首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our previous results have shown that oxidative stress may reduce the regeneration potential of protoplasts, but only protoplasts that are able to supply extracellularly H(2)O(2) can actually divide (C.I. Siminis, A.K. Kanellis, K.A. Roubelakis-Angelakis [1993] Physiol Plant 87: 263-270; C.I. Siminis, A.K. Kanellis, K.A. Roubelakis-Angelakis [1994] Plant Physiol 1105: 1375-1383; A. de Marco, K.A. Roubelakis-Angelakis [1996a] Plant Physiol 110: 137-145; A. de Marco, K.A. Roubelakis-Angelakis [1996b] J Plant Physiol 149: 109-114). In the present study we have attempted to break down the oxidative burst response into the individual active oxygen species (AOS) superoxide (O(2)(*-)) and H(2)O(2), and into individual AOS-generating systems during the isolation of regenerating tobacco (Nicotiana tabacum L.) and non-regenerating grape (Vitis vinifera L. ) mesophyll protoplasts. Wounding leaf tissue or applying purified cellulase did not elicit AOS production. However, the application of non-purified cellulase during maceration induced a burst of O(2)(*-) and H(2)O(2) accumulation in tobacco leaf, while in grape significantly lower levels of both AOS accumulated. AOS were also generated when protoplasts isolated with purified cellulase were treated with non-purified cellulase. The response was rapid: after 5 min, AOS began to accumulate in the culture medium, with significant quantitative differences between the two species. In tobacco protoplasts and plasma membrane vesicles, two different AOS synthase activities were revealed, one that showed specificity to NADPH and sensitivity to diphenyleneiodonium (DPI) and was responsible for O(2)(*-) production, and a second NAD(P)H activity that was sensitive to KCN and NaN(3), contributing to the production of both AOS. The first activity probably corresponds to a mammalian-like NADPH oxidase and the second to a NAD(P)H oxidase-peroxidase. In grape, only one AOS-generating activity was detected, which corresponded to a NAD(P)H oxidase-peroxidase responsible for the generation of both AOS.  相似文献   

2.
Recognition of avirulent microbial pathogens activates an oxidative burst leading to the accumulation of reactive oxygen intermediates (ROIs), which are thought to integrate a diverse set of defence mechanisms resulting in the establishment of plant disease resistance. A novel transgenic Arabidopsis line containing a gst1:luc transgene was developed and employed to report the temporal and spatial dynamics of ROI accumulation and cognate redox signalling in response to attempted infection by avirulent strains of Pseudomonas syringae pv. tomato (Pst). Strong engagement of the oxidative burst was dependent on the presence of functional Pst hrpS and hrpA gene products. Experiments employing pharmacological agents suggested that at least two distinct sources, including an NADPH oxidase and a peroxidase-type enzyme, contributed to the generation of redox cues. The analysis of gst1 and pal1 gene expression in nahG, coi1 and etr1 plants suggested that engagement of the oxidative burst and cognate redox signalling functioned independently of salicylic acid, methyl jasmonate and ethylene. In contrast, studies using a panel of protein kinase and phosphatase inhibitors and in-gel kinase assays in these mutant backgrounds suggested that a 48 kDa mitogen-activated protein kinase (MAPK) activity was required for the activation of gst1 and pal1 in response to redox cues. Thus the engagement of a bifurcating redox signalling pathway possessing a MAPK module may contribute both to the establishment of plant disease resistance, and to the development of cellular protectant mechanisms.  相似文献   

3.
Partially reduced oxygen species are toxic, yet activated sea urchin eggs produce H2O2, suggesting that the control of oxidant stress might be critical for early embryonic development. We show that the Ca2(+)-stimulated NADPH oxidase that generates H2O2 in the "respiratory burst" of fertilization is activated by a protein kinase, apparently to regulate the synthesis of this potentially lethal oxidant. The NADPH oxidase was separated into membrane and soluble fractions that were both required for H2O2 synthesis. The soluble fraction was further purified by anion exchange chromatography. The factor in the soluble fraction that activated the membrane-associated oxidase was demonstrated to be protein kinase C (PKC) by several criteria, including its Ca2+/phophatidylserine/diacyl-glycerol-stimulated histone kinase activity, its response to phorbol ester, its inhibition by a PKC pseudosubstrate peptide, and its replacement by purified mammalian PKC. Neither calmodulin-dependent kinase II, the catalytic subunit of cyclic AMP-dependent protein kinase, casein kinase II, nor myosin light chain kinase activated the oxidase. Although the PKC family has been ubiquitously implicated in cellular regulation, enzymes that require PKC for activation have not been identified; the respiratory burst oxidase is one such enzyme.  相似文献   

