首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reflections on the ballast water dispersal—harmful algal bloom paradigm   总被引:1,自引:0,他引:1  
The ballast water dispersal—HAB paradigm, increasingly invoked circumstantially to explain puzzling and unaccountable HAB species outbreaks when lacking the multiple tests of confirmation recommended by Bolch and de Salas (2007), is evaluated. The types and examples of natural dispersions and taxon cycles are compared to exotic species bloom behavior linked to ballast water vectoring. The regional spreading, bloom behavior and disjunct distributions of the brown tide pelagophyte Aureococcus anophagefferens and the toxic dinoflagellate Gymnodinium catenatum, attributed to ballast water vectoring, are used as representative examples to evaluate the general application of the ballast water—HAB paradigm and associated interpretative problems. Human-aided emigration has a seeding and colonization ecology that differs from bloom ecology. For self-sustaining blooms to occur, these two ecologies must be accommodated by habitat growth conditions. The three stages that a non-native species must pass through (pioneering, persistence, community entry) to achieve colonization, community maintenance, and to bloom, and the niche-related factors and role of habitat disturbance are discussed. The relevance of cryptic occurrences, cyst deposits, dormancy periods and bloom rhythms of HAB species to their blooms attributed to ballast water-assisted introductions is also sketched. The different forms of HAB species rarity, their impact on the ballast water dispersal—HAB paradigm, and the dispersion and blooms of specialist and generalist HAB species are discussed. The remarkable novel and, often, monospecific blooms of dinoflagellate HAB species are being paralleled by similar eruptive bloom behavior cutting across phylogenetic lines, and being found also in raphidophytes, haptophytes, diatoms, silicoflagellates, etc. These blooms cannot be explained only as seeding events. An ecological release of ‘old barriers’ appears to be occurring generally at coastal bloom sites, i.e. something significant is happening ecologically and embedded within the ballast water—HAB paradigm. There may be a relationship between Life Form type [Smayda, T.J., Reynolds, C.S., 2001. Community assembly in marine phytoplankton: application of recent models to harmful dinoflagellate blooms. J. Plankton Res. 23, 447–461] and mode of expatriation; HAB dinoflagellate species commonly reported to produce ballast water-assisted toxic blooms invariably are members of cyst-producing Life Forms IV, V, VI. Ballast water vectoring of Life Forms I, II, III is rarely reported, even though many produce cysts, and where their novel introductions do occur they are more likely to be ichthyotoxic and vectored in shellfish stock consignments. The relevance of, and need to distinguish between morphospecies and their geographic/ribotype clades are discussed based on the Alexandrium tamarense/catenella/fundyense complex. Morphospecies-level ballast water dispersions are probably minor compared to the dispersal of the different ribotypes (toxic/non-toxic clades) making up HAB morphospecies; the redistribution and admixture of genotypes should be the focus. Ballast water-assisted expatriations impact the global occurrence of HABs through the direct transfer of previously absent species or introduction of genetic strains from the donor habitat that are ecologically favored over resident strains. The hybridization of species may be of potentially greater impact, resulting from the (1) mating of individuals from the donor and recipient habitats, or (2) through the interbreeding of strains introduced from two different donor sites into the recipient site, and whose progeny have greater ecological fitness than indigenous strains. Exceptional ecological changes of some sort appear to be occurring globally which, in combination with the genetically altered ecophysiological behavior of HAB species linked to ballast water dispersion and admixture, underpins the global HAB phenomenon. The impact of ballast water and shellfish transplantation on HABs and phytoplankton community ecology, generally, is considerably greater than the current focus on HAB species distributions, vectoring, and blooms. The methodological, investigative and conceptual potential of the ballast water—HAB paradigm should be exploited by developing a GEOHAB type intiative to advance quantification of global HAB ecology.  相似文献   

