of small-bodied zooplankton prey, and that differences in zooplankton size among lakes could be attributed to the invasive cladoceran Bythotrephes longimanus. We evaluated these conjectures by comparing size metrics of Leptodora and the size of their preferred cladoceran prey in lakes invaded or not by Bythotrephes. Leptodora was less abundant in invaded lakes, but were smaller bodied with smaller feeding baskets only in lakes with long invasion histories. Small cladoceran abundance was greater in non-invaded lakes and was directly related to Leptodora abundance although not to Leptodora size. Mean Leptodora body size declined with increasing abundance of Bythotrephes. We evaluated three possible explanations for these patterns in Leptodora—(a) competition with Bythotrephes for zooplankton prey, (b) direct predation by Bythotrephes, and (c) size-selective predation by fish. While we were unable to unequivocally distinguish among these hypotheses, our observations are most consistent with predation by Bythotrephes changing zooplankton community composition and size structure in a manner that is detrimental to Leptodora. Our results indicate that Bythotrephes invasion may trigger more complex and subtle changes in food webs than previously thought.  相似文献   

2.
As a recent invader of North American lakes, Bythotrephes longimanus has induced large changes in crustacean zooplankton communities through direct predation effects. Here we demonstrate that Bythotrephes can also have indirect food web effects, specifically on rotifer fauna. In historical time series data, the densities of the colonial rotifer Conochilus unicornis significantly increased after Bythotrephes invasion in Harp Lake, Ontario. No such changes were observed in a non-invaded reference lake, the nearby Red Chalk Lake. Evidence for two mechanisms explaining the Conochilus increase was examined based on changes to the crustacean zooplankton community over time. Rapid and severe declines in several herbivorous species of cladoceran zooplankton after Bythotrephes detection indicated a decrease in exploitative competition pressure on Conochilus. Secondly, a later and significant decline to virtual extinction of native invertebrate predators (Mesocyclops and Leptodora) could account for the observed Conochilus increase which also began 1–2 years after invasion by Bythotrephes. Ultimately, it appears that both reduced competition followed by a loss of native invertebrate predators were necessary to lead to the large Conochilus densities observed following invader establishment. From this analysis of long-term community data, it appears that Bythotrephes has important indirect, as well as direct, food web effects in newly invaded North American lakes with implications for trophic relationships.  相似文献   

3.
We estimated the effects of Bythotrephes longimanus invasion on the trophic position (TP) of zooplankton communities and lake herring, Coregonus artedi. Temporal changes in lacustrine zooplankton communities following Bythotrephes invasion were contrasted with non-invaded reference lakes, and along with published information on zooplankton and herring diets, formed the basis of estimated changes in TP. The TP of zooplankton communities and lake herring increased significantly following the invasion of Bythotrephes, whereas TP in reference lakes decreased (zooplankton) or did not change significantly (lake herring) over a similar time frame. Elevated TP following Bythotrephes invasion was most prominent in lakes that also supported the glacial relict, Mysis diluvania, suggesting a possible synergistic interaction between these two species on zooplankton community composition. Our analysis indicated that elevated TPs of zooplankton communities and lake herring are not simply due to the presence of Bythotrephes, but rather reflect changes in the zooplankton community induced by Bythotrephes; namely, a major reduction in the proportion of herbivorous cladoceran biomass and a concomitant increase in the proportion of omnivorous and/or predatory copepod biomass in invaded lakes. We demonstrated that increases in TP of the magnitude reported here can lead to substantial increases in fish contaminant concentrations. In light of these results, we discuss potential mechanisms that may be responsible for the disconnect between empirical and theoretical evidence that mid-trophic level species invasions (e.g., Bythotrephes) elevate contaminant burdens of consumer species, and provide testable hypotheses to evaluate these mechanisms.  相似文献   

4.
The abundance of the native, pelagic macroinvertebrate predator, Leptodora kindtii, is negatively correlated with the abundance of a new invasive competitor, Bythotrephes longimanus, in a small number of Canadian Shield lakes. However, we do not yet know if Bythotrephes is replacing Leptodora on a regional scale. We determined the distribution of both species in 166 lakes in the District of Muskoka, south-central Ontario, Canada—the watershed with the longest history and largest prevalence of Bythotrephes invasions in North America. The frequency of occurrence of Leptodora was substantially reduced (twofold) in the presence of Bythotrephes. We argue that Bythotrephes is responsible for this dramatic reduction in the frequency of occurrence of Leptodora. Lakes in which both species co-occurred could not be distinguished from invaded lakes without Leptodora, suggesting a pattern of species replacement at a watershed level. We believe this is the first account of the widespread replacement of a native, pelagic macroinvertebrate predator by Bythotrephes in North America, and it does not bode well for Leptodora given the rapid, ongoing spread of Bythotrephes.  相似文献   