4.
A full-length cDNA clone (LeCDPK1) from tomato (Lycopersicon esculentum) encoding a calcium-dependent protein kinase (CDPK) was isolated by screening a cDNA library from tomato cell cultures exposed to Cladosporium fulvum elicitor preparations. The predicted amino acid sequence of the cDNA reveals a high degree of similarity with other members of the CDPK family. LeCDPK1 has a putative N-terminal myristoylation sequence and presents a possible palmitoylation site. The in vitro translated protein conserves the biochemical properties of a member of the CDPK family. In addition, CDPK activity was detected in soluble and particulate extracts of tomato leaves. Basal levels of LeCDPK1 mRNA were detected by northern-blot analysis in roots, stems, leaves, and flowers of tomato plants. The expression of LeCDPK1 was rapidly and transiently enhanced in detached tomato leaves treated with pathogen elicitors and H2O2. Moreover, when tomato greenhouse plants were subjected to mechanical wounding, a transient increase of LeCDPK1 steady-state mRNA levels was detected locally at the site of the injury and systemically in distant non-wounded leaves. The increase observed in LeCDPK1 mRNA upon wounding correlates with an increase in the amount and in the activity of a soluble CDPK detected in extracts of tomato leaves, suggesting that this kinase is part of physiological plant defense mechanisms against biotic or abiotic attacks.  相似文献   

5.
6.
探讨了磷脂酶Dα1(PLDα1)在ABA抑制拟南芥主根伸长过程中的作用。PLOα1基因突变体pldα1主根伸长受ABA抑制小于野生型(WT);根系PLDα1活性在ABA处理下升高;拟南芥根细胞原生质体中活性氧(ROS)含量在ABA处理下升高,但是pldα1升高小于WT;根系NADPH氧化酶活性在ABA处理下升高,pldα1升高小于WT,外源加入10μmol/L^-1 PA(磷脂酸,PLD水解产物)后,前者活性显著升高;外源加入H2O2可诱导WT和pldα1主根伸长都受到抑制,且二者差异不明显。结果表明,PLDα1产生的PA通过激活NADPH氧化酶产生ROS介导ABA调控的拟南芥主根伸长过程。此外,初步探讨了PLDα1在拟南芥根毛尖端生长中的作用:pldα1突变体根毛长度小于WT,根毛尖端ROS和Ca^2+浓度低于WT。  相似文献   

7.
Reactive oxygen species (ROS) are implicated in plant innate immunity. NADPH oxidase (RBOH; for Respiratory Burst Oxidase Homolog) plays a central role in the oxidative burst, and EF-hand motifs in the N terminus of this protein suggest possible regulation by Ca(2+). However, regulatory mechanisms are largely unknown. We identified Ser-82 and Ser-97 in the N terminus of potato (Solanum tuberosum) St RBOHB as potential phosphorylation sites. An anti-phosphopeptide antibody (pSer82) indicated that Ser-82 was phosphorylated by pathogen signals in planta. We cloned two potato calcium-dependent protein kinases, St CDPK4 and St CDPK5, and mass spectrometry analyses showed that these CDPKs phosphorylated only Ser-82 and Ser-97 in the N terminus of St RBOHB in a calcium-dependent manner. Ectopic expression of the constitutively active mutant of St CDPK5, St CDPK5VK, provoked ROS production in Nicotiana benthamiana leaves. The CDPK-mediated ROS production was disrupted by knockdown of Nb RBOHB in N. benthamiana. The loss of function was complemented by heterologous expression of wild-type potato St RBOHB but not by a mutant (S82A/S97A). Furthermore, the heterologous expression of St CDPK5VK phosphorylated Ser-82 of St RBOHB in N. benthamiana. These results suggest that St CDPK5 induces the phosphorylation of St RBOHB and regulates the oxidative burst.  相似文献   

