首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Summary The objective of this study was to determine whether infection of Avena fatua L. plants by the mycorrhizal fungus Glomus intraradices Schenck & Smith could influence the vigor of the offspring generation. Two experiments demonstrated that mycorrhizal infection of the maternal generation had slight but persistent positive effects on offspring leaf expansion in the early stages of growth. In two other experiments, mycorrhizal infection of mother plants had several long lasting effects on their offspring. Offspring produced by mycorrhizal mother plants had greater leaf areas, shoot and root nutrient contents and root:shoot ratios compared to those produced by non-mycorrhizal mother plants. Moreover, mycorrhizal infection of mother plants significantly reduced the weight of individual seeds produced by offspring plants while it increased the P concentrations of the seeds and the number of seeds per spikelet produced by offspring plants. The effects of mycorrhizal infections of maternal plants on the vigor and performance of offspring plants were associated with higher seed phosphorus contents but generally lighter seeds. The results suggest that mycorrhizal infection may influence plant fitness by increasing offspring vigor and offspring reproductive success in addition to previously reported increases in maternal fecundity.  相似文献   

2.
We examined in the field the effect of the vesicular-arbuscular (VA) mycorhizal symbiosis on the reproductive success of Abutilon theophrasti Medic., an early successional annual member of the Malvaceae. Mycorrhizal infection greatly enhanced vegetative growth, and flower, fruit and seed production, resulting in significantly greater recruitment the following year. In addition, the seeds produced by mycorrhizal plants were significantly larger and contained significantly more phosphorus than seeds from non-mycorrhizal plants, an effect which may improve offspring vigor. Infection by mycorrhizal fungi may thus contribute to the overall fitness of a host plant and strongly influence long-term plant population dynamics.  相似文献   

3.
We show here that seed reserves in Leucaena leucocephala (Lam.) de Wit. and Zea mays L. (maize) are important for mycorrhizal formation and seedling growth. Seed reserve removal reduced mycorrhizal formation markedly in Leucaena but not in maize, except at 15 and 45 days after seed reserve removal. Partial or total removal of seed reserves decreased plant growth and tissue nutrient concentrations in both hosts. Nodule number in Leucaena, which was related positively to plant biomass and mycorrhizal infection levels, was reduced when one or both cotyledons were severed. Leucaena seedlings without or with partial seed reserves had higher nutrient use efficiencies throughout seedling growth. But such an effect was observed only initially in maize. Seed reserve removal increased the specific absorption rates of nutrients in both hosts. Phosphorus absorption rate was significantly and positively related to root infection levels in both Leuceana and maize. Though the growth rates of plants without seed reserves were low initially, these plants had higher growth rates during later stages. We conclude that seed reserves are not only important for seedling growth, but also for mycorrhizal formation and nodulation. Received: 15 July 1999 / Accepted: 6 December 1999  相似文献   

4.
Summary We examined how mycorrhizal infection byGlomus etunicatum Becker and Gerd. affected flowering phenology and components of reproduction in eight wild accessions and two cultivars ofLycopersicon esculentum Mill. We did this by performing a detailed demographic study of flower, fruit and seed production. Mycorrhizal infection had variable effects on the ten accessions. Infection significantly decreased the time taken to initiate flowering in some accessions. In addition, infection increased flowering duration in some accessions. In many accessions, infection significantly increased seed production, primarily by increasing the number of inflorescences and infructescences. In some accessions, mycorrhizal infection also increased the proportion of flowers that produced mature fruits or the number of seeds per fruit. Among accessions, shoot phosphorus content was correlated with seed productivity for both mycorrhizal and non-mycorrhizal plants. However, non-mycorrhizal plants produced more seed biomass per mg of shoot phosphorus than mycorrhizal plants.  相似文献   

