首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial DNA (mtDNA) control regions from 40 Japanese wild boars were examined by direct sequencing after amplification by PCR. From the DNA sequences obtained, we found eight haplotypes, whose differences arose via transitions. The geographical distribution of these different haplotypes indicated that wild boar populations inhabited limited areas and that there was some restricted gene flow between local populations. Eight mtDNA haplotypes from Eastern and Western domestic pigs and the Ryukyu wild boar were also analyzed as references to those from Japanese wild boars. The cluster analyses of the control-region sequences showed that those from Japanese wild boards belong to the Asian type as do those from Eastern domestic pigs and the Ryukyu wild boar, which differed from the European type (Western domestic pigs).  相似文献   

2.
Wild boars from Western Europe have a 2n = 36 karyotype, in contrast to a karyotype of 2n = 38 in wild boars from Central Europe and Asia and in all domestic pigs. The phylogenetic status of this wild boar population is unclear, and it is not known if it has contributed to pig domestication. We have now sequenced the mtDNA control region from 30 European wild boars (22 with a confirmed 2n = 36 karyotype) and six Asian wild boars (two Hainan and four Dongbei wild boars) to address this question. The results revealed a close genetic relationship between mtDNA haplotypes from wild boars with 2n = 36 to those from domestic pigs with 2n = 38. Thus, we cannot exclude the possibility that wild boars with 2n = 36 may have contributed to pig domestication despite the karyotype difference. One of the European wild boars carried an Asian mtDNA haplotype, and this most likely reflects gene flow from domestic pigs to European wild boars. However, this gene flow does not appear to be extensive because the frequency of Asian haplotypes detected among European wild boars (c. 3%) were 10-fold lower than among European domestic pigs (c. 30%). Previous studies of mtDNA haplotypes have indicated that pig populations in Europe and Asia have experienced a population expansion, but it is not clear if the expansion occurred before or after domestication. The results of the present study are consistent with an expansion that primarily occurred prior to domestication because the mtDNA haplotypes found in European and Asian wild boars did not form their own clusters but were intermingled with haplotypes found in domestic pigs, indicating that they originated from the same population expansion.  相似文献   

3.
TYR基因外显子1的序列变异   总被引:7,自引:1,他引:6  
韩洪金  吴桂生  史宪伟  张亚平 《遗传》2005,27(5):719-723
为了分析家猪与野猪的遗传多样性及起源,测定了来自12个中国地方家猪品种、3个欧洲引进猪品种以及8个中国野猪和2个越南野猪共36个个体的酪氨酸酶基因(TYR)外显子1的序列,共检出6个单核苷酸多态性位点(SNPs),且这6个位点的变异均为同义突变,根据这些变异可将酪氨酸酶基因DNA序列归结为4种单倍型。结合已发表的数据,构建了简约中介网络图。 在网络图中,单倍型TYR*2主要为欧洲家猪与欧洲野猪和三条亚洲家猪染色体。大部分亚洲家猪和野猪共享单倍型TYR*1,表明这是一个亚洲类型的单倍型;同时也有部分欧洲家猪与野猪携带这一单倍型。 而单倍型TYR*3和TYR*4为本研究检测到的稀有单倍型,这两种单倍型主要由中国家猪与亚洲野猪组成。这种网络图结构支持家猪的欧洲和亚洲独立起源学说,同时也表明相当部分的欧洲家猪品种受到亚洲猪的基因渗透,而少量中国家猪和日本野猪也受到了欧洲猪的基因渗透。  相似文献   

4.
东北亚地区野猪种群mtDNA遗传结构及系统地理发生   总被引:7,自引:0,他引:7  
研究测定了中国东北、华北及四川西部72个野猪(Susscrofa)个体线粒体控制区全序列,并结合GenBank报道的日本野猪(S.s.leucomystax)、琉球野猪(S.s.riukiuanus)72个同源区序列,分析了东北亚地区野猪线粒体DNA的变异及系统地理格局。在东北亚地区野猪的线粒体控制区共发现42个变异位点,均为转换,共定义了34个单元型。单元型之间的系统发生分析表明,东北亚地区野猪来自同一祖先。东北亚地区野猪现生种群具有显著的种群遗传结构,其中日本野猪与分布于中国东北地区的东北野猪之间亲缘关系较近;而琉球野猪则与华北野猪间亲缘关系较近,与日本野猪和东北野猪间的关系相对较远。嵌套进化枝系统地理分析(Nestedcladephylogeographicalanalysis,NCPA)表明:东北亚地区野猪由同一祖先经过长距离的迁徙而形成现生各种群(或亚种);琉球野猪应起源于大陆野猪,其种群演化可能经历了片断化事件;华北野猪呈现南部种群遗传多样性高的特点,其种群内部曾经历了一次分布区由南向北的扩张  相似文献   

