首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Replication of T4 DNA in Escherichia coli Treated with Toluene   总被引:6,自引:6,他引:0       下载免费PDF全文
Deoxyribonucleoside triphosphates are incorporated into T4 DNA in infected cells treated with toluene. Under the proper conditions the incorporation is controlled by the known T4 DNA polymerase and proceeds by a semiconservative mechanism. Both strands of the phage DNA are replicated into a high molecular weight progeny molecule. The replication system is accessible to extracellular pancreatic DNase added to the reaction mixture. At early times after infection a second replication system, not under control of the gene 43 polymerase, has been detected which synthesizes T4 DNA in toluenized cells.  相似文献   

2.
3.
4.
Rescue of abortive T7 gene 2 mutant phage infection by rifampin.   总被引:2,自引:1,他引:1       下载免费PDF全文
Infection of Escherichia coli with T7 gene 2 mutant phage was abortive; concatemeric phage DNA was synthesized but was not packaged into the phage head, resulting in an accumulation of DNA species shorter in size than the phage genome, concomitant with an accumulation of phage head-related structures. Appearance of concatemeric T7 DNA in gene 2 mutant phage infection during onset of T7 DNA replication indicates that the product of gene 2 was required for proper processing or packaging of concatemer DNA rather than for the synthesis of T7 progeny DNA or concatemer formation. This abortive infection by gene 2 mutant phage could be rescued by rifampin. If rifampin was added at the onset of T7 DNA replication, concatemeric DNA molecules were properly packaged into phage heads, as evidenced by the production of infectious progeny phage. Since the gene 2 product acts as a specific inhibitor of E. coli RNA polymerase by preventing the enzyme from binding T7 DNA, uninhibited E. coli RNA polymerase in gene 2 mutant phage-infected cells interacts with concatemeric T7 DNA and perturbs proper DNA processing unless another inhibitor of the enzyme (rifampin) was added. Therefore, the involvement of gene 2 protein in T7 DNA processing may be due to its single function as the specific inhibitor of the host E. coli RNA polymerase.  相似文献   

5.
Inhibition of exonuclease V after infection of E. coli by bacteriophage T7   总被引:9,自引:0,他引:9  
Exonuclease V (recBC DNase) is inactivated in E. coli between 4 and 7 min after infection by T7. This process requires protein sythesis. The inactivation does not occur when T7 is deficient for its RNA polymerase and thus does not express the genes involved in DNA replication and phage maturation. Some implications of this new function of T7 are discussed with respect to the processes of infection and DNA replication.  相似文献   

6.
Methods developed for isolating bacterial nucleoids were applied to bacteria infected with phage T4. The replicating pool of T4 DNA was isolated as a particle composed of condensed T4 DNA and certain RNA and protein components of the cell. The particles have a narrow sedimentation profile (weight-average s=2,500S) and have, on average, a T4 DNA content similar to that of the infected cell. Their dimensions observed via electron and fluorescence microscopy are similar to the dimensions of the intracellular DNA pool. The DNA packaging density is less than that of the isolated bacterial nucleoid but appears to be roughly similar to its state in vivo. Host-cell proteins and T4-specific proteins bound to the DNA were characterized by electrophoresis on polyacrylamide gels. The major host proteins are the RNA polymerase subunits and two envelope proteins (molecular weights, 36,000 and 31,000). Other major proteins of the host cell were absent or barely detectable. Single-strand breaks can be introduced into the DNA with gamma radiation or DNase without affecting its sedimentation rate. This and other studies of the effects of intercalated ethidium molecules have suggested that the average superhelical density of the condensed DNA is small. However, these studies also indicated that there may be a few domains in the DNA that become positively supercoiled in the presence of high concentrations of ethidium bromide. In contrast to the Escherichia coli nucleoid, the T4 DNA structure remains condensed after the RNA and protein components have been removed (although there may be slight relaxation in the state of condensation under these conditions).  相似文献   

7.
8.
9.
Bacteriophage T4 genome.   总被引:2,自引:0,他引:2  
  相似文献   

10.
At a replication fork DNA primase synthesizes oligoribonucleotides that serve as primers for the lagging strand DNA polymerase. In the bacteriophage T7 replication system, DNA primase is encoded by gene 4 of the phage. The 63-kDa gene 4 protein is composed of two major domains, a helicase domain and a primase domain located in the C- and N-terminal halves of the protein, respectively. T7 DNA primase recognizes the sequence 5'-NNGTC-3' via a zinc motif and catalyzes the template-directed synthesis of tetraribonucleotides pppACNN. T7 DNA primase, like other primases, shares limited homology with DNA-dependent RNA polymerases. To identify the catalytic core of the T7 DNA primase, single-point mutations were introduced into a basic region that shares sequence homology with RNA polymerases. The genetically altered gene 4 proteins were examined for their ability to support phage growth, to synthesize functional primers, and to recognize primase recognition sites. Two lysine residues, Lys-122 and Lys-128, are essential for phage growth. The two residues play a key role in the synthesis of phosphodiester bonds but are not involved in other activities mediated by the protein. The altered primases are unable to either synthesize or extend an oligoribonucleotide. However, the altered primases do recognize the primase recognition sequence, anneal an exogenous primer 5'-ACCC-3' at the site, and transfer the primer to T7 DNA polymerase. Other lysines in the vicinity are not essential for the synthesis of primers.  相似文献   