8.
Abstract: The oxidative burst is an integral component of plant resistance to pathogens. There is accumulating evidence that the oxidative burst is catalyzed by an enzyme with similarities to the phagocyte NADPH oxidase. We have cloned a full length homolog of the gp91 ( phox ) subunit of the plasma membrane NADPH oxidase complex from tomato named LeRBOM. The predicted protein contains 989 amino acids. The large N-terminal domain contains two EF hand calcium binding motifs and one conserved glycosylation site. Six putative membrane spans are present in the C-terminal half of the predicted protein. Extensive homology with the human gp91 ( phox ) subunit was found including conservation of amino acid residues important for heme coordination and substrate binding. We have also isolated partial genomic clones from tomato and from the aquatic plant Potamogeton crispus. These species serve as models for studies of signal transduction leading to NADPH oxidase activation. In tomato, LeRBOH1 expression was too low to be detected on Northern blots. RT-PCR indicated that LeRBOH1 was expressed in all tissues tested.  相似文献   

9.
Plants are protected from microbial infection by a robust immune system. Two of the earliest responses mediated by surface-localized immune receptors include an increase in cytosolic calcium (Ca2+) and a burst of apoplastic reactive oxygen species (ROS). The Arabidopsis plasma membrane-associated cytoplasmic kinase BIK1 is an immediate convergent substrate of multiple surface-localized immune receptors that is genetically required for the PAMP-induced Ca2+ burst and directly regulates ROS production catalyzed by the NADPH oxidase RBOHD. We recently demonstrated that Arabidopsis plants maintain an optimal level of BIK1 through a process of continuous degradation regulated by the Ca2+-dependent protein kinase CPK28. cpk28 mutants accumulate more BIK1 protein and display enhanced immune signaling, while plants over-expressing CPK28 accumulate less BIK1 protein and display impaired immune signaling. Here, we show that CPK28 additionally contributes to the PAMP-induced Ca2+ burst, supporting its role as a negative regulator of BIK1.  相似文献   

10.
In contrast to gene-for-gene disease resistance, nonhost resistance governs defense responses to a broad range of potential pathogen species. To identify specific genes involved in the signal transduction cascade associated with nonhost disease resistance, we used a virus-induced gene-silencing screen in Nicotiana benthamiana, and identified the peroxisomal enzyme glycolate oxidase (GOX) as an essential component of nonhost resistance. GOX-silenced N. benthamiana and Arabidopsis thaliana GOX T-DNA insertion mutants are compromised for nonhost resistance. Moreover, Arabidopsis gox mutants have lower H(2)O(2) accumulation, reduced callose deposition, and reduced electrolyte leakage upon inoculation with hypersensitive response-causing nonhost pathogens. Arabidopsis gox mutants were not affected in NADPH oxidase activity, and silencing of a gene encoding NADPH oxidase (Respiratory burst oxidase homolog) in the gox mutants did not further increase susceptibility to nonhost pathogens, suggesting that GOX functions independently from NADPH oxidase. In the two gox mutants examined (haox2 and gox3), the expression of several defense-related genes upon nonhost pathogen inoculation was decreased compared with wild-type plants. Here we show that GOX is an alternative source for the production of H(2)O(2) during both gene-for-gene and nonhost resistance responses.  相似文献   

11.
In the Cf-9/Avr9 gene-for-gene interaction, the Cf-9 resistance gene from tomato confers resistance to the fungal pathogen Cladosporium fulvum, which expresses the corresponding pathogen-derived avirulence product Avr9. To understand R gene function and dissect the signaling mechanisms involved in the induction of plant defenses, we studied Cf-9/Avr9-dependent activation of protein kinases in transgenic Cf9 tobacco cell cultures. Using a modified in-gel kinase assay with histone as substrate, we identified a membrane-bound, calcium-dependent protein kinase (CDPK) that showed a shift in electrophoretic mobility from 68 to 70 kD within 5 min after Avr9 elicitor was added. This transition from the nonelicited to the elicited CDPK form was caused by a phosphorylation event and was verified when antibodies to CDPK were used for protein gel blot analysis. In addition, the interconversion of the corresponding CDPK forms could be induced in vitro in both directions by treatment with either phosphatase or ATP. In vitro protein kinase activity toward syntide-2 or histone with membrane extracts or gel-purified enzyme was dependent on Ca(2)+ content and was compromised by the calmodulin antagonist N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) but not by its inactive isoform N-(6-aminohexyl)-1-naphthalenesulfonamide. In these assays, the CDPK activity in elicited samples, reflecting predominantly the phosphorylated 70-kD CDPK form, was greater than in nonelicited samples. Thus, Avr9/Cf-9-dependent phosphorylation and subsequent transition from the nonelicited to the elicited form correlate with the activation of a CDPK isoform after in vivo stimulation. Because that transition was not inhibited by W-7, the in vivo CDPK activation probably is not the result of autophosphorylation. Studies with pharmacological inhibitors indicated that the identified CDPK is independent of or is located upstream from a signaling pathway that is required for the Avr9-induced active oxygen species.  相似文献   