2.
Distribution and abundance patterns at the community and metacommunity scale can result from two distinct mechanisms. Random dispersal followed by non-random, site-specific mortality (species sorting) is the dominant paradigm in community ecology, while habitat selection provides an alternative, largely unexplored, mechanism with different demographic consequences. Rather than differential mortality, habitat selection involves redistribution of individuals among habitat patches based on perceived rather than realized fitness, with perceptions driven by past selection. In particular, habitat preferences based on species composition can create distinct patterns of positive and negative covariance among species, generating more complex linkages among communities than with random dispersal models. In our experiments, the mere presence of predatory fishes, in the absence of any mortality, reduced abundance and species richness of aquatic beetles by up to 80% in comparison with the results from fishless controls. Beetle species' shared habitat preferences generated distinct patterns of species richness, species composition and total abundance, matching large-scale field patterns previously ascribed to random dispersal and differential mortality. Our results indicate that landscape-level patterns of distribution and species diversity can be driven to a large extent by habitat selection behaviour, a critical, but largely overlooked, mechanism of community and metacommunity assembly.  相似文献   

3.
Different habitat preferences in animals have been interpreted mostly as a result of different adaptive design of the species and/or as a result of interspecific competition. We propose an alternative view of evolution of habitat preferences. Our model is based on progressive stochastic acquisition of cognitive clues discriminating habitat features which correlate with expected fitness. We assume that acquisition of each cognitive clue allowing discrimination of ‘better’ and ‘worse’ habitats (according to the average fitness in each habitat) will constrain further evolution, because each further clue will discriminate habitats only within previously acquired preferences. Simple simulation model shows that if it is the case, even the species with equal habitat-related fitness differences will rapidly diversify in their habitat preferences. Therefore, similarly as in the evolution of other species-specific traits, the evolution of animal–habitat relationship may be strongly affected by stochastic events and historical contingency. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
We developed broad-scale habitat selection models for the distribution of red-legged partridge Alectoris rufa in a low-density area in northwestern Spain, the Baixa-Limia site of community importance (SCI). The fieldwork consisted of ground surveys in 1 × 1 km squares. For habitat selection analysis, we used a 2 × 2 km grid integrating the information obtained in the 1 × 1 km squares. As predictors we used environmental variables measured on digital 1:50,000 scale cartography using a geographical information system (GIS). The red-legged partridge was scarce in the study area. The logistic regression analysis carried out on data from the squares with probable and confirmed breeding included the area of scrubland and pastureland with a positive sign. Using the breeding index category (BIC) three variables produced a slightly positive response: area of scrubland and pastureland, length of border between scrublands and forests, and length of border between forests and dams. The difficulty for modelling the habitat selection of this species could be due to human activities (hunting, habitat loss, restocking of hunt species), and may have modified their habitat preferences. Furthermore, the occupation of suboptimal habitats would distort the real habitat preferences.  相似文献   

5.
Watermass stratification has been considered the essential physical condition that dinoflagellates require to bloom because of their relative inability, unlike diatoms, to tolerate the elevated shear-stress associated with water-column mixing, turbulence and high velocity, coastal currents. The swimming speeds of 71 flagellate taxa, with a focus on dinoflagellates, are compared to the turbulence fields and vertical velocities that develop during representative wind conditions, upwelling and at frontal zones. The results suggest that the classical stratification–dinoflagellate bloom paradigm needs revision. Tolerance of turbulence, growth within well-mixed watermasses and survival and dispersal while entrained within current systems are well developed capacities among dinoflagellates. Their secretion of mucous, often copious during blooms, is suggested to be an environmental engineering strategy to dampen turbulence. Biophysical tolerance of turbulence by dinoflagellates is often accompanied by high swimming speeds. Motility speeds of many species exceed in situ vertical current velocities; this also allows diel migrational patterns and other motility-based behavior to persist. Species belonging to “mixing-drift” life-form assemblages can increase their swimming speeds through chain formation, which helps to compensate for the increased turbulence and vertical water-column velocities of their habitats. The ability of dinoflagellate species to tolerate the vertical velocities of offshore, frontal zones, where abundant populations often develop, suggests that fronts may serve as “pelagic seed banks”, occurring as pelagic analogues of nearshore seed beds, from which seed stock is dispersed. The different ecologies associated with the hypothesized, “pelagic seed banks” of vegetative cells and the “seed beds” of resting stage cells deposited onto sediments are discussed. There is a contradiction in the stratification–HAB paradigm: the quiescent conditions of a stratified watermass, with its characteristic nutrient-poor conditions are expected to promote stasis of the population, rather than growth and blooms. The analyses suggest that dinoflagellate blooms do not preponderate in stratified watermasses because the bloom species are biophysically intolerant of the higher velocities and turbulence of more mixed watermasses. The watermass stratification that often accompanies flagellate blooms is probably a secondary, parallel event and less essential than some other factor(s) in triggering the observed bloom.  相似文献   

