首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Plant-food-derived antioxidants and active principles such as flavonoids, hydroxycinnamates (ferulic acid, chlorogenic acids, vanillin etc.), β-carotene and other carotenoids, vitamin E, vitamin C, or rosemary, sage, tea and numerous extracts are increasingly proposed as important dietary antioxidant factors. In this endeavor, assays involving oxidative DNA damage for characterizing the potential antioxidant actions are suggested as in vitro screens of antioxidant efficacy. The critical question is the bioavailability of the plant-derived antioxidants.  相似文献   

2.
Objective: It appears that the atherosclerotic plaque is a prooxidant environment where some molecules that are normally antioxidants, including vitamins C and E, may act as prooxidants that contribute to atherosclerosis by oxidizing LDL. Some molecules can act as co-antioxidants to eliminate this prooxidant effect by recycling or other mechanisms of supplementation. Fibrinogen and other acute phase proteins found in the plaque are antioxidants. We hypothesized that fibrinogen can act as a co-antioxidant to supplement vitamin E thereby eliminating its oxidative effect under prooxidant conditions. We tested a model system for this hypothesis using the vitamin E analogue Trolox in a cell free system.

Methods: LDL was oxidized using 5 umol/l copper. Antioxidant conditions were achieved by adding the antioxidants immediately with LDL, while prooxidant conditions were created by adding antioxidants after a 40 min delay. Oxidation was monitored as the lag phase at 234 nm.

Results: Under antioxidant conditions, the protective effect of fibrinogen and Trolox combined together were about equal to the sum of the anitioxidant effects of each alone (additive), while under prooxidant conditions the combined protection was 54-200% greater (synergistic). These effects were different than those of vitamin C with Trolox in that under antioxidant conditions fibrinogen and Trolox were additive while vitamin C and Trolox showed strong synergistic effects, and in that unlike vitamin C and Trolox fibrinogen showed no prooxidant tendencies under prooxidant reaction conditions.

Conclusions: The data indicated that fibrinogen did act as a co-antioxidant to supplement Trolox and eliminate its prooxidant effect, most probably, by directly quenching the phenoxyl radical, because unlike vitamin C, fibrinogen did not appear to recycle vitamin E. But fibrinogen may act as a universal antioxidant, since unlike Trolox and vitamin C, it showed little tendency toward becoming a prooxidant.  相似文献   

3.
We examined the preventive activity of naturally occurring antioxidants against three reactive oxygen species using a protein degradation assay. The hydroxyl, hypochlorite, and peroxynitrite radicals are typical reactive oxygen species generated in human body. Previously, we found that hydrophobic botanical antioxidants exhibited specific antioxidant activity against hydroxyl radicals, whereas anserine and carnosine mixture, purified from chicken extract and vitamin C, exhibited antioxidant activities against hypochlorite and peroxynitrite radicals respectively. Since ethanol, used as a solvent in the experiments, also showed an antioxidant action against the hydroxyl radical, we re-assessed antioxidant activities using aqueous solutions of botanical antioxidants. Among the seven hydrophobic antioxidants examined, ferulic acid exhibited the strongest antioxidant activity against the hydroxyl radical. An antioxidant preparation of anserine-carnosine mixture, vitamin C, and ferulic acid prevented oxidative stress by reactive oxygen species. Loss of deformability in human erythrocytes and protein degradation caused by reactive oxygen species were completely inhibited.  相似文献   