5.
Mitochondrial genetic variations were used to investigate the relationships between two Japanese wild boars, Japanese wild boar (Sus scrofa leucomystax) and Ryukyu wild boar (S.s. riukiuanus). Nucleotide sequences of the control (27 haplotypes) and cytochrome b (cyt-b) regions (19 haplotypes) were determined from 59 Japanese wild boars, 13 Ryukyu wild boars and 22 other boars and pigs. From phylogenetic analyses, the mtDNA of Ryukyu wild boar has a distinct lineage from that of Japanese wild boar, which was classified into the Asian pig lineage. This result suggests that the Ryukyu wild boar has a separate origin from the Japanese wild boar.  相似文献   

6.
Hybridization between wild species and their domestic relatives can be an important conservation and management problem. Genetic purity of the wild species is desirable per se and the phenomenon can have unpredictable evolutionary consequences. Declining European wild boar populations were frequently restocked with farmed wild boars that sometimes had been crossed with domestic pigs. We used simple polymerase chain reaction‐based diagnostic tests to detect the presence of mitochondrial DNA and coat colour alleles of domestic origin in wild boars from Belgium, Luxembourg, and western Germany. Microsatellite genotypes were used to test for genetic admixture between the wild boars and domestic pigs. Although almost one‐third of all Luxembourg wild boars carried Asian mitochondrial DNA haplotypes originating from domestic pigs, microsatellite‐based clustering only identified four putatively admixed individuals in Luxembourg. By contrast, clustering identified wild boar × domestic hybrids in most sampling locations in Belgium. We interpret these results as evidence of releases of hybrid captive‐reared wild boars. Our results emphasize the need (if working with classical markers) to use different systems to obtain an understanding as to whether hybridization between wild and domestic relatives might have affected the genetic make‐up of a local population. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 104–115.  相似文献   

7.
Pigs were introduced into Australia and New Zealand in the 18th and 19th centuries, with some establishing feral populations. With few records of pig introductions into these two countries, molecular phylogenetic analysis was used to assess their origins. Mitochondrial (mt) control region sequence and nuclear glucosephosphate isomerase pseudogene (GPIP) restriction fragments were used, as distinct European and Asian domestic pig and Wild Boar control region clades and GPIP genotypes can be recognised. Feral pig control region sequences clustered with either European or Asian domestic pig sequences and both Asian and European GPIP alleles were segregating. It was not possible to distinguish direct importation of Asian domestic animals into Australia and New Zealand from indirect introgression of Asian domestic sequences via Europe. However, the clustering of three feral control region sequences of pigs from northern Australia with Asian Wild Boar implies unrecorded introduction of Wild Boar or crossbred animals into Australia. However, two of these feral pigs had European GPIP alleles. In combination, analyses of control region and GPIP markers suggest that both European and Asian pigs have contributed in similar frequencies to the origins of Australian feral pigs.  相似文献   

8.
Phylogeographic characteristics and population structure of Japanese wild boar (Sus scrofa leucomystax) were investigated using mitochondrial DNA (mtDNA) sequence data. Sixteen Japanese wild boar haplotypes detected from partial sequences of the mtDNA control region (574-bp) from 180 Japanese wild boar specimens from 10 local populations on Honshu, Shikoku, and Kyushu islands and 41 haplotypes from other S. scrofa were analyzed using the neighbor-joining method. The Japanese wild boars were more closely related to Northeast Asian wild boars from Mongolia than to the other Asian continental S. scrofa. The Japanese and Northeast Asian wild boars were not significantly distinguished by corrected average pairwise difference analysis. The ancestors of Japanese wild boars are suggested to have been part of the continental S. scrofa population that spread from Southeast to Northeast Asia during the Middle to Late Pleistocene. The Japanese wild boar mtDNA haplotype cladogram shows 95% parsimoniously plausible branch connections supporting three sympatric clades. Nested clade analysis indicates that these three clades are the result of distinct historical events or gene flow. The present population of Japanese wild boars may have been formed by a few independent migrations of distinct clades from the continent with subsequent mixing on the Japanese Islands.  相似文献   