11.
This paper describes the construction of a DNA molecule containing a topologically stable structure that simulates a replication fork. This preformed DNA molecule is a circular duplex of 7.2 X 10(3) base pairs (M13mp6 DNA) from which arises, at a unique BamHI recognition site, a noncomplementary 5'-phosphoryl-terminated single strand of 237 nucleotides (SV40 DNA). This structure has two experimental attributes. 1) Templates for both leading and lagging strand synthesis exist as stable structures prior to any DNA synthesis. 2) DNA synthesis creates a cleavage site for the restriction endonuclease BamHI. Form I of T7 DNA polymerase, alone, catalyzes limited DNA synthesis at the preformed replication fork whereas Form II, alone, polymerizes less than 5 nucleotides. However, when T7 gene 4 protein is present, Form II of T7 DNA polymerase catalyzes rapid and extensive synthesis via a rolling circle mode. Kinetic analysis of this synthesis reveals that the fork moves at a rate of 300 bases/s at 30 degrees C. We conclude that the T7 gene 4 protein requires a single-stranded DNA binding site from which point it translocates to the replication fork where it functions as a helicase. The phage T4 DNA polymerase catalyzes DNA synthesis at this preformed replication fork in the presence of gene 4 protein, but the amount of DNA synthesized is less that 3% of the amount synthesized by the combination of Form II of T7 DNA polymerase and gene 4 protein. We conclude that T7 DNA polymerase and T7 gene 4 protein interact specifically during DNA synthesis at a replication fork.  相似文献   

12.
3-Decynoyl-N-acetylcysteamine (3-decynoyl-NAC) is an analog which specifically causes the immediate cessation of the biosynthesis of unsaturated fatty acids in Escherichia coli, whereas the synthesis of saturated fatty acids is actually stimulated. As a result, the cell membrane accumulates saturated fatty acids in its phospholipid. Addition of the inhibitor at the time of infection of E. coli by T4 phage had no effect on normal phage replication and development, implying that the synthesis of unsaturated fatty acids per se has little effect on T4 DNA replication. However, if the integrity and composition of the bacterial membrane was grossly perturbed by first treating the cells with the inhibitor for 60 min before infection, the proper initiation and the attainment of a rapid rate of T4 DNA synthesis were not observed. Under these conditions, a full complement of T4 early proteins was synthesized. The membrane associability of the known DNA delay proteins induced by wild-type T4 phage in the treated cells resembled that expected of a culture of untreated cells infected with a DNA delay mutant. When any one of three DNA delay mutants was used to infect 3-decynoyl-NAC-treated cells, T4 DNA replication was aborted. These findings suggest that some kind of specific interactions among the initiation proteins defined by the DNA delay mutants and the bacterial membrane may be necessary to facilitate the normal initiation and rapid rate of T4 DNA replication. A model for the involvement of the three different initiation proteins and the subsequent attainment of rapid DNA synthesis is discussed.  相似文献   

13.
An unusual left end (M-end) has been identified on bacteriophage T7 DNA isolated from T7-infected cells. This end has a "hairpin" structure and is formed at a short inverted repeat sequence centered around nucleotide 39,587 of T7, 190 base-pairs to the left of the site where a mature left end is formed on the T7 concatemer. We do not detect the companion right end that would be formed if the M-end is produced by a double-stranded cut on the T7 concatemer. This suggests that the hairpin left end may be generated from a single-stranded cut in the DNA that is used to prime rightward DNA synthesis. The formation of M-end does not require the products of T7 genes 10, 18 or 19, proteins that are essential for the formation of mature T7 ends. During infection with a T7 gene 3 (endonuclease) mutant, phage DNA synthesis is reduced and the concatemers are not processed into unit length DNA molecules, but both M-end and the mature right end are formed on the concatemer DNA. These two ends are also found associated with the large, rapidly sedimenting concatemers formed during a normal T7 infection while the mature left end is present only on unit length T7 DNA molecules. We propose that DNA replication primed from the hairpin end produced by a nick in the inverted repeat sequence provides a mechanism to duplicate the terminal repeat before DNA packaging. Packaging is initiated with the formation of a mature right end on the branched concatemer and, as the phage head is filled, the T7 gene 3 endonuclease may be required to trim the replication forks from the DNA. Concatemer processing is completed by the removal of the 190 base-pair hairpin end to produce the mature left end.  相似文献   

14.
15.
16.
17.
We suggest that the general mechanism by which T4 phage turns off host macromolecular synthesis involves specific phage proteins which react with key components in the synthetic pathway. Support for this mechanism exists for the inhibition of host RNA synthesis. Here we note that the host rep function was inhibited after T4 phage infection. Since rep functions are known to be involved in host DNA replication, inhibition of rep might alter the course of host DNA replication.  相似文献   

