首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A number of strains of Escherichia coli K-12 failed to synthesize significant amounts of biodegradative threonine dehydratase (EC 4.2.1.16) when grown anaerobically in tryptone-yeast extract medium, a condition which is optimal for the induction of this enzyme. However, the addition of 10 mM potassium nitrate to the culture medium enabled a few of these strains, notably MB201, to induce the enzyme. An examination of the kinetic parameters, modifier sensitivity, and immunological cross-reactivity revealed that the enzyme produced by MB201 in nitrate-supplemented medium appeared indistinguishable from the dehydratase of a wild-type strain. The reduced expression of threonine dehydratase in MB201 appeared highly specific; the synthesis of two other inducible enzymes, D-serine deaminase and tryptophanase, and two "anaerobic" proteins, namely, fumarate reductase and cytochrome c551, remained unaffected. The mutation (tdcI) responsible for the altered expression of the dehydratase in MB201 was located at min 91 on the E. coli chromosome and appeared to tightly linked to if not identical with pgi, the gene encoding phosphoglucose isomerase, as judged by growth experiments on glucose and fructose, direct assay of phosphoglucose isomerase activity, spontaneous and simultaneous reversion of MB201 (tdcI) to TdcI+ and Pgi+ phenotype, and cosegregation of the two loci during transduction with P1 phage. Because not all strains lacking the dehydratase showed nitrate-dependent enzyme synthesis or had lesions at the pgi locus, it appears that mutations at multiple loci on the E. coli chromosome may influence the expression of the enzyme in vivo.  相似文献   

2.
Any one of five amino acis (alanine, asparagine, glutamine, glycine, and serine) is an essential requirement for the induction of ornithine decarboxylase (EC 4.1.1.17) in cultured chinese hamster ovary (CHO) cells maintained with a salts/glucose, medium. Each of these amino acids induced a striking activation of ornithine decarboxylase in the presence of dibutyryl cyclic AMP and luteinizing hormone. The effect of the other amino acids was considerably less or negligible. The active amino acids at optimal concentrations (10 mM) induced only a 10-20 fold enhancement of enzyme activity alone, while in the presence of dibutyryl cyclic AMP, ornithine decarboxylase activity was increased 40-50 fold within 7-8 h. Of the hormones and drugs tested, luteinizing hormone resulted in the highest (300-500 fold) induction of ornithine decarboxylase with optimal concentrations of dibutyryl cyclic AMP and asparagnine. Omission of dibutyryl cyclic AMP reduced this maximal activation to one half while optimal levels of luteinizing hormone alone caused no enhancement of ornithine decarboxylase activity. The induction of ornithine decarboxylase elicited by dibutyryl cyclic AMP, amino acid and luteinizing hormone was diminished about 50% with inhibitors of RNA and protein synthesis. The specific amino acid requirements for ornithine decarboxylase induction in chinese hamster ovary cells was similar to the requirements for induction in two other transformed cell lines. Understanding the mechanism of enzyme induction requires an identification of the essential components of the regulatory system. The essential requirement for enzyme induction is one of five amino acids. The induction of ornithine decarboxylase by dibutyryl cyclic AMP and luteinizing hormone was additive in the presence of an active amino acid.  相似文献   

3.
Synthesis of the biodegradative L-threonine dehydratase in Escherichia coli, Crookes strain, was prevented by dissolved oxygen concentrations of 6 micrometer or greater. This effect was shown to be exerted solely on synthesis, rather than being the result of enzyme inactivation in vivo. In addition to an anaerobic environment, maximum enzyme synthesis was dependent upon the presence of a complete complement of amino acids, with omission of L-threonine, L-valine, or L-leucine producing the largest decreases in enzyme formation. L-Threonine, the most essential of the amino acid requirements, could be partially replaced by DL-allothreonine or alpha-ketobutyrate. Half-maximal stimulation of enzyme synthesis occurred with 0.4 mM threonine in the medium. The roles of anaerobiosis and amino acids are interpreted as being in accord with the concept that threonine dehydratase functions in anaerobic energy production under conditions of amino acid sufficiency.  相似文献   