5.
As exotic species are introduced and spread across a heterogeneous landscape, the abundance and richness of potential competitor and prey species they encounter will vary. Little is known about the interactions between Bythotrephes longimanus and native predatory macroinvertebrates (e.g., Mysis, Chaoborus), which potentially limit the establishment and spread of the invader. An 80-lake survey was conducted in the summer of 2007 to obtain macroinvertebrate abundances across invaded and non-invaded lakes. A subset (15) of these lakes was surveyed more intensively to obtain stratified daytime and night-time distributions of the organisms. Overall co-occurrence of Bythotrephes with native macroinvertebrate predators was widespread across lakes indicating that the presence of native macroinvertebrates alone is unlikely to limit the establishment of Bythotrephes. However, we did find an effect of native macroinvertebrate predators on the vertical distribution of Bythotrephes: as native macroinvertebrate abundances increased, the relative abundance of Bythotrephes in the epilimnion increased. Furthermore, the relative abundance of some zooplankton prey (e.g., Daphnia) was lower in the epilimnion when Bythotrephes abundance was high. Although we cannot rule out consumptive effects, some evidence suggests an avoidance behavioural response in the prey. While the underlying mechanisms of these distributional shifts remain unclear, our results suggest that interactions between Bythotrephes, native macroinvertebrates and zooplankton prey are complex, highlighting the need to further examine these interactions.  相似文献   

6.
Bythotrephes longimanus is an invasive pelagic crustacean, which first arrived in North America from Europe in early 1980s and can now be found throughout the Great Lakes and in many inland lakes and waterways. Determining the suitability of lakes to Bythotrephes establishment is an important step in quantifying its potential habitat range and environmental risk. Lake environmental conditions, planktivorous fishes, sport fishes and Bythotrephes occurrence data from 179 south-central Ontario lakes were used in this study to model lake characteristics suitable for its establishment. The performance of principal component analysis and different predictive models was used to determine the habitats that are suitable for the survival of Bythotrephes and the factors that may regulate its spread. Four modeling approaches were employed: linear discriminant analysis; multiple logistic regression; random forests; and, artificial neural networks. Ensemble prediction based on the four modeling approaches was also used as an indicator for predicting Bythotrephes occurrence. Bythotrephes appears to establish more readily in larger, deeper lakes with lower elevation, that have more sport fishes. Bythotrephes occurrence can be best predicted by artificial neural networks when including the measures of fish data, in addition to lake environmental data. Lake elevation, surface area and sport fish occurrence were ranked as the most important predictors of Bythotrephes invasion. The inclusion of biotic variables (occurrence or diversity of sport or planktivorous fishes) enhanced cross-validated models relative to analyses based on environmental data alone.  相似文献   

7.
Introduced predators have caused some of the largest documented impacts of non-native species. Interactions among predators can have complex effects, leading to both synergistic and antagonistic outcomes. Complex interactions with native predators could play an important role in mediating the impact of non-native predators. We explore the role of the native predator context on the effect of the introduced predatory cladoceran Bythotrephes longimanus. While post-invasion impacts have been well described, studies have largely ignored the role of native predators. We used a field mesocosm experiment to determine whether Bythotrephes’ impact on prey communities is influenced by the presence of the ubiquitous native predatory insect larvae Chaoborus. The two predators exhibited niche complementarity as no change in total zooplankton prey abundance was detected across predator treatments. Rather, copepod abundances increased with decreasing abundances of Chaoborus, while cladocerans decreased with increasing abundances of Bythotrephes. Thus, the replacement of Chaoborus with Bythotrephes led to changes in the overall community structure of the zooplankton prey, but had little effect on prey total abundance. More interestingly, we found evidence of biotic resistance of impact, that is, the impact of Bythotrephes on the cladoceran community was altered when the two predators co-occurred. Specifically, the predation effect of Bythotrephes was more restricted to the shallower regions of the water column in the presence of Chaoborus, leading to a reduced impact on deeper dwelling prey taxa. Overall, our results demonstrate that the native predator context is important when trying to understand the effect of non-native predators and that variation in native predator abundances and assemblages could explain variation in impact across invaded habitats.  相似文献   