4.
Multiple reactive oxygen/nitrogen species induce oxidative stress. Mammals have evolved with an elaborate defense network against oxidative stress, in which multiple antioxidant compounds and enzymes with different functions exert their respective roles. Radical scavenging is one of the essential roles of antioxidants and vitamin E is the most abundant and important lipophilic radical-scavenging antioxidant in vivo. The kinetic data and physiological molar ratio of vitamin E to substrates show that the peroxyl radicals are the only radicals that vitamin E can scavenge to break chain propagation efficiently and that vitamin E is unable to act as a potent scavenger of hydroxyl, alkoxyl, nitrogen dioxide, and thiyl radicals in vivo. The preventive effect of vitamin E against the oxidation mediated by nonradical oxidants such as hypochlorite, singlet oxygen, ozone, and enzymes may be limited in vivo. The synergistic interaction of vitamin E and vitamin C is effective for enhancing the antioxidant capacity of vitamin E. The in vitro and in vivo evidence of the function of vitamin E as a peroxyl radical-scavenging antioxidant and inhibitor of lipid peroxidation is presented.  相似文献   

5.
Approaching living systems, aqueous solutions are appropriate to characterize antioxidants, whereas the frequently used standard 1,1-diphenyl-2-picrylhydrazyl (DPPH) is insoluble in water. Therefore, mixed water-ethanol solvents were investigated using the electron paramagnetic resonance (EPR) spectroscopy. Two forms of DPPH were identified: at higher ethanol ratios a quintet spectrum characteristic of solutions, and at lower ratios, a singlet spectrum typical for solid DPPH, were found. Mixed solvents with 0-50% (v/v) water reproduced the same antioxidant equivalent points well and the reaction rate between DPPH and the antioxidant may increase considerably with increasing water ratios, as demonstrated using vitamin E as an antioxidant. But at still higher water ratios (70-90% (v/v)) the antioxidant activities dropped, since a part of the DPPH in the aggregated form does not react sufficiently with the antioxidants. Characteristics of the most common antioxidants were determined in ethanol or its 50% (v/v) aqueous solution.  相似文献   

6.
d- and dl-alpha-tocopheryl succinate inhibited growth and caused morphological changes in mouse melanoma (B-16), mouse neuroblastoma (NBP2), and rat glioma (C-6) cells in culture. To study whether the effects of alpha-tocopheryl (vitamin E) succinate on tumor cells are mediated by antioxidant mechanisms, the effects of lipid-soluble antioxidants, butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) were compared with those of vitamin E succinate. Results showed that these antioxidants produced alterations on the growth and morphology of neuroblastoma, melanoma, and glioma cells which are similar to those produced by vitamin E succinate; however, the extent of the effect depended upon the type of antioxidant and the form of tumor cells. These data suggest that the effects of vitamin E succinate on tumor cells may be mediated, in part, by antioxidant mechanisms.  相似文献   

7.
The present study was carried out to study the effect of antioxidants on oxidised LDL + VLDL and found that vitamin E, eugenol and tincture of crataegus (antioxidants) inhibited oxidation of (LDL + VLDL) similar to standard antioxidant (butylated hydroxy toluene). Vitamin C acted as an antioxidant at lower concentration, and prooxidant at higher concentration.  相似文献   

8.
The oxidation of human low density lipoprotein (LDL) initiated by free radical initiator and its inhibition by vitamin E and water-soluble antioxidants have been studied. It was found that the kinetic chain length was considerably larger than 1, suggesting that LDL was oxidized by a free radical chain mechanism. Vitamin E acted as a lipophilic chain-breaking antioxidant. Water-soluble chain-breaking antioxidants such as ascorbic acid and uric acid suppressed the oxidation of LDL initiated by aqueous radicals but they could not scavenge lipophilic radicals within LDL to break the chain propagation. Ascorbic acid acted as a synergistic antioxidant in conjunction with vitamin E.  相似文献   