4.
L-threo-3-Hydroxyaspartate dehydratase (L-threo-3-hydroxyaspartate hydro-lyase), which exhibited specificity for L-threo-3-hydroxyaspartate (K(m)=0.74 mM, V(max)=37.5 micromol min(-1) (mg protein)(-1)) but not for D-threo or D, L-erythro-3-hydroxyaspartate, was purified from a cell-free extract of Pseudomonas sp. T62. The activity of the enzyme was inhibited by hydroxylamine and EDTA, which suggests that pyridoxal 5'-phosphate and divalent cations participate in the enzyme reaction. The NH(2)-terminal amino acid sequence showed significant similarity to the Saccharomyces cerevisiae YKL218c gene product, a hypothetical threonine dehydratase. However, the purified enzyme showed no threonine dehydratase activity.  相似文献   

5.
To determine the inducer(s) of the biodegradative threonine deaminase in Escherichia coli, the effects of various amino acids on the synthesis of this enzyme were investigated. The complex medium used hitherto for the enzyme induction can be completely replaced by a synthetic medium composed of 18 natural amino acids. In this synthetic medium, the omission of each of the seven amino acids threonine, serine, aspartic acid, methionine, valine, leucine, and arginine resulted in the greatest loss of enzyme formation. These seven amino acids did not significantly influence the uptake of other amino acids into the cells. Furthermore, they did not stimulate the conversion of inactive enzyme into an active form, since they did not affect the enzyme level in cells in which protein synthesis was inhibited by chloramphenicol. Threonine, serine, aspartic acid, and methionine failed to stimulate enzyme production in cells in which messenger ribonucleic acid synthesis was arrested by rifampin, whereas valine, leucine, and arginine stimulated enzyme synthesis under the same conditions. Therefore, the first four amino acids appear to act as inducers of the biodegradative threonine deaminase in E. coli and the last three amino acids appear to be amplifiers of enzyme production. The term "multivalent induction" has been proposed for this type of induction, i.e., enzyme induction only by the simultaneous presence of several amino acids.  相似文献   

6.
The effect of cyclic 3',5'-AMP and supplemental dietary glycine upon de novo synthesis of serine metabolic enzymes in chick livers were examined. Chicks fed crystalline amino acid diets containing 2% glycine had approximately twofold the activity in liver for 3-phosphoglycerate dehydrogenase and phosphoserine phosphatase compared to liver tissue from chicks fed diets lacking in dietary glycine. Chicks subjected to daily intraperitoneal injections of cyclic 3',5'-AMP and fed diets containing no dietary glycine contained biosynthetic enzyme activity similar to glycine-fed chicks suggesting a correlation between glycine and cyclic AMP for serine enzyme induction. The elevated enzyme activity in liver of chicks fed dietary glycine or injected with cyclic AMP was inhibited when chicks were also injected with actinomycin D indicating de novo synthesis of 3-phosphoglycerate dehydrogenase and phosphoserine phosphatase. Dietary glycine or cyclic AMP, however, did not change serine dehydratase and glycerate dehydrogenase activities in chick liver.  相似文献   

7.
To explain the requirement for anaerobic conditions in the induction of biodegradative L-threonine dehydratase in Escherichia coli, Crookes strain, measurements of cyclic AMP (cAMP) were made during aerobic and anaerobic growth and upon an aerobic-to-anaerobic transition. Internal cAMP levels were similar (5 to 10 muM) throughout exponential growth, whether aerobic or anaerobic, but only during anaerobiosis was threonine dehydratase synthesized. When an exponentially growing aerobic culture was made anaerobic, a sharp increase in internal cAMP was noted, reaching 300 muM within 10 min and declining thereafter to normal anaerobic levels. Threonine dehydratase synthesis was detected immediately after the attainment of peak cAMP levels and continued for several generations. A similar pattern but with less accumulation of cAMP and less threonine dehydratase production was also noted upon treatment of an aerobically growing culture with KCN. Pyruvate addition at the time of anaerobic shock severely affected both cAMP accumulation and threonine dehydratase synthesis; however, externally added cAMP could partially counter the pyruvate effect on enzyme synthesis. The conclusion was reached that conditions which resulted in a temporary energy deficit brought about the major accumulation of cAMP, and this elevated level served as a signal for initiation of threonine dehydratase synthesis to supply energy by the nonoxidative degradation of threonine.  相似文献   