6.
Azeria ET  Ibarzabal J  Hébert C 《Oecologia》2012,168(4):1123-1135
It is often suggested that habitat attributes and interspecific interactions can cause non-random species co-occurrence patterns, but quantifying their contributions can be difficult. Null models that systematically exclude and include habitat effects can give information on the contribution of these factors to community assembly. In the boreal forest, saproxylic beetles are known to be attracted to recently burned forests where they breed in dead and dying trees. We examined whether species co-occurrences of saproxylic beetles that develop in, and emerge from, boles of recently burned trees show non-random patterns. We also estimated the extent to which both the post-fire habitat attributes and interspecific interactions among beetles contribute to such patterns. We sampled tree boles encompassing key attributes (tree species, tree size/dbh and burn severity) that are thought to characterize species–habitat associations of saproxylic beetles, a proposition that we tested using indicator species analysis. Two null models with no habitat constraints (“unconstrained”) indicated that a total of 29.4% of the species pairs tested had significant co-occurrence patterns. Habitat-constrained null models indicated that most of the detected species aggregations (72%) and segregations (59%) can be explained by shared and distinct species–habitat relationships, respectively. The assembly pattern was also driven by interspecific interactions, of which some were modulated by habitat; for example, predator and prey species tended to co-occur in large-sized trees (a proxy of available bark/wood food resource primarily for the prey). In addition, some species segregation suggesting antagonistic, competitive, or prey–predator interactions were evident after accounting for the species’ affinities for the same tree species. Overall, our results suggest that an intimate link between habitat and interspecific interactions can have important roles for community assembly of saproxylic assemblages even following disturbance by fire. We also show that a systematic application of null models can offer insight into the mechanisms behind the assembly of ecological communities.  相似文献   

7.
Ecosystem nutrient use efficiency–the ratio of net primary productivity to soil nutrient supply–is an integrative measure of ecosystem functioning. High productivity and nutrient retention in natural systems are frequently attributed to high species diversity, even though some single-species systems can be highly productive and effective at resource capture. We investigated the effects of both individual species and life-form diversity on ecosystem nutrient use efficiency using model tropical ecosystems comprised of monocultures of three tree species and polycultures in which each of the tree species was coplanted with species of two additional life forms. Tree species significantly influenced nutrient use efficiency by whole ecosystems in monocultures; however, in polycultures, the additional life forms interacted with the influence exerted by the dominant tree. Furthermore, the presence of the additional life forms significantly increased nutrient uptake and uptake efficiency, but in only two of the three systems and 2 of the 4 years of the study period. These results indicate that the effect of life-form diversity on ecosystem functioning is not constant and that there may be temporal shifts in the influence exerted by different components of the community. Furthermore, although species (and life forms) exerted considerable influence on ecosystem nutrient use efficiency, this efficiency was most closely related to soil nutrient availability. These findings demonstrate that ecosystem nutrient use efficiency is an outcome not only of the characteristics of the species or life forms that comprise the system but also of factors that affect soil nutrient supply. The results argue against the simple upward scaling of nutrient use efficiency from leaves and plants to ecosystems. Received 29 March 2000; accepted 27 April 2001.  相似文献   

