首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nitrogen and carbon components in domestic modified wastewater were completely removed by simultaneous nitrification and denitrification using a membrane-aerated biofilm reactor where biofilm was fixed on a hollow-fiber membrane. To measure the spatial distribution of pH, ammonium and nitrate ions and to observe microbes inside the biofilm fixed on the membrane, microelectrodes and the fluorescence in situ hybridization (FISH) method were applied. Due to plug flow in the vertical direction (from the bottom to the top of the reactor), ammonium nitrogen was gradually removed and negligible nitrate nitrogen was detected throughout the reactor. FISH revealed that ammonia-oxidizing bacteria were mainly distributed inside the biofilm and other bacteria, which included denitrifying bacteria, were mainly distributed outside the biofilm and over the suspended sludge. In order to characterize bacterial activity in the vertical direction of the reactor, nitrification rates at lower, central and upper points were calculated using microelectrode data. The nitrification rate at the lower point was 7 and 125 times higher than those at the central and upper points, respectively. These results show that the removal of carbon and nitrogen compounds was accomplished efficiently by using various kinds of bacteria distributed vertically and horizontally in a single reactor.  相似文献   

2.
《Ecological Engineering》2006,26(2):167-181
To identify the conditions that promote high rates of denitrification we systematically investigated the interactions of wetland age, water temperature, organic carbon, macrophytic type and density, hydraulic conditions on denitrification rates in field and laboratory experiments. In the field, nitrate removal was consistently greater in a shallow, young, well-mixed constructed wetland, regardless of temperature and despite lower sediment denitrification potential (DNP), than in mature, more diverse, less well-mixed wetlands. We believe the presence of a benthic mesh, which supported a dense periphytic biofilm, to be partly responsible for the unexpectedly high observed rates. We measured the DNP of wetland sediments and periphyton in the laboratory with the acetylene block method under different temperatures, nitrate concentrations, and carbon sources. The overall DNP of periphyton was greater than the corresponding sediment samples on a per cell basis. We hypothesize that the organic carbon produced by the periphytic algae is readily degradable and promoted the higher denitrification rates. We found a positive relationship between DNP and biodegradable organic carbon concentration and identified chemical markers illustrating that biodegradability is promoted by a combination of polyhydroxyaromatic and polysaccharide parent structures. These findings highlight the importance of organic quality and the role of periphyton in accelerating the rates of denitrification in wetlands.  相似文献   

3.
Injection of cattle slurry into a grassland soil decreases NH3 volatilisation and increases N utilisation by the sward, but may also increase denitrification losses. Denitrification rates were measured using a soil core incubation technique involving acetylene inhibition, following injection of cattle slurry (67 t ha–1) into a grassland soil. The slurry was injected, either with or without a nitrification inhibitor (DCD), on 8 December 1989. Two-weekly measurements were carried out up to 18 weeks after injection. Compared to the control plot, denitrification rates were significantly higher after slurry injection. Addition of DCD to the slurry almost eliminated this effect. Estimated N-losses during 18 weeks after injection were 0.9 (control), 4.1 (+DCD), and 13.7 (-DCD) kg N ha–1. Denitrification losses were 7% of the injected NH4-N and decreased to 2% of the injected NH4-N when DCD was added. Denitrification could account for about 19% of the difference in apparent recovery of N from slurry injected with and without DCD. The results suggested that considerable amounts of NO3 were lost due to leaching.  相似文献   

4.
Presently, the wastewater treatment practices can be significantly improved through the introduction of new microbial treatment technologies. To meet increasingly stringent discharge standards, new applications and control strategies for the sustainable removal of ammonium from wastewater have to be implemented. Partial nitrification to nitrite was reported to be technically feasible and economically favorable, especially when wastewater with high ammonium concentrations or low C/N ratios is treated. For successful implementation of the technology, the critical point is how to maintain partial nitrification of ammonium to nitrite. Partial nitrification can be obtained by selectively inhibiting nitrite oxidizing bacteria through appropriate regulation of the system’s DO concentration, microbial SRT, pH, temperature, substrate concentration and load, operational and aeration pattern, and inhibitor. The review addressed the microbiology, its consequences for their application, the current status regarding application, and the future developments.  相似文献   

5.
Kinetics of sequential nitrification and denitrification processes   总被引:1,自引:0,他引:1  
Kinetics of nitrification and denitrification of synthetic wastewater was investigated by using two reactors in series. An activated sludge unit was used for nitrification followed by a downflow biofilter for denitrification. Glucose solution was fed to the denitrification column to supply carbon source. Reactors were operated at different operating conditions and data were collected for determination of kinetic constants. Experimental data indicated that nitrification and denitrification kinetics followed Monod kinetics. By using the experimental data, kinetic constants for nitrification were determined as k = 1.15 d(-1), K(N) = 5.14 mg/l, Y = 0.34 mgX/mgN and b = -0.021 d(-1). Similarly, kinetic constants for denitrification were determined as k = 0.23 d(-1) and K(DN) = 0.27 mg/l. Rates of nitrification and denitrification increased with increasing nitrogen loading rate.  相似文献   