8.
To elucidate the repression mechanism of ammonium ions on the biosynthesis of tylosin in Streptomyces fradiae NRRL 2702, enzyme activities involved in the metabolism of the aspartate family of amino acids were evaluated in relation to the ammonium ion concentration and tylosin production. It was found that aspartate aminotransferase was essential for both cell growth and tylosin production. However, both threonine dehydratase and valine dehydrogenase were repressed by supplemented ammonium ions at concentrations higher than 50 mM. Threonine dehydratase was purified from cell-free extracts by acetone precipitation, ion-exchange chromatography and gel filtration, and its molecular mass was estimated to be 67,200 Da. The optimum pH and temperature for threonine dehydratase activity were 7.5 and 25 degrees C, respectively, and the Km value for threonine under these optimum conditions was 21 mM. The inhibition pattern of ammonium ions on the activity of threonine dehydratase appeared to be a mixed type.  相似文献   

9.
Summary Catabolic effects which exert control over the inducible synthesis of three enzymes in Arthrobacter crystallopoietes involve at least three different mechanisms: interference with inducer transport, severe catabolite repression, and transient repression. The rate of histidase induction by histidine is reduced by incubation of the cells with succinate or glucose. The maximum effect of succinate, 67% reduction in histidase production, occurs only after 100 min of incubation with succinate. At least 3h of incubation are required for the maximum effect of glucose (31% reduction in enzyme induction). Both succinate and glucose inhibit histidine transport. Cyclic adenosine 3,5-monophosphate (cyclic AMP), at 10-7 M, slightly stimulates the induction of histidase in cultures both with or without succinate. No conditions were found in which cyclic AMP abolishes the effect of succinate. Induction of l-serine dehydratase by glycine is severely and permanently repressed by glucose and to a lesser extent by citrate. Glucose does not affect glycine uptake. Succinate, fumarate, and aspartate, which are all better substrates than glucose or citrate for growth of A. crystallopoietes, have no effect on l-serine dehydratase induction. Induction and repression of l-serine dehydratase are not affected by cyclic AMP. Synthesis of isocitrate lyase after addition of acetate is unaffected by glucose but is severely repressed by succinate or fumarate. Aspartate and glutamate cause a transient repression of enzyme synthesis after which synthesis proceeds at the control rate. The ability to transport acetate is inducible. Development of this capacity in the presence of acetate is not affected by succinate or glutamate. Cyclic AMP has no effect on enzyme production or repression. A. crystallopoietes takes up radioactive cyclic AMP and has at least one of the enzymes of cyclic AMP metabolism, adenyl cyclase.  相似文献   

10.
B Mckel  L Eggeling    H Sahm 《Journal of bacteriology》1992,174(24):8065-8072
Threonine dehydratase activity is an important element in the flux control of isoleucine biosynthesis. The enzyme of Corynebacterium glutamicum demonstrates a marked sigmoidal dependence of initial velocity on the threonine concentration, a dependence that is consistent with substrate-promoted conversion of the enzyme from a low-activity to a high-activity conformation. In the presence of the negative allosteric effector isoleucine, the K0.5 increased from 21 to 78 mM and the cooperativity, as expressed by the Hill coefficient increased from 2.4 to 3.7. Valine promoted opposite effects: the K0.5 was reduced to 12 mM, and the enzyme exhibited almost no cooperativity. Sequence determination of the C. glutamicum gene for this enzyme revealed an open reading frame coding for a polypeptide of 436 amino acids. From this information and the molecular weight determination of the native enzyme, it follows that the dehydratase is a tetramer with a total mass of 186,396 daltons. Comparison of the deduced polypeptide sequence with the sequences of known threonine dehydratases revealed surprising differences from the C. glutamicum enzyme in the carboxy-terminal portion. This portion is greatly reduced in size, and a large gap of 95 amino acids must be introduced to achieve homology. Therefore, the C. glutamicum enzyme must be considered a small variant of threonine dehydratase that is typically controlled by isoleucine and valine but has an altered structure reflecting a topological difference in the portion of the protein most likely to be important for allosteric regulation.  相似文献   