8.
Theory predicts deterministic and stochastic factors will contribute to community assembly in different ways: Environmental filters should regulate those species that establish in a particular area resulting in the ecological requirements of species being the primary driver of species distributions, while chance and dispersal limitation should dictate the likelihood of species reaching certain areas with the ecology of species being largely neutral. These factors are specifically relevant for understanding how the area and isolation of different habitats or islands interact to affect community composition. Our review of the literature found few experimental studies have examined the interactive effect of habitat area and isolation on community assembly, and the results of those experiments have been mixed. We manipulated the area and isolation of rock “islands” created de novo in a grassland matrix to experimentally test how deterministic and stochastic factors shape colonizing animal communities. Over 64 weeks, the experiment revealed the primacy of deterministic factors in community assembly, with habitat islands of the same size exhibiting remarkable consistency in community composition and diversity, irrespective of isolation. Nevertheless, tangible differences still existed in abundance inequality among taxa: Large, near islands had consistently higher numbers of common taxa compared to all other island types. Dispersal limitation is often assumed to be negligible at small spatial scales, but our data shows this not to be the case. Furthermore, the dispersal limitation of a subset of species has potentially complex flow‐on effects for dictating the type of deterministic factors affecting other colonizing species.  相似文献   

9.
Globally, human activities have led to the impoverishment of species assemblages and the disruption of ecosystem function. Determining whether this poses a threat to future ecosystem stability necessitates a thorough understanding of mechanisms underpinning community assembly and niche selection. Here, we tested for niche segregation within an African small carnivore community in Kibale National Park, Uganda. We used occupancy modeling based on systematic camera trap surveys and fine‐scale habitat measures, to identify opposing preferences between closely related species (cats, genets, and mongooses). We modeled diel activity patterns using kernel density functions and calculated the overlap of activity periods between related species. We also used co‐occupancy modeling and activity overlap analyses to test whether African golden cats Caracal aurata influenced the smaller carnivores along the spatial and/or temporal axes. There was some evidence that related species segregated habitat and activity patterns. Specialization was particularly strong among forest species. The cats and genets partitioned habitat, while the mongooses partitioned both habitat and activity period. We found little evidence for interference competition between African golden cats and other small carnivores, although weak interference competition was suggested by lower detection probabilities of some species at stations where African golden cats were present. This suggests that community assembly and coexistence in this ecosystem are primarily driven by more complex processes. The studied carnivore community contains several forest specialists, which are typically more prone to localized extinction. Preserving the observed community assemblage will therefore require the maintenance of a large variety of habitats, with a particular focus on those required by the more specialized carnivores.  相似文献   

10.
Niche‐based selection and stochastic processes can operate simultaneously to generate spatial and temporal variation in species composition. Yet, the conditions under which ecological dynamics are dominated by niche‐based versus stochastic processes are poorly understood. Using a field experiment in early‐successional temperate grassland and null models of beta diversity, this study investigates the effects of soil nutrient supply on the relative importance of niche‐based selection versus stochastic dynamics for variation in species composition among sites. Nutrient availability was manipulated experimentally, individual seed mixtures with 25 species were sown in each experimental plot, and then stochastic and deterministic niche‐based assembly processes were allowed to happen. We found that compositional variation among grassland plots with low nutrient supply was driven by stochastic immigration and extinctions. In contrast, nutrient enrichment reduced the importance of stochasticity and imposed a deterministic environmental filter that homogenized communities through the selection of few species with greater competitive ability for light. This demonstrates that soil nutrient availability is a critical environmental feature that dictates the degree to which terrestrial plant communities are controlled by niche‐based selection versus stochastic assembly processes. Our study shows further that alternative states of eutrophic grasslands emerge from initial stochastic variation in the composition of a particular functional group of species that can become dominant at high nutrient supply. We discuss potential mechanisms underlying the shift from stochastic to niche‐driven dynamics along soil nutrient gradients.  相似文献   