6.
An investigation was performed on the biological removal of ammonium nitrogen from synthetic wastewater by the simultaneous nitrification/denitrification (SND) process, using a sequencing batch biofilm reactor (SBBR). System behavior was analyzed as to the effects of sludge type used as inoculum (autotrophic/heterotrophic), wastewater feed strategy (batch/fed-batch) and aeration strategy (continuous/intermittent). The presence of an autotrophic aerobic sludge showed to be essential for nitrification startup, despite publications stating the existence of heterotrophic organisms capable of nitrifying organic and inorganic nitrogen compounds at low dissolved oxygen concentrations. As to feed strategy, batch operation (synthetic wastewater containing 100 mg COD/L and 50 mg N-NH(4)(+)/L) followed by fed-batch (synthetic wastewater with 100 mg COD/L) during a whole cycle seemed to be the most adequate, mainly during the denitrification phase. Regarding aeration strategy, an intermittent mode, with dissolved oxygen concentration of 2.0mg/L in the aeration phase, showed the best results. Under these optimal conditions, 97% of influent ammonium nitrogen (80% of total nitrogen) was removed at a rate of 86.5 mg N-NH(4)(+)/Ld. In the treated effluent only 0.2 mg N-NO(2)(-)/L,4.6 mg N-NO(3)(-)/L and 1.0 mg N-NH(4)(+)/L remained, demonstrating the potential viability of this process in post-treatment of wastewaters containing ammonium nitrogen.  相似文献   

7.
The development of meso- and thermophilic microorganisms proceeded more strongly in the examined farmyard manure than in the liquid cattle manure. The most vigorous proliferation of mesophilic bacteria and fungi was found in both dungs during the first weeks of fermentation. Relatively greater numbers of mesophilic actinomycetes were noticed in the later experimental period. Compared to mesophilic microoganisms, thermophilic ones were less numerous and quantitatively changeable in the tested dungs. In contrast to the farmyard manure, in the liqued dung thermophilic actinomycetes did not occur at all. After 3 monts of the experiment the Coliform titre decreased to 101 in the liquid manure, but to 104 in the farmyard manure.  相似文献   

8.
9.
大气CO_2浓度升高潜移默化地影响着水体生态系统的碳循环过程.然而,该过程如何影响与其耦合的氮循环过程仍不明确.水体硝化、反硝化过程作为水体氮循环的重要环节,必然会对大气CO_2浓度升高产生一系列的响应.本文总结了国内外关于大气CO_2浓度升高对水体理化性质、硝化作用、反硝化作用及N形态转化影响方面的研究工作,发现大气CO_2浓度升高会降低水体的p H,增加水中CO_2和HCO_3^-含量,但对富营养化与寡营养化水体中硝化、反硝化作用的影响具有明显差异.大气CO_2浓度升高抑制寡营养化水体的硝化作用和反硝化作用,降低N2_O的释放通量,抑制富营养化水体的硝化作用,但当水体pH在7~9时,可能促进反硝化作用,增加N2_O的释放通量,最终可能导致水体中NH_4^+的积累及NO_3^-浓度的降低,影响水体中微生物的多样性.在此基础上提出目前相关研究存在的瓶颈问题及值得深入探讨的科学问题,为进一步深入理解温室效应背景下全球CO_2浓度升高对水体生态系统N循环的影响提供参考.  相似文献   

10.
Alum is used to reduce environmental pollutants in poultry production. Alum decreases NH3 volatilization and increases total N and NH4+-N compared to untreated poultry manure. Nitrification in poultry wastes could therefore be stimulated due to higher NH4+ concentrations or could be inhibited because the soil environment is acidified. A 10-day laboratory study was conducted to study potential nitrification rates in soil slurries (20 g soil in 150 ml water) amended with 2.0 g alum-treated poultry manure. Fecal bacteria, NH4+, NO2-, NO3-, orthophosphate, pH, and NH3 were measured at 2-day intervals. Alum significantly reduced fecal bacteria concentrations through day 6. Water-soluble P was reduced 82% by day 10. Alum-treated manure had significantly increased NH4+ concentrations by day 8 and 10, and significantly decreased NO2- and NO3- concentrations by days 6-10. Alum's effect on potential nitrification was inhibitory in the soil environment. Slurries with alum-treated poultry manure had reduced nitrification rates, fecal bacteria, and soluble P. Therefore, in addition to reducing P loss, alum could temporarily reduce the risk for environmental pollution from land-applied manures in terms of both NO3- and fecal bacteria loss.  相似文献   