5.
The effects of soil fertility (two levels of soil nitrogen and two levels of soil phosphorus) and mycorrhizal infection on pollen production and pollen grain size were studied in two cultivars of the common zucchini (Cucurbita pepo). Overall, soil fertility and mycorrhizal infection had significant effects on traits affecting the male function of plants (staminate flower production, pollen production per flower and pollen grain size). There were also differences between the cultivars for these male traits in all three experiments. In addition, pollen grain size decreased toward the end of the growing season. In the mycorrhiza experiment, both phosphate concentration per pollen grain and total phosphate content per anther were greater but not significantly greater in the mycorrhizal plants than in the non-mycorrhizal plants. A significant negative relationship between pollen production and pollen grain size was found in the mycorrhiza and soil phosphorus experiments, indicating that there was a trade-off between pollen production and pollen size. This study is the first to show that mycorrhizal infection has an effect on male function (pollen production and size) in addition to the well-documented effects on female function (fruit/seed production and size).  相似文献   

6.
Seed predation,pathogen infection and life-history traits in Brassica rapa   总被引:1,自引:1,他引:0  
Herbivory and disease can shape the evolution of plant populations, but their joint effects are rarely investigated. Families of plants of Brassica rapa (Brassicaceae) were grown from seeds collected in two naturalized populations in an experimental garden. We examined leaf infection by the fungus Alternaria, seed predation by a gall midge (Cecidomyiidae) and plant life-history traits. Plants from one population had heavier seeds, were more likely to flower, had less fungal infection, had more seed predation and were more fecund. Fungal infection score and seed predation rate increased with plant size, but large plants still had the greatest number of undamaged fruits. Spatial heterogeneity in the experimental garden was significant; seed predation rate and fecundity varied among blocks. An apparent tradeoff existed between susceptibility to disease and seed predation: plants with the highest fungal infection score had the lowest seed predation rate. Alternaria infection varied between populations, but the disease had no effect on fecundity. Seed predation did reduce fecundity. Damaged fruits had 31.4% fewer intact seeds. However, evidence for additive genetic variation in resistance to seed predation was weak. Therefore, neither disease nor seed predation was likely to be a strong agent of genetically based fecundity selection.  相似文献   

7.
A culture experiment was conducted to examine the effects of arbuscular mycorrhizal (AM) fungi on the growth and reproduction ofKummerowia striata, a common annual legume of river floodplains of Japan. The plants were grown from seeds in pots with nutrient-poor sandy soil collected from a fluvial bar. Arbuscular mycorrhizal infection increased the aboveground biomass, nodule weight, leaf nitrogen concentration and seed production. However, flowering occurred earlier in plants without AM fungi. These effects of AM fungi were insignificant in plants supplied with phosphate. These results suggest that AM fungi may influence the establishment ofK. striata in nutrient-poor, disturbed habitats.  相似文献   

8.
Understanding the relative magnitudes of inbreeding and outbreeding depression in rare plant populations is increasingly important for effective management strategies. There may be positive and negative effects of crossing individuals in fragmented populations. Conservation strategies may include introducing new genetic material into rare plant populations, which may be beneficial or detrimental based on whether hybrid offspring are of increased or decreased quality. Thus, it is important to determine the effects of pollen source on offspring fitness in rare plants. We established pollen crosses (i.e. geitonogamous‐self, autonomous‐self, intrasite‐outcross, intersite‐outcross and open‐pollinated controls) to determine the effects of pollen source on fitness (seeds/fruit and seed mass) and early offspring traits (probability of germination, number of leaves, leaf area and seedling height) in the rare plant Polemonium vanbruntiae. Open‐pollinated, intrasite‐outcross and geitonogamous‐self treatments did not differ in fitness. However, plants receiving autonomous‐self pollen had the lowest fitness and the lowest probability of seed germination. Intersite‐outcross plants contained fewer seeds/fruit, but seeds germinated at higher frequencies and seedlings were more vigorous. We also detected heterosis at the seed germination stage. These data may imply that natural populations of P. vanbruntiae exhibit low genetic variation and little gene flow. Evidence suggests that deleterious alleles were not responsible for reduced germination; rather environmental factors, dichogamy, herkogamy and/or lack of competition among pollen grains may have caused low germinability in selfed offspring. Although self‐pollination may provide some reproductive assurance in P. vanbruntiae, the result is a reduction in germination and size‐related early traits for selfed offspring.  相似文献   