11.
Elucidating the ecological mechanisms underlying community assembly in subtropical forests remains a central challenge for ecologists. The assembly of species into communities can be due to interspecific differences in habitat associations, and there is increasing evidence that these associations may have an underlying phylogenetic structure in contemporary terrestrial communities. In other words, by examining the degree to which closely related species prefer similar habitats and the degree to which they co-occur, ecologists are able to infer the mechanisms underlying community assembly. Here we implement this approach in a diverse subtropical tree community in China using a long-term forest dynamics plot and a molecular phylogeny generated from three DNA barcode loci. We find that there is phylogenetic signal in plant-habitat associations (i.e. closely related species tend to prefer similar habitats) and that patterns of co-occurrence within habitats are typically non-random with respect to phylogeny. In particular, we found phylogenetic clustering in valley and low-slope habitats in this forest, indicating a filtering of lineages plays a dominant role in structuring communities in these habitats and we found evidence of phylogenetic overdispersion in high-slope, ridge-top and high-gully habitats, indicating that distantly related species tended to co-occur in these high elevation habitats and that lineage filtering is less important in structuring these communities. Thus we infer that non-neutral niche-based processes acting upon evolutionarily conserved habitat preferences explain the assembly of local scale communities in the forest studied.  相似文献   

12.
The primary goal of this study was to evaluate the relative importance of habitat physical properties, bottom-up and top-down factors, and their interaction on algae biomass in tank-bromeliads. We sampled algae biomass (chlorophyll-a concentration), micro-metazoan density, mosquito abundance, and several environmental variables, including nutrient concentrations and characteristics of the habitat physical structure, in a survey of 64 tank-bromeliads of four different species (Aechmea nudicaulis, Aechmea lingulata, Neoregelia cruenta, and Vriesea neoglutinosa). We analyzed the complete and individual bromeliad species datasets using an information-theoretic model selection approach (Akaike’s information criterion). Bromeliad species, maximum water volume, and bromeliad diameter comprised the best model for determining chlorophyll-a concentrations for the complete dataset. The maximum water volume also comprised the best model to explain chlorophyll-a concentrations in three of four bromeliad species datasets. Interactions between consumers and nutrient concentration were included in the subsequent models, but they were not statistically significant. Taken together, these results demonstrate that the impact of habitat size on the associated autotrophic biomass occurs possibly via changes in community susceptibility to disturbances, particularly drought. We can conclude that habitat size is more important than resource availability or herbivory on phytotelm autotrophic biomass regulation in these natural microcosms.  相似文献   

13.
In order for competing species to coexist, segregation on some ecological niche component is required and is often mediated by differential habitat use. When unequal competitors are involved, the dominant species tends to displace the subordinate one to its less preferred habitat. Here, we use habitat isodars, an approach which reflects evolutionary stable strategies of habitat selection, to evaluate whether interspecific competition between two competing species with distinct habitat preferences, the little bustard Tetrax tetrax and the great bustard Otis tarda, modulates their habitat use. Field data on these endangered species demonstrate that unequal competitors can coexist without completely segregating on their preferred habitats. The negatively sloped isodar of the subordinate little bustard unveils its competition with the dominant great bustard. Interference from great bustards in secondary cereal habitats reinforces use of preferred natural habitat by little bustards. Studies of density‐dependent habitat selection by a single‐species can thus aid in identifying the effects of competition on community composition, and guide the conservation of at‐risk species. Isodars, in particular, represent a promising method to gain clear knowledge on interspecific competition for species in which experimental manipulations are not feasible.  相似文献   