8.
The ranges of three alien fish species (rotan Perccottus glenii, sunbleak Leucaspius delineatus, and bleak Alburnus alburnus) in the Ob River basin, West Siberia, have expanded. Our data prove the expansion of rotan and sunbleak ranges to the north. In particular, for the first time, populations of rotan are reported from the lower section of the Ob. We also present new data about range expansion of the studied fish species southward. All three species have probably reached the southern limits of their possible distribution in the Upper Ob system, entering the potamon/rhithron transition zone, because the species under study prefer lowland waters. The spatio-temporal dynamics of their expansion reveals the role of the Ob River as the main invasion corridor, enhancing their distribution mostly in meridional direction. In the system of the Upper Ob, rotan and sunbleak were found by us in isolated ponds and lakes, as well as in floodplain systems. This is in agreement with the concept of two invasion vectors: the translocation of fish by humans between water bodies and self-distribution along the river courses.  相似文献   

9.
Bythotrephes longimanus is an invertebrate predator that has invaded the North American Great Lakes and a number of inland lakes, where it preys on crustacean zooplankton. We examined the effect of Bythotrephes on two measures of ecosystem function during a four-month observational study of freshwater lakes on the boreal shield. Bythotrephes-invaded lakes had significantly lower epilimnetic zooplankton abundance and production compared to reference lakes. On average, Bythotrephes consumed 34% of zooplankton production when it was present in lakes. There was some evidence of changes in the timing of zooplankton production, as well as shifts to cooler, less productive habitats, which may lessen the overall effect of the invader on the transfer of energy to higher trophic levels. We experimentally demonstrated a weak trophic cascade where invader predation reduced zooplankton biomass, and subsequently increased phytoplankton growth. However, the response was small in magnitude and not biologically relevant at the whole lake-scale. The most conspicuous effect of Bythotrephes that we measured was a diversion of energy away from native predators at higher trophic levels. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Endosymbiotic bacteria that potentially influence reproduction and other fitness-related traits of their hosts are widespread in insects and mites and their appeal to researchers’ interest is still increasing. We screened 20 strains of 12 agriculturally relevant herbivorous and predatory mite species for infection with Wolbachia, Cardinium and Spiroplasma by the use of PCR. The majority of specimens originated from Austria and were field collected or mass-reared. Eight out of 20 strains (40%) tested, representing seven of 12 mite species (58%), carried at least one of the three bacteria. We found Wolbachia in the herbivorous spider mites Tetranychus urticae and Bryobia rubrioculus, with the former also carrying Spiroplasma and the latter also carrying Cardinium. Cardinium was furthermore found in two populations of the predatory mite Euseius finlandicus and the spider mite Eotetranychus uncatus. Spiroplasma was detected in the predatory mite Neoseiulus californicus. All bacteria positive PCR products were sequenced, submitted to GenBank and analyzed in BLAST queries. We found high similarities to complete identity with bacteria found in the same and different mite species but also with bacteria found in insect species like ladybirds, butterflies and minute pirate bugs, Orius. We discuss the significance of potential (multiple) infections with the investigated bacteria for biological control.  相似文献   

11.
12.
This is the first report of North American bullfrogs, Lithobates catesbeianus (=Rana catesbeiana), invasion in Uruguay. This Anura was introduced for farming proposes in 1987, but at present most of the farms are closed. At one of these closed farms, located at Rincón de Pando, Canelones, we report the occurrence of a feral population of L. catesbeianus. This invasion point is at an early stage and restricted to one or two ponds. We also report the effects of L. catesbeianus invasion in the community structure. This includes species composition and species size structure. In this system bullfrog tadpoles constitute a very important proportion of the present biomass. Bullfrog tadpoles appear to be displacing native amphibians and having some type of positive interaction with fishes. At the invaded system we found more fish species and larger sizes of the shared fish species. We analyze the involved risks of this invasion, the ecological impact by predation, the competition and habitat modification, and the potential of bullfrog to act as pathogens vector. We also recommend taking measures in order to avoid the expansion of this population. There is also the need of studies to search for new invasion points in Uruguay, especially where bullfrog farms were located.  相似文献   