9.
  • Plant facilitation promotes coexistence by maintaining differences in the regeneration niche because some nurse species recruit under arid conditions, whereas facilitated species recruit under more mesic conditions. In one Mexican community, 95% of species recruit through facilitation; Mimosa luisana being a keystone nurse for many of them. M. luisana individuals manifest greater fitness when growing in association with their facilitated plants than when growing in isolation. This observation suggests that nurses also benefit from their facilitated plants, a benefit thought to be mediated by mycorrhizal fungi.
  • Under field conditions, we experimentally tested whether mycorrhizal fungi mediate the increased fitness that M. luisana experiences when growing in association with its facilitated plants. We applied fungicide to the soil for nurse plants growing alone and growing in association with their facilitated plants in order to reduce the mycorrhizal colonisation of roots. We then assessed the quantity and quality of seed production of M. luisana in four treatments (isolated‐control, isolated‐fungicide, associated‐control and associated‐fungicide).
  • Fungicide application reduced the percentage root length colonised by mycorrhizae and reduced fitness of M. luisana when growing in association with their facilitated plants but not when growing in isolation. This reduction was reflected in the total number of seeds, number of seeds per pod, seed mass and seed viability.
  • These results suggest that nurses benefit from the presence of their facilitated plants through links established by mycorrhizae, indicating that both plants and belowground mutualistic communities are all part of one system, coexisting by means of intrinsically linked interactions.
  相似文献   

10.
Summary We tested the hypothesis that mycorrhizal infection benefits wild plants to a lesser extent than cultivated plants. This hypothesis stems from two observations: (1) mycorrhizal infection improves plant growth primarily by increasing nutrient uptake, and (2) wild plants often possess special adaptations to soil infertility which are less pronounced in modern cultivated plants. In the first experiment, wild (Avena fatua L.) and cultivated (A. sativa L.) oats were grown hydroponically at four different phosphorus levels. Wild oat was less responsive (in shoot dry weight) to increasing phosphorus availability than cultivated oat. In addition, the root: shoot ratio was much more plastic in wild oat (varying from 0.90 in the low phosphorus solution to 0.25 in the high phosphorus solution) than in cultivated oat (varying from 0.44 to 0.17). In the second experiment, mycorrhizal and non-mycorrhizal wild and cultivated oats were grown in a phosphorus-deficient soil. Mycorrhizal infection generally improved the vegetative growth of both wild and cultivated oats. However, infection significantly increased plant lifespan, number of panicles per plant, shoot phosphorus concentration, shoot phosphorus content, duration of flowering, and the mean weight of individual seeds in cultivated oat, while it had a significantly reduced effect, no effect, or a negative effect on these characters for wild oat. Poor positive responsiveness of wild oat in these characters was thus associated with what might be considered to be inherent adaptations to nutrient deficiency: high root: shoot ratio and inherently low growth rate. Infection also increased seed phosphorus content and reproductive allocation.  相似文献   

11.
Glomus mosseae and the two pod rot pathogens Fusarium solani and Rhizoctonia solani and subsequent effects on growth and yield of peanut (Arachis hypogaea L.) plants were investigated in a greenhouse over a 5-month period. At plant maturity, inoculation with F. solani and/or R. solani significantly reduced shoot and root dry weights, pegs and pod number and seed weight of peanut plants. In contrast, the growth response and biomass of peanut plants inoculated with G. mosseae was significantly higher than that of non-mycorrhizal plants, both in the presence and absence of the pathogens. Plants inoculated with G. mosseae had a lower incidence of root rot, decayed pods, and death than non-mycorrhizal ones. The pathogens either alone or in combination reduced root colonization by the mycorrhizal fungus. Propagule numbers of each pathogen isolated from pod shell, seed, carpophore, lower stem and root were significantly lower in mycorrhizal plants than in the non-mycorrhizal plants. Thus, G. mosseae protected peanut plants from infection by pod rot fungal pathogens. Accepted: 10 February 2000  相似文献   