14.
The study of islands has made substantial contributions to the development of evolutionary and ecological theory. However, we know little about microbial community assembly on islands. Using soil microbial data collected from 29 lake islands and nearby mainland, we examined the assembly mechanisms of soil bacterial and fungal communities among and within islands. We found that deterministic processes, especially homogeneous selection, tended to be more important in shaping the assembly of soil bacterial communities among islands, while stochastic processes tended to be more important within islands. Moreover, increasing island area increased the importance of homogeneous selection, but reduced the importance of variable selection, for soil bacterial community assembly within islands. By contrast, stochastic processes tended to dominate soil fungal community assembly both among and within islands, with dispersal limitation playing a more important role within than among islands. Our results highlight the scale- and taxon-dependence of insular soil microbial community assembly, suggesting that spatial scale should be explicitly considered when evaluating the influences of habitat fragmentation on soil microbial communities.  相似文献   

15.
Toward an ecological synthesis: a case for habitat selection   总被引:15,自引:0,他引:15  
Morris DW 《Oecologia》2003,136(1):1-13
Habitat selection, and its associated density and frequency-dependent evolution, has a profound influence on such vital phenomena as population regulation, species interactions, the assembly of ecological communities, and the origin and maintenance of biodiversity. Different strategies of habitat selection, and their importance in ecology and evolution, can often be revealed simply by plots of density in adjacent habitats. For individual species, the strategies are closely intertwined with mechanisms of population regulation, and with the persistence of populations through time. For interacting species, strategies of habitat selection are not only responsible for species coexistence, but provide one of the most convenient mechanisms for measuring competition, and the various community structures caused by competitive interactions. Other kinds of interactions, such as those between predators and prey, demonstrate that an understanding of the coevolution of habitat-selection strategies among strongly interacting species is essential to properly interpret their spatial and temporal dynamics. At the evolutionary scale, the frequency dependence associated with habitat selection may often allow populations to diverge and diversify into separate species. Habitat selection thereby demonstrates how we can map microevolutionary strategies in behavior onto their population and community consequences, and from there, onto macroevolutionary patterns of speciation and adaptive radiation. We can anticipate that future studies of habitat selection will not only help us complete those maps, but that they will also continue to enrich the panoply of ideas that shape evolutionary ecology.  相似文献   

16.
To examine the mechanisms underlying productivity-diversity relationships, we manipulated nutrient levels in replicate small-scale artificial habitat units in the marine subtidal zone and followed the process of community assembly. In contrast to most enrichment studies, algal diversity increased in enriched habitats relative to controls along with biomass – a result that may be explained by the low nutrient status of the region. Both the total number of faunal species and the total number of individuals were also significantly greater in enriched habitats, but the relationship between algal resources and faunal diversity did not support the resource heterogeneity hypothesis. Received: 14 June 1999 / Accepted: 29 October 1999  相似文献   

17.
Density dependent habitat selection at the community level is regarded as a major determinant of biodiversity at the local scale, and data on these processes and how they are affected by human activities is highly applicable to conservation. By studying the competitive relationships between a specialist and a generalist we can acquire valuable insights about how different environmental elements determine species abundance and distribution and consequently biodiversity. Here we describe a study of density dependent processes that determine the community structure of two rodents: a specialist—the broad toothed mouse (Apodemus mystacinus), and a generalist—the common spiny mouse (Acomys cahirinus) in a Mediterranean maqui habitat, and how this structure is impacted by anthropogenic planting of pine stands. We carried out two field experiments: The first, based on open field trapping, looking at how rodent communities change with habitat structure. The second experiment was an enclosure study aimed at validating the habitat preferences and competitive relationship between the specialist and the generalist. We identified asymmetric competition relationships in which the specialist was dominant over the generalist. Competition intensity was lower in maqui with >10% oak cover, although both species abundances were high. Competition was found only during the limiting season (summer). Based on these findings we produced management recommendations to keep indigenous small mammals’ biodiversity high. Density dependent habitat selection processes play a central role in determining biodiversity, and understanding the mechanisms motivating these processes is needed if alterations in biodiversity in response to human disturbance are to be understood.  相似文献   