11.
对不同林龄杉木人工林(5、8、21、27和40年生)土壤硝化与反硝化过程及功能微生物丰度进行研究。结果表明: 土壤净硝化速率随林龄的增加波动变化,8、27年生杉木人工林土壤净硝化速率显著低于5、21和40年生。27年生杉木人工林土壤氨氧化古菌(AOA) amoA基因丰度显著低于40年生,其他林龄AOA amoA基因丰度之间无显著差异。不同林龄杉木人工林的氨氧化细菌(AOB) amoA基因丰度、反硝化功能基因丰度以及反硝化潜势均无显著差异。逐步回归分析表明,土壤氨氧化微生物AOA amoA基因丰度受土壤理化性质的影响不显著,土壤总碳和土壤pH是影响AOB丰度的重要因子。反硝化功能基因narGnirKnosZ随土壤pH的增加而增加,编码亚硝酸盐还原酶(NIR)的功能基因(nirKnirS)受土壤总碳的影响。林龄可通过影响AOA amoA基因丰度影响土壤净硝化速率。林龄直接作用于反硝化潜势,或间接影响土壤微生物生物量碳、土壤pH及反硝化功能基因丰度(narGnirK),进而影响反硝化潜势。相较于反硝化过程,土壤硝化作用及AOA amoA基因丰度对杉木林分发育更加敏感,可适当延长轮伐期以降低土壤硝化作用造成的氮流失风险。  相似文献   

12.
Heterotrophic nitrification and aerobic and anaerobic denitrification byAlcaligenes faecalis strain TUD were studied in continuous cultures under various environmental conditions. Both nitrification and denitrification activities increased with the dilution rate. At dissolved oxygen concentrations above 46% air saturation, hydroxylamine, nitrite and nitrate accumulated, indicating that both the nitrification and denitrification were less efficient. The overall nitrification activity was, however, essentially unaffected by the oxygen concentration. The nitrification rate increased with increasing ammonia concentration, but was lower in the presence of nitrate or nitrite. When present, hydroxylamine, was nitrified preferentially. Relatively low concentrations of acetate caused substrate inhibition (KI=109 M acetate). Denitrifying or assimilatory nitrate reductases were not detected, and the copper nitrite reductase, rather than cytochrome cd, was present. Thiosulphate (a potential inhibitor of heterotrophic nitrification) was oxidized byA. faecalis strain TUD, with a maximum oxygen uptake rate of 140–170nmol O2·min-1·mg prot-1. Comparison of the behaviour ofA. faecalis TUD with that of other bacteria capable of heterotrophic nitrification and aerobic denitrification established that the response of these organisms to environmental parameters is not uniform. Similarities were found in their responses to dissolved oxygen concentrations, growth rate and ammonia concentration. However, they differed in their responses to externally supplied nitrite and nitrate.  相似文献   

13.
A novel biological treatment system, which contains two types of membrane modules in a single tank, was developed for simultaneous nitrification and denitrification. Both of the modules were fed with the substrates on the tube side of the silicone tubes by diffusing them to the biofilms which form on the surface of the tubes. One module was fed with methanol for denitrification and the other one was fed with pure oxygen for nitrification. As a result, the interference of organic carbon on nitrification, and that of oxygen on denitrification, were both hindered by the diffusion barriers (biofilms), thereby allowing two different niches for nitrifiers and denitrifiers to coexist in a single tank. Besides saving space and the amount of alkalinity required for nitrification, this system also produced low residual chemical oxygen demand (COD) and high nitrogen removal rates (2.9-3.4 gN m-2 d-1 of surface area of membrane).  相似文献   

14.
The liquid fraction of cattle manure was subjected to a biological treatment combining anoxic-anaerobic and oxic processes in order to stabilize the organic matter and reduce nitrogen and phosphorus so as to avoid problems of pollution when applying it to the land. The anoxic process was carried out at 30 degrees C in a CSTR reactor, the anaerobic process in a UASB reactor at 37 degrees C and the oxic treatment in another CSTR at 20 degrees C. The following results were obtained when working under optimum conditions (removal efficiencies in brackets): COD was reduced from 42 to 3.8 g/L (>90%); total solids from 41 to 14 (67%); total volatile solids from 22 to 7.0 (68%); total Kjeldahl nitrogen from 2.2 to 0.1 g/L (95%); NH4(-)-N from 1.10 to 0.02 g/L (98%) and Total-Phosphorus from 0.696 to 0.058 g/L (92%). Nitrates, undetected in the liquid fraction of cattle manure, were present in the final effluent as a result of nitrification. To reduce the amount of nitrates, different recirculation rates were tested. The minimum nitrate concentration achieved was 127 mg/L using a recirculation ratio of 4.  相似文献   