9.
In order to elucidate the precise phylogenetic relationships of Korean wild boar (Sus scrofa coreanus), a partial mtDNA D-loop region (1,274 bp, NC_000845 nucleotide positions 16576-1236) was sequenced among 56 Korean wild boars. In total, 25 haplotypes were identified and classified into four distinct subgroups (K1 to K4) based on Bayesian phylogenetic analysis using Markov chain Monte Carlo methods. An extended analysis, adding 139 wild boars sampled worldwide, confirmed that Korean wild boars clearly belong to the Asian wild boar cluster. Unexpectedly, the Myanmarese/Thai wild boar population was detected on the same branch as Korean wild boar subgroups K3 and K4. A parsimonious median-joining network analysis including all Asian wild boar haplotypes again revealed four maternal lineages of Korean wild boars, which corresponded to the four Korean wild boar subgroups identified previously. In an additional analysis, we supplemented the Asian wild boar network with 34 Korean and Chinese domestic pig haplotypes. We found only one haplotype, C31, that was shared by Chinese wild, Chinese domestic and Korean domestic pigs. In contrast to our expectation that Korean wild boars contributed to the gene pool of Korean native pigs, these data clearly suggest that Korean native pigs would be introduced from China after domestication from Chinese wild boars.  相似文献   

10.
Previous mitochondrial DNA (mtDNA) studies have suggested that European and Asian pig populations were derived through multiple domestication events. We investigated whether domestic pig populations were derived from distinct ancestors within their respective regions, using eight domestic breeds (five European and three Asian), and also European and Asian wild boar populations. Genomic analyses utilized 21 microsatellite markers (MS) selected for their distribution across the pig genome in addition to the mtDNA D-loop region. The number of alleles per MS loci ranged from 8 (Sw2008) to 16 (S0097 and S0218). Few significant departures from Hardy–Weinberg equilibrium were detected, suggesting the absence of heterozygote deficiencies. Analyses within populations revealed observed mean heterozygosity from 0.48 (Erhualian) to 0.68 (Dutch WB) and an expected mean heterozygosity from 0.53 (Hampshire) to 0.80 (Japanese WB) with effective alleles ranging from 2.28 (Hampshire) to 3.74 (French WB). Wild boar populations demonstrated a higher level of heterozygosity than domestic breeds. Genetic differentiation estimated by fixation indices (FST) ranged from 0.021 (Yorkshire and Duroc) to 0.410 (Meishan and Hampshire) and was consistent with previous mtDNA analysis. Both phylogenetic and principal component analyses revealed a distinct separation of European and Asian derived populations with tight clustering of the European domestic breeds. Conversely, the use of both MS and mtDNA clarified that the Asian populations were comprised of three groups, one represented by Erhualian and Meishan breed, the second represented by Lanyu pigs and the third represented by the Asian wild boars. The current findings support the hypothesis that Asian domestic populations were derived from multiple Asian ancestral origins whereas the European domestic populations represent a single ancestral European lineage.  相似文献   

11.
We completed phylogenetic analysis of the major non-coding region of the mitochondrial DNA (mtDNA) from 159 animals of eight Euro-American and six East Asian domesticated pig breeds and 164 Japanese and five European wild boars. A total of 62 mtDNA haplotypes were detected. Alignment of these regions revealed nucleotide variations (including gaps) at 73 positions, including 58 sites with transition nucleotide substitutions, and two transversion substitutions. Phylogenetic analysis of the sequences could not organize domestic pig breeds into discrete clusters. In addition, many of the haplotypes found in members of diverged clustering groups were found primarily in Euro-American pig breeds, indicating extensive introgression of Asian domestic pigs into European breeds. Furthermore, phylogenetic analysis allocated the DNA sequences of non-coding regions into two different groups, and the deepest branchpoint of this porcine phylogeny corresponded to 86 000-136 000 years before present. This time of divergence would predate the historical period when the pig is thought to have been domesticated from the wild boar.  相似文献   

12.
Mitochondrial DNA (mtDNA) of six breeds of native domestic pigs from Yunnan province, southwest China, and two wild boars obtained from Sichuan, China, and Vietnam was analyzed using 20 restriction endonucleases that recognize six nucleotides. Restriction maps were made by double-digestion methods and polymorphic sites were located on the map. According to their mtDNA restriction types, all the breeds were classified into six groups. Genetic distances among groups were calculated to define their phylogenetic relationships. The relationship between the Sichuan wild boar and domestic pigs is close, while the Vietnamese wild boar is relatively far from them, so the domestic pigs in southwest China are likely to have originated from a wild pig which distributed in west China. We compare our results with previous reports in literature and discuss the relationship among Chinese pigs, Japanese pigs, and European pigs. The mtDNA cleavage pattern of the Mingguang pig digested byEcoRV was identical to that of Duroc; mutations at theEcoRI site, detected in the mtDNA of two Dahe pigs, are the same as in the Vietnamese wild boar, suggesting that mutational hot spots exist in the mtDNA of pigs.  相似文献   