18.
The nucleotide sequence running from the genetic left end of bacteriophage T7 DNA to within the coding sequence of gene 4 is given, except for the internal coding sequence for the gene 1 protein, which has been determined elsewhere. The sequence presented contains nucleotides 1 to 3342 and 5654 to 12,100 of the approximately 40,000 base-pairs of T7 DNA. This sequence includes: the three strong early promoters and the termination site for Escherichia coli RNA polymerase: eight promoter sites for T7 RNA polymerase; six RNAase III cleavage sites; the primary origin of replication of T7 DNA; the complete coding sequences for 13 previously known T7 proteins, including the anti-restriction protein, protein kinase, DNA ligase, the gene 2 inhibitor of E. coli RNA polymerase, single-strand DNA binding protein, the gene 3 endonuclease, and lysozyme (which is actually an N-acetylmuramyl-l-alanine amidase); the complete coding sequences for eight potential new T7-coded proteins; and two apparently independent initiation sites that produce overlapping polypeptide chains of gene 4 primase. More than 86% of the first 12,100 base-pairs of T7 DNA appear to be devoted to specifying amino acid sequences for T7 proteins, and the arrangement of coding sequences and other genetic elements is very efficient. There is little overlap between coding sequences for different proteins, but junctions between adjacent coding sequences are typically close, the termination codon for one protein often overlapping the initiation codon for the next. For almost half of the potential T7 proteins, the sequence in the messenger RNA that can interact with 16 S ribosomal RNA in initiation of protein synthesis is part of the coding sequence for the preceding protein. The longest non-coding region, about 900 base-pairs, is at the left end of the DNA. The right half of this region contains the strong early promoters for E. coli RNA polymerase and the first RNAase III cleavage site. The left end contains the terminal repetition (nucleotides 1 to 160), followed by a striking array of repeated sequences (nucleotides 175 to 340) that might have some role in packaging the DNA into phage particles, and an A · T-rich region (nucleotides 356 to 492) that contains a promoter for T7 RNA polymerase, and which might function as a replication origin.  相似文献   

19.
Gene 5 of bacteriophage T7 encodes a DNA polymerase essential for phage replication. A single point mutation in gene 5 confers temperature sensitivity for phage growth. The mutation results in an alanine to valine substitution at residue 73 in the exonuclease domain. Upon infection of Escherichia coli by the temperature-sensitive phage at 42 degrees C, there is no detectable T7 DNA synthesis in vivo. DNA polymerase activity in these phage-infected cell extracts is undetectable at assay temperatures of 30 degrees C or 42 degrees C. Upon infection at 30 degrees C, both DNA synthesis in vivo and DNA polymerase activity in cell extracts assayed at 30 degrees C or 42 degrees C approach levels observed using wild-type T7 phage. The amount of soluble gene 5 protein produced at 42 degrees C is comparable to that produced at 30 degrees C, indicating that the temperature-sensitive phenotype is not due to reduced expression, stability, or solubility. Thus the polymerase induced at elevated temperatures by the temperature-sensitive phage is functionally inactive. Consistent with this observation, biochemical properties and heat inactivation profiles of the genetically altered enzyme over-produced at 30 degrees C closely resemble that of wild-type T7 DNA polymerase. It is likely that the polymerase produced at elevated temperatures is a misfolded intermediate in its folding pathway.  相似文献   

20.
The nucleotidyl transfer reaction catalyzed by DNA polymerases is the critical step governing the accurate transfer of genetic information during DNA replication, and its malfunctioning can cause mutations leading to human diseases, including cancer. Here, utilizing ab initio quantum mechanical/molecular mechanical calculations with free-energy perturbation, we carried out an extensive investigation of the nucleotidyl transfer reaction mechanism in the well-characterized high-fidelity replicative DNA polymerase from phage T7. Our defined mechanism entails an initial concerted deprotonation of a conserved crystal water molecule with protonation of the γ-phosphate of the deoxynucleotide triphosphate(dNTP) via a solvent water molecule, and then the proton on the primer 3′-terminus is transferred to the resulting hydroxide ion. Subsequently, the nucleophilic attack takes place, with the formation of a metastable pentacovalent phosphorane intermediate. Finally, the pyrophosphate leaves, facilitated by the relay of the proton on the γ-phosphate to the α-β bridging oxygen via solvent water. The computed activation free-energy barrier is consistent with kinetic data for the chemistry step with correct nucleotide incorporation in T7 DNA polymerase. This variant of the water-mediated and substrate-assisted mechanism has features tailored to the structure of the T7 DNA polymerase. However, a unifying theme in the water-mediated and substrate-assisted mechanism is the cycling through crystal and solvent water molecules of the proton originating from the primer 3′-terminus to the α-β bridging oxygen of the deoxynucleotide triphosphate; this neutralizes the evolving negative charge as pyrophosphate leaves and restores the polymerase to its pre-chemistry state. These unifying features are likely requisite elements for nucleotidyl transfer reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号