13.
The distribution of Daphniaspecies in tropical Africa is poorly known and understood. Daphniaare assumed rare in tropical regions, but systematic studies covering large areas are sparse. We sampled the active community (live zooplankton) and/or the dormant community (diapausing egg banks in the sediment) of 41 standing water bodies in Kenya in search for Daphnia.Overall the dormant communities yielded 11 species of Daphnia, a species richness more than twice the species richness found in the active communities. Dormant community species diversity better reflects the spatial, and particularly the temporal (multi-annual) variation in environmental conditions available to Daphniain these tropical standing waters. Hence, we suggest that the dormant community be taken into account when assessing local zooplankton diversity, especially in fluctuating tropical lake ecosystems, where the presence of each local Daphniaspecies in the active community may be strongly seasonal or erratic. Geographic distribution data from this study are supplemented with previous records of Daphniain East Africa to provide an overview of the known distribution of Daphniain Kenya and neighbouring countries. We also present a detailed key for morphological identification of the ephippia of the 11 Daphniaspecies encountered, complemented with photographs and drawings of diagnostic characters.  相似文献   

14.
Cyclopoid copepods are common in lakes and ponds, and they have a significant predation impact on the communities of the small zooplankton species. To reduce the predation risk, some cladoceran zooplankters develop protuberant (defensive) morphologies in the presence of the copepods. In the case of the small cladoceran Bosmina, they elongate their appendages (antennule and mucrone) and change the antennule morphotype. However, information about the effectiveness of these defensive devices against copepod predation is still insufficient. In our study, to find the compositive effects of these appendages on the vulnerability of Bosmina, we exposed two bosminid species (B. longirostris and B. fatalis) of different body sizes and with appendages of different lengths and shapes to copepod (Mesocyclops) predation. The experiment revealed that the shape of the antennule is a main factor determining the bosminid’s vulnerability to copepod predation and indicated that the protection of the opened ventral carapace must be a key strategy by which Bosmina avoids copepod predation.  相似文献   

15.
The influence of body size on the consumption of live zooplankton (Daphnia spp.) by freshwater crayfish was examined using yabbies (Cherax destructor) ranging from 5 to 45 g. Food preference between live zooplankton and inert pellets was also assessed under experimental conditions. In experimental tanks, yabbies of four size classes (<15, 15–24.9, 25–34.9 and 35–45 g) were presented with live Daphnia. All yabbies were held in separate tanks with five animals per size class. In yabbies less than 15 g, the feeding mode on zooplankton involved rapid searching and probing with the first two pairs of walking legs. Once a prey was located, the chelae on the end of these walking legs would grasp the zooplankton and then rapidly move it towards the mouthparts. Yabbies larger than 25 g tended to use their walking legs to push the Daphnia nearer to their third maxilliped which would then force or scoop the zooplankton towards the mouthparts. A short-term feeding trial showed that there was no significant difference between size classes in regards to zooplankton consumption (P > 0.05). Capture efficiency of live Daphnia by yabbies less than 15 g was significantly lower (76%, P = 0.008) than the three larger size classes (93.6%). Yabbies less than 15 g consumed a significantly (P < 0.001) higher percentage (5.2%) of their body weight than the other size classes (1.1%, 0.8%, and 0.6%, respectively). In the presence of both live zooplankton and a pellet diet, yabbies spent significantly (P = 0.005) more time feeding on zooplankton (85%) than on inert pellets (15%). This was the first study to quantify zooplankton consumption by yabbies and the results provide insights into understanding the trophic role of freshwater crayfish in structuring zooplankton communities and the husbandry management of crayfish farming. Handling editor: S. I. Dodson  相似文献   

16.
Social insects are excellent invaders that have had negative impacts on native species and humans. Many invasive species move from warmer to cooler climates. For these species, thermal adaptations may both be important for their ability to invade and to limit their invasion range. The invasion of Polistes dominulus into North America provides an example of a primitively eusocial invader from a warmer climate. We studied the differences in thermoregulation between P. dominulus and the native P. fuscatus. We found that, during flight, thorax temperature in P. fuscatus was less affected by ambient temperature than thorax temperature of P. dominulus. We also found that P. dominulus and P. fuscatus showed different patterns of warming after removal from a cold environment. Unlike P. dominulus, live P. fuscatus never fully cooled down in a cold environment. P. fuscatus also reached their relative minimum flight temperatures earlier than P. dominulus, but P. dominulus maintained higher elevated temperatures for longer. These differences in thermoregulatory ability suggest that the lower winter survival of P. dominulus could be offset by a greater thermal tolerance during flight, while the lower thermal tolerance of P. fuscatus in flight is offset somewhat by better thermoregulatory ability.  相似文献   