11.
Prepubertal rat ovaries were incubated in medium containing the non-utilizable amino acids alpha-aminoisobutyric acid (AIB-14C) or 1-aminocyclo-pentane-carboxylic acid (cycloleucine-14C). The rate of uptake of the two amino acids was studied in the isolated ovaries after different incubation periods. Addition of 5mM cyclic AMP (cAMP) caused a slight stimulation of the AIB-transport but in higher concentrations (10-25 mM) an inhibition was noted. With dibutyrl cyclic AMP (dbcAMP) a dose-dependent increase was seen with 0.5-5 mM concentrations with no further effect of higher concentrations. Time course studies were performed with both AIB and cycloleucine in presence of 10 mM dbcAMP and increased uptake values were noted at each time studied (30-240 min). The phosphodiesterase inhibitor aminophyline in lower concentrations did not influence AIB-transport but 5-10 mM caused increased uptake values in the ovaries. The stimulatory action of dbcAMP on amino acid transport was augmented by a low concentration of aminophylline (0.5 mM). Experiments were in addition carried out in the presence of puromycin and under these circumstances it was still possible to enhance amino acid transport by addition of dbcAMP. The results are discussed in relation to earlier reported effects of gonadotropins on ovarian amino acid transport.  相似文献   

12.
D-aspartate is present at high concentrations in the tissues of Scapharca broughtonii, and its production depends on aspartate racemase. This enzyme is the first aspartate racemase purified from animal tissues and unique in its pyridoxal 5'-phosphate (PLP)-dependence in contrast to microbial aspartate racemases thus far characterized. The enzyme activity is markedly increased in the presence of AMP and decreased in the presence of ATP. To analyze the structure-function relationship of the enzyme further, we cloned the cDNA of aspartate racemase, and then purified and characterized the recombinant enzyme expressed in Escherichia coli. The cDNA included an open reading frame of 1,017 bp encoding a protein of 338 amino acids, and the deduced amino acid sequence contained a PLP-binding motif. The sequence exhibits the highest identity (43-44%) to mammalian serine racemase, followed mainly by threonine dehydratase. These relationships are fully supported by phylogenetic analyses of the enzymes. The active recombinant aspartate racemase found in the Escherichia coli extract represented about 10% of total bacterial protein and was purified to display essentially identical physicochemical and catalytic properties with those of the native enzyme. In addition, the enzyme showed a dehydratase activity toward L-threo-3-hydroxyaspartate, similar to the mammalian serine racemase that produces pyruvate from D- and L-serine.  相似文献   