12.
M. Niemi  M. Vestberg 《Plant and Soil》1992,144(1):133-142
The effect of inoculation with VA mycorrhizal fungi on the productivity of commercially grown strawberry, cv. Senga Sengana, was studied in a field experiment in southern Finland. Micropropagated certified strawberry plants were inoculated at planting with different strains of Glomus spp. Although none of the inoculants raised the level of root infection above the natural infection level, all inoculated plants produced more runners in the first year than the control plants. Glomus intraradix Schenck & Smith (GI), G. etunicatum Becker & Gerdemann (GE) and Glomus sp. E3 (GF) significantly increased the number of runners by 57%, 69% and 76%, respectively. However, there was no significant increase in runner production in the second year, nor in fruit production in the third year. Of the strains tested, E3 was the most effective, increasing runner production by 30% over the first two years. Plants inoculated with G. mosseae (Nicol. & Gerd.) Gerdemann & Trappe (GM) produced fewer but larger runners than the control plants, and had a higher capacity for runner production relative to the plant size.The possibility of establishing mycorrhizal infection in micropropagated strawberries directly after the in-vitro phase under standard nursery conditions was studied in two glasshouse experiments. Three (GE, GF and GM) of five Glomus spp. caused mycorrhizal infection in plants of all four strawberry cultivars studied. In practical strawberry farming greater benefit of the mycorrhizal symbiosis may be achieved by using pretransplant-inoculated plants and adjusting the fertilizer regimes.  相似文献   

13.
Most terrestrial plants live in symbiosis with arbuscular mycorrhizal (AM) fungi. Studies on the direct interaction between plants and mycorrhizal fungi are numerous whereas studies on the indirect interaction between such fungi and herbivores feeding on aboveground plant parts are scarce. We studied the impact of AM symbiosis on host plant choice and life history of an acarine surface piercing-sucking herbivore, the polyphagous two-spotted spider mite Tetranychus urticae. Experiments were performed on detached leaflets taken from common bean plants (Phaseolus vulgaris) colonized or not colonized by the AM fungus Glomus mosseae. T. urticae females were subjected to choice tests between leaves from mycorrhizal and non-mycorrhizal plants. Juvenile survival and development, adult female survival, oviposition rate and offspring sex ratio were measured in order to estimate the population growth parameters of T. urticae on either substrate. Moreover, we analyzed the macro- and micronutrient concentration of the aboveground plant parts. Adult T. urticae females preferentially resided and oviposited on mycorrhizal versus non-mycorrhizal leaflets. AM symbiosis significantly decreased embryonic development time and increased the overall oviposition rate as well as the proportion of female offspring produced during peak oviposition. Altogether, the improved life history parameters resulted in significant changes in net reproductive rate, intrinsic rate of increase, doubling time and finite rate of increase. Aboveground parts of colonized plants showed higher concentrations of P and K whereas Mn and Zn were both found at lower levels. This is the first study documenting the effect of AM symbiosis on the population growth rates of a herbivore, tracking the changes in life history characteristics throughout the life cycle. We discuss the AM-plant-herbivore interaction in relation to plant quality, herbivore feeding type and site and the evolutionary implications in a multi-trophic context.  相似文献   

14.
Mycorrhizal fungi were sampled in a deciduous tropical forest on the Pacific coast of Mexico during different seasons and in natural treefall gaps and pastures. All 12 plant species sampled in the forest were arbuscular mycorrhizal. The percent root infection and spore production were closely related to the phenology of the plants. Most tree species and all herbaceous species had the highest infection in the summer rainy season, but two species, Opuntia excelsa and Jacquinia pungens, had highest infection in the dry season. Unusually high rainfall during the dry season was associated with increased infection but not increased spore production. Spore density was low for all species at all sample times, except at the beginning of the July 1993 rainy season in, when we observed up to 28 spores/g soil. The percent cover of shrubs or herbs did not increase in gaps after two years, and we observed no colonizing seedlings. No plant species with cover higher than 2.7 percent occurred exclusively in gaps or forest. The percent mycorrhizal infection did not differ significantly between gaps and forest. Spore counts were as high in the gaps as in the forest in two of the three gaps but lower in the third gap. The lack of significant response of plants in these gaps after two years differed from the rapid response in tropical rainforests. It is likely related to the small size of the gaps and to light infiltration to the forest floor. Pastures were dominated by two species of exotic grasses and one species of mycorrhizal fungus, whereas forests had 15 fungal species. The slow regrowth of vegetation in gaps was not limited by mycorrhizal fungi, since they were still abundant after the treefalls, but recovery in pastures could be affected by low fungal diversity and dominance of grasses.  相似文献   