17.
Diets of Mysis relicta from four lakes in central Ontario that had been invaded by Bythotrephes longimanus and three lakes that had not been invaded were investigated using gut content analysis and fatty acid (FA) composition. Gut content analysis of M. relicta revealed a high incidence of cannibalism in all lakes, and consumption of B. longimanus and native zooplanktivorous midges in the genus Chaoborus in lakes where these were present. Cladocera other than B. longimanus were present in the guts of all M. relicta examined except those from Bernard Lake, the lake with the most B. longimanus. In that lake, B. longimanus was the most frequent diet item. Copepod remains were found in 60–100% of M. relicta guts with the lowest frequency occurring in Bernard Lake. Fatty acids (FA) that contributed strongly to the variation in FA composition in M. relicta, as revealed by a principal component analysis, were C16:0 (palmitic acid), C16:1n7 (palmitoleic acid), C18:1n9c (oleic acid), C20:4n6 (arachidonic acid), C20:5n3 (eicosapentaenoic acid), and C22:6n3 (docosahexaenoic acid). Significant differences in FA amount and composition of M. relicta were found between invaded and non-invaded lakes, and among lakes within these groups. Generally, M. relicta in non-invaded lakes had higher concentrations of C16:0, C18:1n9c, C18:2n6c (linoleic acid), C18:3n3 (α-linolenic acid) and C20:4n6, while M. relicta in invaded lakes had higher concentrations of C22:6n3. Two of the non-invaded lakes had lower water transparency, as measured by Secchi depth, which may be the reason why mysids and abundant populations of Chaoborus spp. could be found in the water column during the day. However, differences in FA profiles and gut contents of M. relicta between invaded and non-invaded lakes are consistent with competition for Cladocera in the presence of the invader rather than pre-existing differences among lakes. We conclude that the diet of M. relicta is affected by the invasion of B. longimanus.  相似文献   

18.
The ability to change the reproduction mode and produce diapausing eggs, which is prevalent in many zooplankton species, significantly impacts on the evolution and ecology of aquatic communities. The production of diapausing eggs is controlled by multiple effects of biotic and abiotic factors, including infochemicals. We have investigated the effects of chemicals exuded by conspecifics and ecologically close competing congers, Moina brachiata and M. macrocopa, which coexist in the same water body, and by larger Cladocera species (Daphnia magna) on the change of reproduction mode, specific growth rate and fecundity of M. brachiata and M. macrocopa females. The production of gametogenetic eggs in both species was detected only in waters from crowded cultures of conspecifics. The water from crowded cultures of conspecifics reduced the specific growth rate of the juvenile females of both species that later switched to gametogenesis. While it either did not affect (in M. macrocopa) or even increase (in M. brachiata) the specific growth rate of the juvenile females that later reproduced by parthenogenesis. Females of M. macrocopa released significantly fewer neonates in the water from crowded cultures of conspecifics than in all other treatments, while the fecundity of M. brachiata females was the same in all treatments. To understand the phenomenon of diapause induction under the effect of chemical cues in zooplankton, a link between laboratory tests and ecological research should be established, and the chemical composition of the signals should be determined.  相似文献   

19.
Nicotiana section Alatae contains eight species with variable flower sizes and morphologies. Section members readily hybridize in the glasshouse, but no hybrids have been observed in natural sympatric and parapatric populations. To investigate interspecific crossing relationships with respect to mechanisms preventing hybridization, all members of section Alatae were intercrossed in a complete diallel. We found positive correlation between the pistil length of the pollen donor and interspecific seed set relative to the conspecific cross. Pollen tube growth rate and pollen donor pistil length were positively correlated as well. Furthermore, pollen from short-pistil members of section Alatae could only grow a maximum distance proportional to, but greater than, their own pistil lengths. Our results show that pollen tube growth capacity (i.e., rate and distance), provides a hybridization barrier in long-pistil species × short-pistil species crosses. We also found another hybridization barrier not specifically related to pollen tube growth capacity in short-pistil species × long-pistil species. Taken together, these barriers can generally be described by a ‘pistil-length mismatch’ rule; in section Alatae, pollen has the most success fertilizing ovules from species with pistil lengths similar to their own. This rule could contribute to hybridization barriers in Section Alatae because the species display dramatically different pistil lengths. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号