13.
Iberian pigs and wild boars are the source of highly priced meat and dry-cured products. Iberian maternal origin is mandatory for labeled Iberian products, making necessary the authentication of their maternal breed origin. Discrimination between wild and domestic pig maternal origin may be useful to distinguish labeled wild boar meat obtained from hunting or farming. In order to detect useful polymorphisms to trace Iberian, Duroc and wild boar maternal lineages, we herein investigated the complete porcine mitochondrial DNA (mtDNA) using three complementary approaches. Near-complete mtDNA sequences (16989 bp), excluding the minisatellite present in the displacement loop region (D-loop), were successfully determined in six Iberian pigs, two Duroc and six European wild boars. To complete the mtDNA analysis, the D-loop minisatellite region was also analyzed in the same set of samples by amplification and capillary electrophoresis detection. Finally, the frequencies of Asian and European Cytochrome B (Cyt B) haplotypes were estimated in Iberian (n = 96) and Duroc (n = 125) breeds. Comparison of near-complete mtDNA sequences revealed a total of 57 substitutions and two Indels. Out of them, 32 polymorphisms were potential Iberian markers, 10 potential Duroc markers and 16 potential wild boar markers. Fourteen potential markers (five Iberian and nine Duroc), were selected to be genotyped in 96 Iberian and 91 Duroc samples. Five wild boar potential markers were selected and tested in samples of wild boars (73) and domestic pigs including: 96 Iberian, 16 Duroc, 16 Large White and 16 Landrace. Genotyping results showed three linked markers (m.7998C>T, m.9111T>C, m.14719A>G) absent in Duroc and present in Iberian pigs with a frequency 0.72. Six markers (m.8158C>T, m.8297T>C, m.9230G>A, m.11859A>G, m.13955T>C, m.16933T>C), three of them linked, were absent in Iberian pigs and present in Duroc with a joint frequency of almost 0.50. Finally three linked markers (m.7188G>A, m.9224T>C, m.15823A>G) were solely detected in wild boars with a frequency 0.22. The D-loop minisatellite results showed overlapping ranges of fragment sizes and suggested heteroplasmy, a result that nullify the use of this region for the development of breed diagnostic markers. The Cyt B haplotype results showed the presence of European haplotypes in Iberian while one of the Asian haplotypes was detected in Duroc with a frequency 0.22, linked to the Duroc marker m.9230G>A. Our results are valuable to resolve the problems of Iberian and wild boar maternal origin determination but additional markers are required to achieve totally useful genetic tests.  相似文献   

14.
Wild boars (Sus scrofa) have been increasingly sighted in the wild in Ireland during the last few years, likely due to illegal releases and/or escapees. The species has since been designated an invasive species in Ireland, which is seen as controversial by some because of uncertainties about the historic status of the species in Ireland. However, just as pertinent to the argument is the genetic purity of these individuals currently found in Ireland: are these pure wild boars? We carried out a genetic assessment of 15 wild boars shot in Ireland between 2009 and 2012 using 14 microsatellites and mitochondrial DNA (mtDNA). These were compared to European wild boar, domestic pig breeds and a hybrid population of ‘wild boar’ from England. Microsatellite analysis revealed that almost all the Irish individuals belonged to the ‘domestic pig’ genetic cluster, with only three individuals being classified as hybrids. All but two individuals carried Asian mtDNA haplotypes, indicating a domestic pig origin. It is clear from this study that the individuals currently found in Ireland are not pure wild boars and this result has to be factored into any management/eradication plans.  相似文献   

15.
Mitochondrial DNA (mtDNA) sequences (574 bp) of 30 Vietnamese pigs (large and small) were examined and compared with those of 61 haplotypes from wild boars and domestic pigs from various locations in Asia. The large Vietnamese pigs had genetic links to Ryukyu wild boars in southern Japan. The small Vietnamese pigs were closely related to other East Asian domestic pigs. These results indicate that Vietnamese pigs are genetically diverse and may be descendents of wild and domestic pigs from other regions of Asia.  相似文献   