15.
Commercially prepared, peat-based mycorrhizal inocula were studied for growth effects on asparagus grown under greenhouse and field (fumigated) conditions. The fungi tested were Glomus clarum (GC), G. intraradix (GI), G. monosporum (GM), G. versifomre (GVR) and G. vesiculiferum (GVS). GI significantly increased plant dry weight in the greenhouse and the field. Survival of mycorrhizal tissue-cultured transplants after 14 months in the field was increased by twofold over the control. In a second experiment asparagus was grown from seed in the greenhouse in peat inoculated with a G. fasciculatum-like fungus (GF), GI and GVR with applied P levels of 0, 50, 100 and 150 ppm and harvested after 13 and 17 weeks. Total dry weights of GI and GVR plants were significantly increased over those of the control and GF. Dry weight in this second experiment was positively correlated with root colonization. Root colonization at week 13 was slightly reduced with increasing levels of applied P, but not at week 17. The data suggest that the increased growth of mycorrhizal plants was not related to an increase in tissue P concentration, since there was no growth response to applied P and tissue P concentration in the mycorrhizal plants was lower than in the non-mycorrhizal plants.  相似文献   

16.
The effect of Streptomyces albovinaceus (S-22) and Bacillus sp. (B1) on the growth response, nodulation, nutrition and nitrogenase activities of faba bean (Vicia faba) varieties infected with Glomus mosseae under pot conditions in sterile soil amended with chitin was studied. The growth, nodulation, nutrients content and nitrogenase activity of mycorrhiza-treated plants of Giza-667 were significantly increased compared to untreated ones. Such increases were related to the increase in mycorrhizal root infection. Amendment of soil with chitin alone reduced the growth, nodulation, total nitrogen contents and nitrogenase activities of mycorrhiza-treated faba bean plants (Giza-667) compared to untreated plants. Inoculation of plants with S. albovinaceus or Bacillus sp. significantly increased the level of mycorrhizal roots infection, but addition of chitin to the soil in combination with Bacillus sp. reduced the mycorrhizal infection of faba bean roots. Highest phosphorus contents of faba bean Giza-667 were recorded after G. mosseae inoculation in the presence of all treatments. Similar results were observed for the other varieties. The microbial populations were significantly increased in rhizospheres amended with chitin. Such increases were not in response to the mycorrhizal inoculation. Generally, the microflora of faba bean rhizospheres was increased after treatment with G. mosseae in the absence of chitin amendment alone compared with non-mycorrhizal rhizospheres.  相似文献   

17.
T. Steinger  R. Gall  B. Schmid 《Oecologia》2000,123(4):475-480
Elevated CO2 can affect plant fitness not only through its effects on seed production but also by altering the quality of seeds and therefore germination and seedling performance. We collected seeds from mother plants of Bromus erectus grown in field plots at ambient and elevated CO2 (m-CO2, maternal CO2) and germinated them in the greenhouse in a reciprocal design under ambient and elevated CO2 (o-CO2, offspring CO2). This design allowed us to examine both the direct effects of elevated CO2 on germination and seedling growth and the indirect (maternal) effects via altered seed quality. Elevated m-CO2 significantly increased seed mass and increased the C:N ratio of seeds from field-grown plants. Percentage and rate of germination were not affected by the m-CO2 or o-CO2 treatments. Similarly, elevated m-CO2 had no significant effect on seedling size as estimated by the total leaf length. When differences in seed mass were adjusted by using seed mass as a covariate in ANOVA, a negative effect of m-CO2 on seedling size appeared which increased with increasing seed mass (significant covariate×m-CO2 interaction). This may indicate that the advantage of increased seed mass at elevated m-CO2 was offset by the reduced concentration of nitrogen (and possibly other nutrients) in these seeds. In contrast to m-CO2, elevated o-CO2 greatly increased seedling size, and this stimulatory effect of elevated o-CO2 was found to increase with increasing seed mass (significant covariate×o-CO2 interaction). Taken together, these results suggest that in B. erectus transgenerational effects of elevated CO2 are relatively small. However, other factors (genetic and environmental) that contribute to variation in seed provisioning can critically influence the responsiveness of seedlings to elevated CO2. Received: 10 May 1999 / Accepted: 6 January 2000  相似文献   