15.
16.
17.
This study proposed a nonwoven hybrid bioreactor (NWHBR) in which the nonwoven fabric played dual roles as a biofilm carrier and membrane‐like separation of the flocculent sludge in the reactor. The results of long‐term monitoring demonstrated that the NWHBR could achieve simultaneous nitrification and denitrification (SND), with nearly complete ammonium removal and 80% removal of total nitrogen. The biofilm attached to the nonwoven fabric removed 27% of the chemical oxygen demand (COD) and 36% of the nitrate in the reactor, an enhanced elimination of nutrients that was attributed to the increased mass transfer within the biofilm due to permeate drag. The results of batch experiments showed that the flocculent sludge played a more dominant role in nitrification and denitrification (79% and 61%, respectively) than the biofilm (21% and 36%, respectively). The batch experiments also revealed that the enforced mass transfer, with an effluent recirculation rate of 4.3 L/m2h (which was the same as the flux during the reactor's long‐term operation), improved the denitrification rate by 58% (i.e., from 9.0 to 14.2 mg‐NO‐N/h). Pyrosequencing of the 16S rRNA gene amplification revealed a high microbial diversity in both the flocculent sludge and biofilm, with Proteobacteria, Bacteroidetes and Chloroflexi as the dominant groups. A phylogenetic (P) test indicated that the NWHBR contained phylogenetically distinct microbial communities: those in the biofilm differed from those in the flocculent sludge. However, the communities on the exterior and interior of the biofilm were more similar to each other. Due to its good SND performance, low physical back‐washing frequency and low air‐to‐water ratio, the NWHBR represents an attractive alternative for the wider application of either low‐cost membrane bioreactors or biofilm reactors. Biotechnol. Bioeng. 2013; 110: 1903–1912. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
The prospective of table olive debittering & washing Effluent (DWE) as feed stock wastewater for anaerobic digestion (AD) systems was investigated in batch and continuous systems together with cattle and pig manures. While DWE considered unsuitable for biological treatment methods due to its unbalanced nature, the co-digestion of the wastewaters resulted in a 50% increase in the methane production/gram volatile solidsadded (CH4/gVSadded), accompanied by 30% phenol reduction and 80% total organic carbon removal (TOC). pH increase during the co-digestion period was not identified as an inhibitory factor and all reactors were able to withstand this operational condition change. Moreover, no volatile fatty acid (VFA) accumulation was observed, indicating that the reactors were not operating under stress-overloading state. Under thermophilic conditions a 7% increase on the TOC removal efficiency was achieved when compared to the mesophilic systems while, under mesophilic conditions phenolic compounds reduction was 10% higher compared to the thermophilic systems.  相似文献   

19.
Role of nitrification and denitrification for NO metabolism in soil   总被引:3,自引:0,他引:3  
Release and uptake of NO was measured in a slightly alkaline (pH 7.8) and an acidic (pH 4.7) cambisol. In the alkaline soil under aerobic conditions, NO release was stimulated by ammonium and inhibited by nitrapyrin. Nitrate accumulated simultaneously and was also inhibited by nitrapyrin.15NO was released after fertilization with15NH4NO3 but not with NH4 15NO3. The results indicate that in aerobic alkaline cambisol NO was mainly produced during nitrification of ammonium. The results were different under anaerobic conditions and also in the acidic cambisol. There, NO release was stimulated by nitrate and not by ammonium, and was inhibited by chlorate and not by nitrapyrin indicating that NO production was exclusively due to reduction of nitrate. The results were confirmed by15NO being released mainly from NH4 15NO3 rather than from15NH4NO3. The observed patterns of NO release were explained by the NO production processes being stimulated by either ammonium or nitrate in the two different soils, whereas the NO consumption processes being only stimulated by nitrate. NO release was larger than N2O release, but both were small compared to changes in concentrations of soil ammonium or nitrate.(*request for offprints)  相似文献   

20.
The maximum specific ammonia emissions from liquid manure (LM) and solid manure containing 2.5 kg straw/livestock unit (LU)/day (SM 2.5) or 15 kg straw/LU/day (SM 15) increased in the sequence LM < SM 2.5 < SM 15 (662.6 < 3163.7 < 6299.8 μg NH3–N/h/kg). These emission levels were attained soon after the maximum temperatures (22.9°C < 34.3°C < 69.5°C) induced by microbial self-heating had been reached. After that, NH4+ was microbially re-bound in amounts that increased with a higher C content and a widening C:N ratio, i.e. also in the sequence LM < SM 2.5 < SM 15. Over a period of 15 to 16 days, 6.0% (LM), 10.8% (SM 2.5) and 5.9% (SM 15) of the Ntotal was emitted. When the accumulated ammonia emissions were extrapolated beyond this period of investigation, it was concluded that, over longer storage periods, solid manure offers better biological conditions for low ammonia emissions than liquid manure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号