16.
We analysed 74 wild boars from Tunisia with respect to patterns of genetic differentiation and diversity based on sequences of the mitochondrial control region and genotypes at eight nuclear microsatellite loci. Analysis of molecular variance for both marker systems and Bayesian structure analysis of our microsatellite data revealed a clear break between northern and southern populations. Southern wild boar were monomorphic for one of three mtDNA haplotypes; the other two (one of which only occurred in three individuals) were confined to the north. A comparison with published sequences showed all three haplotypes to belong to the major European clade E1. Microsatellite diversity was similar to that found in earlier studies of wild boar (expected heterozygosity of 0.695 and 0.597 for the north and south, respectively). Contrary to the mtDNA results, we did not find unequivocal evidence of a bottleneck in Tunisian wild boar based on our microsatellite data. The clear distinction between northern and southern populations may be due to an Algerian origin of the southern animals.  相似文献   

17.
We have studied the cytochrome B gene and control region DNA variability in 14 wild boars from the Primorsky Region, in the far east corner of Russia. Variability was low (π = 0.00248 overall) compared with the usual estimates in these loci, indicating that this is a rather closed population. Seven haplotypes were found, and one was identical to a Chinese wild boar. Phylogeographically, the sequences clustered among several Asian clades, primarily Chinese domestic pigs and Japanese and Chinese wild boars, and are positioned within the D2 clade reported by Larson et al. [ Science 307 , 2005; 1618 ]. Although North Korean pigs should be studied, our data suggest that the Primorsky mtDNA signature is absent from domestic pigs. Sequences are available through GenBank identifiers HM010461 – HM010488 .  相似文献   

18.
Mitochondrial DNA (mtDNA) diversity in European and Asian pigs was assessed using 1536 samples representing 45 European and 21 Chinese breeds. Diagnostic nucleotide differences in the cytochrome b (Cytb) gene between the European and Asian mtDNA variants were determined by pyrosequencing as a rapid screening method. Subsequently, 637bp of the hypervariable control region was sequenced to further characterize mtDNA diversity. All sequences belonged to the D1 and D2 clusters of pig mtDNA originating from ancestral wild boar populations in Europe and Asia, respectively. The average frequency of Asian mtDNA haplotypes was 29% across European breeds, but varied from 0 to 100% within individual breeds. A neighbour-joining (NJ) tree of control region sequences showed that European and Asian haplotypes form distinct clusters consistent with the independent domestication of pigs in Asia and Europe. The Asian haplotypes found in the European pigs were identical or closely related to those found in domestic pigs from Southeast China. The star-like pattern detected by network analysis for both the European and Asian haplotypes was consistent with a previous demographic expansion. Mismatch analysis supported this notion and suggested that the expansion was initiated before domestication.  相似文献   

19.
Nucleotide sequences of mitochondrial DNA (mtDNA) cytochrome B gene (1140 bp) and control region (707 bp) were used to determine the phylogenetic relationships among 51 pig samples representing ancient and current varieties of Iberian pigs (26), Spanish wild boars (seven) and other domestic pigs (18) of cosmopolitan (Duroc, Large White, Landrace, Pietrain and Meishan) and local (Spotted Black Jabugo, Basque and Mangalitza) breeds. A neighbour-joining tree constructed from pairwise distances provide evidence of the European origin of both Iberian pigs and Spanish wild boars. The introgression of Asian mtDNA haplotypes in the genetic pool of the Iberian breed seems unlikely. Four estimates of sequence divergence between European and Asian clades were calculated from the two main domains of the D-loop region and the synonymous and nonsynonymous nucleotide substitutions in the cytochrome B gene. The time since the divergence of pig ancestors was estimated at about 600,000 years before present.  相似文献   

20.
East Balkan Swine (EBS) Sus scrofa is the only aboriginal domesticated pig breed in Bulgaria and is distributed on the western coast of the Black Sea in Bulgaria. To reveal the breed's genetic characteristics, we analysed mitochondrial DNA (mtDNA) and Y chromosomal DNA sequences of EBS in Bulgaria. Nucleotide diversity (πn) of the mtDNA control region, including two newly found haplotypes, in 54 EBS was higher (0.014 ± 0.007) compared with that of European (0.005 ± 0.003) and Asian (0.006 ± 0.003) domestic pigs and wild boar. The median‐joining network based on the mtDNA control region showed that the EBS and wild boar in Bulgaria comprised mainly two major mtDNA clades, European clade E1 (61.3%) and Asian clade A (38.7%). The coexistence of two mtDNA clades in EBS in Bulgaria may be the relict of historical pig translocation. Among the Bulgarian EBS colonies, the geographical differences in distribution of two mtDNA clades (E1 and A) could be attributed to the source pig populations and/or historical crossbreeding with imported pigs. In addition, analysis of the Y chromosomal DNA sequences for the EBS revealed that all of the EBS had haplotype HY1, which is dominant in European domestic pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号