12.
13.
Plant responses to supplementary UV-B irradiation have been reported to include formation of reactive oxygen species (ROS), hydrogen peroxide, in particular, and regulation by mitogen-activated protein kinase (MAPK) cascades which in turn are fine-tuned by MAPK phosphatases (MKPs). Here we present direct genetic evidence for the involvement of plasma membrane NADPH oxidase, a source of superoxide and hydrogen peroxide in the apoplasts, in UV-B signalling in Arabidopsis thaliana, by analysis of gene expression of the UV-B molecular markers in NADPH oxidase (atrbohD, F and DF) and MAP kinase phosphatase 1 (MKP1) knockout mutants (mkp1). Whereas the NADPH oxidase mutants were affected in UV-B-dependent CHS, PYROA and MEB5.2 gene expression, the mkp1 mutant was affected in the general expression pattern of the pathogenesis-related (PR) and PDF1.2 genes. The results indicate involvement of MKP1 in repressive action on gene expression of more general stress response pathways, similar to those activated by pathogen attack, while NADPH oxidase is involved in quantitative (rather than absolute) regulation of more UV-B-specific genes. The expressions of the molecular markers in the knockout mutant mkp1 and in its complemented lines (lines 6 and 10) were similar, as opposed to the responses of the corresponding wild-type Wassilewskija-4 (Ws-4). Lines 6 and 10 showed much higher MKP1 mRNA than Ws-4 but did not complement the mutant. This suggests a complex dependency of the MAPK phosporylation level of the PR and PDF1.2 genes. Both NADPH oxidase mutants and the mkp1 mutant phenotypically responded to UV-B by growth retardation.  相似文献   

14.
Xing  Tim  Malik  Kamal  Martin  Teresa  Miki  Brian L 《Plant molecular biology》2001,46(1):109-120
A mitogen-activated protein kinase kinase (MAPKK) gene, tMEK2, was isolated from tomato cv. Bonny Best. By mutagenesis, a permanently active variant, tMEK2 MUT, was created. Both wild-type tMEK2 and mutant tMEK2 MUT were driven by a newly described strong plant constitutive promoter, tCUP, in a tomato protoplast transient gene expression system. Pathogenesis-related genes, PR1b1, PR3 and Twi1, and a wound-inducible gene, ER5, were activated by tMEK2MUT. Specific inhibitors of p38 class MAPK inhibited tMEK2MUT-induced activation of PR3 and ER5 genes but not that of the PR1b1 or Twi1 gene. Arabidopsis dual-specificity protein tyrosine phosphatase1 (DsPTP1) and maize protein phosphatase 1 (PP1) inhibited tMEK2MUT-induced activation of the ER5 gene and the Twi1 gene, respectively, whereas PR1b1 and PR3 were not affected by either AtDsPTP1, or maize PP1, or Arabidopsis protein phosphatase 2A (PP2A). We have demonstrated for the first time that a single MAPKK activates an array of PR and wound-related genes. Our observation indicates that the activation of the genes downstream of tMEK2 occurs through divergent pathways and that tMEK2 may play an important role in the interaction of signal transduction pathways that mediate responses to both biotic (e.g. disease) and abiotic stresses (e.g. wound responsiveness).  相似文献   