18.
Assembly history, including the order in which species arrive into a community, can influence long‐term community structure; however we know less about how timing of species arrival may alter assembly especially under varying resource conditions. To explore how the timing of species arrival interacts with resource availability to alter community assembly, we constructed experimental plant communities and manipulated the interval between plantings of groups of seedlings (0, 5, 10, 15 or 20 days) at low and high levels of soil nutrient supply. To see if community changes influenced ecosystem‐scale processes, we measured parameters across the plant–soil continuum (e.g. plant biomass and net ecosystem carbon dioxide exchange). We found that the timing of species arrival had a large impact on community assembly, but the size of the effect depended on soil fertility. As planting interval increased, plant communities diverged further from the control, but the divergence was stronger at high than at low nutrient supply. Our data suggest that at high nutrient supply, early‐planted species preempted light resources more quickly, thus preventing the successful establishment of later arriving species even at short planting intervals. Finally, we found that assembly related divergence in plant communities scaled to impact ecosystem‐level characteristics such as green leaf chemistry, but had little effect on total community biomass and net ecosystem exchange of CO2 and water vapor. Our data indicate that the effect of a stochastic factor, here the timing of species arrival on community composition, depends on the resource level under which the community assembles.  相似文献   

19.
Synopsis One perspective emphasizing the importance of stochastic processes in determining coral reef fish assemblages implies that there is little organization in species richness, abundance structure, and spatial distribution. We examine the degree to which this perspective is correct by analyzing distribution of fishes on a collection of patch reefs (Discovery Bay, Jamaica). We ask the question whether these patches accumulate species and individuals in a manner consistent with stochastic expectations. To address this question we use two conceptual models, each permitting a different insight. One assumes that fish are distributed stochastically on patches while the other assumes presence of restrictions on fish distribution due to habitat structure. For each conceptual model we use two types of benchmark: we compare observed patterns to those predicted by theoretical models, and we also compare observed patterns to those obtained from a random reallocation of fish individuals to patches. We found that the conceptual model assuming stochastic processes appeared to provide weaker explanation of patterns than the conceptual model that includes restrictions due to habitat structure. Further, and more importantly, we found that (i) the community is shaped by a mixture of stochastic and non-stochastic mechanisms, and (ii) the stochastic assembly processes decrease in importance for species restricted to fewer microhabitat types and sites. Our study therefore indicates that patches do accumulate individuals and species in a manner consistent with stochastic expectations, however, this applies primarily to the habitat generalists (unrestricted species). By the same token, increased habitat specialization by some species imposes constraints on the stochastic model such that it eventually fails.  相似文献   

20.
Olli  Kalle  Heiskanen  Anna-Stiina  Lohikari  Kaarina 《Hydrobiologia》1997,363(1-3):179-189
Vertical migration of two dinoflagellate species (Peridiniellacatenata and Scrippsiella hangoei) and a phototrophic ciliate(Mesodinium rubrum) were studied during the peak and decline of avernal bloom at the SW coast of Finland. During the diel cycle, part of thepopulations of P. catenata and M. rubrum wereobserved in the deeper layers with elevated nutrient concentrations, whileS. hangoei remained in the upper nutrient depleted mixed layer.Using a correspondence analysis the vertical distribution patterns of thespecies and chlorophyll a were examined over a temporal scale of hoursand weeks. The vertical migration was reflected in much higher variabilityin the depth distribution of P. catenata and M. rubrum over a diel scale, compared to S. hangoei. The analysisrevealed also significant differences in species specific depth distributionpatterns over both time scales. It is discussed that the co-existence of thetwo dominant dinoflagellate species during the vernal bloom is due to nicheseparation through behavioural adaptations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号