18.
The effects of mycorrhizal infection, soil P availability and fruit production on the male function of reproduction were examined in two cultivars of tomato (Lycopersicon esculentum Mill.). Tomato plants were grown in a greenhouse under three treatment combinations: non‐mycorrhizal, low P (NMPO); non‐mycorrhizal, high P (NMP3); and mycorrhizal, low P (MPO). In addition, all treatment combinations were grown both with and without fruit. Fruit production decreased final leaf biomass, flower production and in vitro pollen tube growth rates, often reducing the beneficial effects of increased P uptake. Thus, fruit production diverted resources from subsequent vegetative growth, flower production and pollen development. As the growing season progressed, mean pollen production per flower and in vitro germination and tube growth decreased. Mycorrhizal infection and high soil P conditions increased final leaf biomass, flower production, mean pollen production per flower (in one cultivar) and in vitro pollen tube growth rates. Thus, mycorrhizal infection and high soil P conditions increased pollen quantity and quality, thereby enhancing fitness through the male function. Similar trends in these treatments suggested that mycorrhizal effects on the male function were largely the result of improved P acquisition.  相似文献   

19.
Plant growth and phosphorus (P) uptake of two selections of rye (Secale cereale L.) differing in length of root hairs, in response to mycorrhizal infection were investigated. Rye plants with short root hairs (SRH) had a greater length of root infected by Glomus intraradices (up to 32 m pot–1) than those with long root hairs (LRH) (up to 10 m pot–1). Application of P decreased the percentage of root length infected in both selections. In low-P soil, mycorrhizal infection increased shoot and root P concentration, especially in LRH plants. Generally, LRH had higher shoot dry weight than SRH plants. P uptake was increased both by LRH and by mycorrhizal infection. Differences in specific P uptake and P utilization efficiency between SRH and LRH plants were observed in non-mycorrhizal plants. With low P supply, P utilization efficiency (dry matter yield per unit of P taken up) of LRH plants increased with time. However, mycorrhizal infection reduced P utilization efficiency, particularly of SRH plants. SRH plants, which were agronomically less efficient (i.e. low dry matter yield at low P supply) were more responsive to either mycorrhizal infection or P addition than the LRH plants. No interaction was observed between mycorrhizal infection and root hair length.  相似文献   

20.
In order to establish the current scenario of aflatoxigenic fungal infection and aflatoxin contamination in sorghum seeds across India, 58 seed samples were collected from different agro-climatic regions. Among these, 67.2% samples were infected with Aspergillus spp. and 28% were found contaminated with aflatoxins ranging from 0.0 to 130?μg?kg?1. Greenhouse studies revealed no correlation between incidence of Aspergillus flavus and aflatoxin content, and its effect on seed quality parameters. Among the 37 A. flavus strains isolated, six were non-aflatoxigenic when analysed through cultural, TLC and ic-ELISA. Seed treatment with biocontrol agents (antagonistic Rhizobacteria and Trichoderma) suppressed the growth of A. flavus under laboratory and significantly enhanced seed quality variables under greenhouse conditions to a various extent. Field trials with selected biocontrol agents showed that talcum powder formulations of Pseudomonas putida Has-1/c, Bacillus spp. 3/a, Trichoderma asperellum M5 and T. asperellum T2 improved seedling emergence, % nutrient accumulation in plants, increased plant biomass and 1000 seed weight. Seeds harvested from treated plants showed significant increase in seed quality variables under laboratory and greenhouse conditions in comparison with control, but there was no significant difference in A. flavus infection and aflatoxin was completely absent in all treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号