15.
The oxidative burst in plant defense: Function and signal transduction   总被引:27,自引:1,他引:26  
The rapid production and accumulation of active oxygen species (AOS), the oxidative burst, has been shown to occur in a variety of plant/pathogen systems. In particular, two species, hydrogen peroxide (H2O2) and the superoxide radical anion O2? have received considerable attention. H2O2 and O2?, while acting directly as antimicrobial agents, may also serve as second messengers or catalysts in plants to activate a more diverse set of defense responses. Some of the better studied downstream responses promoted by AOS are (1) the cross-linking of cell wall proteins, (2) the induction of defense-related genes, (3) the stimulation of phytoalexin biosynthesis and (4) promotion of the hypersensitive response (HR). A useful model for studying the oxidative burst in plants is the neutrophil NADPH ox-idase complex, the primary source of AOS production in mammals. Several of the subunits of the neutrophil NADPH oxidase complex have been immunologically identified in plants. Furthermore, many of the components known to be involved in the signal transduction pathway in neutrophils have also been found to play a role in the oxidative burst in plants. Just as various ligands activate the oxidase complex in neutrophils, several ligands (elicitors or pathogens) also lead to induction of the oxidative burst in plant cells. The similarities between the neutrophil and plant oxidative bursts will be elaborated in this review. Following stimulation with elicitors, different signal transduction pathways are activated in plants, depending on the source of elicitor used. While the identities and chronologies of the major intermediates in these pathways remain largely unknown, there is strong evidence at least for participation of phospholipases, H+/K+ exchange, Ca2+ influxes, protein kinases and phosphatases, and GTP binding proteins. In an effort to integrate these various signaling events into a single scheme, we have constructed a hypothetical model that proposes how different elicitors might induce the oxidative burst in the same cell by different pathways.  相似文献   

16.
Hu XY  Neill SJ  Cai WM  Tang ZC 《Cell research》2004,14(3):234-240
Responses to oligogalacturonic acid (OGA) were determined in transgenic Arabidopsis thaliana seedlings express-ing the calcium reporter protein aequorin. OGA stimulated a rapid, substantial and transient increase in the concentration of cytosolic calcium ([Ca^2 ]cyt) that peaked after ca. 15 s. This increase was dose-dependent, saturating at ca. 50 μg Gal equiv/ml of OGA. OGA also stimulated a rapid generation of H202. A small, rapid increase in H2O2 content was followed by a much larger oxidative burst, with H2O2 content peaking after ca. 60 min and declining thereafter. Induction of the oxidative burst by OGA was also dose-dependent, with a maximum response again being achieved at ca. 50 μg Gal equiv/mL. Inhibitors of calcium fluxes inhibited both increases in [Ca^2 ]cyt and [H2O2], whereas inhibitors of NADPH oxidase blocked only the oxidative burst. OGA increased strongly the expression of the defence-related genes CHS,GST, PAL and PR-1. This induction was suppressed by inhibitors of calcium flux or NADPH oxidase, indicating that increases in both cytosolic calcium and H2O2 are required for OGA-induced gene expression.  相似文献   

17.
Plants rely on the innate immune system to defend themselves from pathogen attacks. Reactive oxygen species (ROS) and nitric oxide (NO) play key roles in the activation of disease resistance mechanisms in plants. The evolutionarily conserved mitogen-activated protein kinase (MAPK) cascades are universal signal transduction modules in eukaryotes and have been implicated in the plant innate immunity. There have been many disputations about the relationship between the radicals (ROS and NO) and MAPK cascades. Recently, we found that MAPK cascades participate in the regulation of the radical burst. Here, we discuss the regulatory mechanisms of the oxidative and NO bursts in response to pathogen attacks, and crosstalk between MAPK signaling and the radical burst.Key words: oxidative burst, MAPK, NADPH oxidase, NO burst, plant immunity  相似文献   

18.
19.
20.
The agent of human granulocytic ehrlichiosis (HGE) is an emerging tick-borne pathogen that resides in neutrophils and can be cultured in a promyelocytic (HL-60) cell line. In response to microbes, polymorphonuclear leukocytes normally activate the NADPH oxidase enzyme complex and generate superoxide anion (O2-). However, HL-60 cells infected with HGE bacteria did not produce O2- upon activation with PMA. RT-PCR demonstrated that HGE organisms inhibited mRNA expression of a single component of NADPH oxidase, gp91phox, and FACS analysis showed that plasma membrane-associated gp91phox protein was reduced on the infected cells. Infection with HGE organisms also decreased gp91phox mRNA levels in splenic neutrophils in a murine model of HGE, demonstrating this phenomenon in vivo. Therefore, HGE bacteria repress the respiratory burst by down-regulating gp91phox, the first direct inhibition of NADPH oxidase by a pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号