13.
14.
To assess the effects of cyclic AMP on amino acid transport and incorporation into aortic tissue protein, rat aortic rings were incubated with the cyclic AMP analog, N6-monobutyryl cyclic AMP (MBcAMP), the phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine (MIX), and radiolabeled amino acids. Subsequently, the aortic rings were homogenized in 5% trichloroacetic acid (TCA) and processed for liquid scintillation counting. Radioactivity present in the TCA supernatant following centrifugation was used to estimate amino acid transport. TCA-precipitable radioactivity was used as a measure of amino acid incorporation into protein. MBcAMP induced an increase in the uptake of [3H]alpha-aminoisobutyric acid into aortic rings and an increase in the incorporation of radiolabeled proline and leucine into TCA-precipitable protein. Similar effects were observed with low concentrations of MIX (0.025-0.25 mM); however, at higher concentrations of MIX, there was an attenuation of the effect or frank inhibition. Maximum stimulation of transport was observed within 90-120 min of the addition of MIX or MBcAMP to the incubation medium, whereas the effect on amino acid incorporation was not detectable until after 12 h of exposure to MIX or MBcAMP. The effects of cyclic AMP on transport were observed in both the tunica media and the tunica adventitia, whereas the effects on amino acid incorporation into protein were observed only in the tunica media. These data are consistent with a possible role for cyclic AMP in promoting changes in the tunica media that could lead to the development of vascular hypertrophy.  相似文献   

15.
The supplementation of a low-protein diet with L-threonine leads to a marked accumulation of threonine in plasma and liver, whereas increasing dietary protein generally leads to an induction of threonine dehydratase in the liver, hence depressed availability for extrasplanchnic tissues. The aim of the present study was, thus, to further investigate the factors which control the utilization of threonine by the liver. Increasing the dietary supply of threonine led to parallel increases in the afferent and hepatic concentrations and in the rate of utilization by the liver; however, the fractional extraction tended to decrease. It appears that the addition of a mixture of glucogenic amino acids to the diet prevented the accumulation of threonine in plasma induced by exogenous threonine. The glucogenic amino acids increased the fractional hepatic uptake of threonine, and counteracted its accumulation in the liver. These effects reflect the fact that the glucogenic amino acids elicited a potent induction of the threonine dehydratase, whereas threonine alone was uneffective. Our results suggest that, besides the well-established effect of glucogenic conditions, the availability of some glucogenic amino acids is an important factor in the control of threonine catabolism.  相似文献   

16.
Bacillus stearothermophilus H-804 isolated from a hot spring in Beppu, Japan, produced an ammonia-specific NAD synthetase (EC 6.3.1.5). The enzyme specifically used NH3 as an amide donor for the synthesis of NAD as it formed AMP and pyrophosphate from deamide-NAD and ATP. None of the l-amino acids tested, such as l-asparagine or l-glutamine, or other amino compounds such as urea, uric acid, or creatinine was used instead of NH3. Mg2+ was needed for the activity, and the maximum enzyme activity was obtained with 3 mM MgCl2. The molecular mass of the native enzyme was 50 kDa by gel filtration, and SDS-PAGE showed a single protein band at the molecular mass of 25 kDa. The optimum pH and temperature for the activity were from 9.0 to 10.0 and 60 degrees C, respectively. The enzyme was stable at a pH range of 7.5 to 9.0 and up to 60 degrees C. The Km for NH3, ATP, and deamide-NAD were 0.91, 0.052, and 0.028 mM, respectively. The gene encoding the enzyme consisted of an open reading frame of 738 bp and encoded a protein of 246 amino acid residues. The deduced amino acid sequence of the gene had about 32% homology to those of Escherichia coli and Bacillus subtilis NAD synthetases. We caused the NAD synthetase gene to be expressed in E. coli at a high level; the enzyme activity (per liter of medium) produced by the recombinant E. coli was 180-fold that of B. stearothermophilus H-804. The specific assay of ammonia and ATP (up to 25 microM) with this stable NAD synthetase was possible.  相似文献   

17.
The activity of biodegradative threonine dehydratase of Escherichia coli K12 was reversibly inhibited by glyoxylate in the presence of AMP. Kinetic analysis showed that the inhibition was mixed with respect to L-threonine and competitive in terms of AMP; the inhibitory effect of glyoxylate was less pronounced at high protein concentrations. Incubation of dehydratase with L-threonine shifted the absorption maximum of the enzyme-bound pyridoxal phosphate from 413 to 425 nm; addition of glyoxylate completely prevented the threonine-mediated spectral shift. In addition to the inhibitory effect, incubation of purified enzyme with glyoxylate resulted in a progressive, irreversible inactivation of the enzyme and formation of inactive protein aggregates. The rates of inactivation were decreased with increasing concentrations of protein and AMP. During inactivation by glyoxylate, the 413-nm absorption maximum of the native enzyme was replaced by a new peak at 385 nm. Experiments with [14C]glyoxylate showed a rapid binding of 1 mol of glyoxylate per 147,000 g followed by a slow binding of 3 additional mol of glyoxylate; the glyoxylate-protein linkage was stable to acid precipitation and protein denaturants. Competition binding experiments revealed that pyruvate (which also inactivated the E. coli enzyme, Feldman, D.A., and Datta, P. (1975) Biochemistry 14, 1760-1767) did not interfere with the binding of glyoxylate or vice versa, suggesting that the two keto acids may occupy separate sites on the enzyme molecule. Nevertheless, experiments on enzyme inactivation using glyoxylate plus pyruvate reveal mutual interactions between these ligands in terms of lack of additive effect, retardation in the spectral shift due to glyoxylate, and stabilization of the enzyme in the presence and absence of AMP. We conclude from these results that the control of biodegradative threonine dehydratase is governed by a complex set of regulatory events resulting from reversible and irreversible association of these effectors with the enzyme molecule.  相似文献   

18.
The stimulatory effect of cysteine sulfinic acid on cyclic AMP formation was examined in slices from three different regions of guinea pig brain. The inhibitory effect of taurine on the stimulated formation of cyclic AMP was also studied. Cysteine sulfinic acid (1--10 mM) greatly increased the cyclic AMP level in striatal, cortical, and especially hippocampal slices. In hippocampal slices, taurine (0.1--30 mM) markedly lowered the increase of cyclic AMP induced by cysteine sulfinic acid, but not that induced by glutamate or aspartate. In this region, taurine also reduced the stimulatory effects on cyclic AMP formation of adenosine, norepinephrine, and histamine, but not of depolarizing agents. It did not, however, inhibit the effects of any of these stimulants in cortical slices. These results suggest that sulfur-containing amino acids, such as cysteine sulfinic acid and taurine, regulate the cyclic AMP level in the hippocampus.  相似文献   

19.
Phosphoenolpyruvate carboxykinase (GTP) was induced by a combination of dibutyryl cyclic AMP, theophyline and dexamethasone in Reuber H35 hepatoma cells under conditions where an amino acid in the medium was replaced by an appropriate analogue. 2. With canavanine replacing arginine or with 5-fluorotryptophan or 6-fluorotryptophan replacing tryptophan the induced enzyme had a lower catalytic activity-relative to antibody reactivity. 3. These aberrant enzyme molecules were heat-labile in vitro. 4. Measurements of enzyme degradation in vivo indicated that the canavanine-containing enzyme and the 6-fluorotryptophan-containing enzyme were degraded more rapidly than the enzyme containing all natural amino acids.  相似文献   

20.
Cyclic beta-1,2-glucan is considered to play a role in osmoadaptation of members of the family Rhizobiaceae in hypotonic media. Agrobacterium tumefaciens chvB mutants, lacking beta-1,2-glucan, exhibit a pleiotropic phenotype, including nonmotility, attachment deficiency, and avirulence. Here we report that by growth of chvB mutant cells in tryptone-yeast extract medium supplemented with 7 mM CaCl2 and 100 mM NaCl, the mutant cells become motile, attach to pea root hair tips, and are virulent on Kalanchoë leaves. Moreover, whereas chvB mutants grown in tryptone-yeast extract medium containing 7 mM CaCl2 do not produce active rhicadhesin, addition of 100 mM NaCl to this medium resulted in restoration of rhicadhesin activity. The presence of CaCl2 appeared to be required for attachment, virulence, and activity of rhicadhesin. The results support a role for cyclic beta-1,2-glucan in osmoadaptation and strengthen the notion that rhicadhesin is required for attachment and virulence of A. tumefaciens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号