9.
Oxidized low-density lipoproteins (LDL) are implicated in atherosclerosis. However, large-scale intervention studies designed to test whether antioxidants, such as vitamin E, can ameliorate cardiovascular disease have generated ambivalent results. This may relate to the fact that the mechanism whereby lipid oxidation is initiated in vivo is unknown and the lack of direct evidence for a deficiency of antioxidants in atherosclerotic lesions. Further, there is little evidence to suggest that vitamin E acts as an antioxidant for lipid peroxidation in vivo. Here we tested the antioxidant effect of dietary vitamin E (alpha-tocopherol) supplementation on intimal proliferation and lipid oxidation in balloon-injured, hypercholesterolemic rabbits. alpha-Tocopherol supplementation increased vascular content of alpha-tocopherol over 30-fold compared to nonsupplemented and alpha-tocopherol-deficient chows. Balloon injury resulted in oxidized lipid deposition in the aorta. Maximum levels of primary lipid oxidation products, measured as hydroperoxides of esterified lipid (LOOH) and oxidized linoleate (HODE), were 0.22 and 1.10 nmol/mg, representing 0.21 and 0.39% of the precursor molecule, respectively. Secondary lipid oxidation products, measured as oxysterols, were maximal at 5.60 nmol/mg or 1.48% of the precursor compound. Vascular HODE and oxysterols were significantly reduced by vitamin E supplementation. However, the intima/media ratio of aortic vessels increased with vitamin E supplementation, suggesting that the antioxidant promoted intimal proliferation. Thus, the study demonstrates a dissociation of aortic lipid oxidation and lesion development, and suggests that vitamin E does not prevent lesion development in this animal model.  相似文献   

10.
Mitigation of lindane induced toxicity in testis of Swiss mice by combined treatment with vitamin C, vitamin E and alpha-lipoic acid has been evaluated. Male healthy mice (40), 8-10 weeks old were randomly selected and divided into 4 groups, control (C); lindane (L); antioxidant (A) and antioxidant plus lindane (A+L). Group C animals were administered only the vehicle (olive oil); in group L lindane was administered orally at a dose of 40 mg/kg body wt.; in group A combination of antioxidants at a dose of 125 mg/kg body wt.(vitamin C: 50 mg/kg body wt., vitamin E: 50 mg/kg body wt. and alpha-lipoic acid: 25 mg/kg body wt.) was administered orally; in group A+L both antioxidants (125 mg/kg body wt.) and lindane (40 mg/kg body wt.) were administered at their respective doses. In group A+L antioxidants were administered 1 h prior to lindane administration. All treatments were continuously given for 60 days. Histopathological changes due to lindane intoxication indicated shrunken and distorted seminiferous tubules, sparse Leydig cells and blood vessels and atrophy in the tissue. The testis weight also decreased significantly. Lindane treated group showed increased lipid peroxidation, whereas glutathione, glutathione peroxidase, superoxide dismutase, catalase and protein were significantly decreased compared to control. Lindane induced damage was minimized by administration of antioxidants. Results suggest that combined pretreatment with antioxidants can alleviate the damage caused to testis by lindane.  相似文献   

11.
The antioxidant activity of duroquinone and hypoxen was compared with that of alpha-tocopherol and vitamin C in a model system (luminol-peroxidase-H2O2), and their influence on the level of reactive oxygen species in systems containing polymorphonuclear leukocytes of healthy and tumor-bearing animals was studied. It was shown that, in a model chemical system, the concentrations of antioxidants (the inverse of antioxidant activity) necessary to decrease twice the intensity of the chemiluminescence answer (C50%) are arranged in the following order: alpha-tocopherol > duroquinone > hypoxen > ascorbic acid. In this case, the concentrations of the hydrophobic antioxidants (C50% for alpha-tocopherol and duroquinone 10-30 mkM) should be 20-50 times higher than for hydrophilic antioxidants (C50% for vitamin C and hypoxen 0.5-0.6 mkM). It was revealed that the generation of reactive oxygen species by blood phagocytes of tumor-bearing animals is 2-2.5 times higher than by phagocytes of healthy animals. The antioxidant concentration necessary to decrease the chemiluminescence answer in the cellular system should be one order of magnitude higher than in the model chemical system. The distribution of a hydrophobic antioxidant between water/lipid phases promotes an increase in the concentration of the antioxidant necessary to decrease the level of reactive oxygen species twice. Thus, the major factor influencing the antioxidant activity is the constant of distribution of these compounds in a water/lipid system.  相似文献   

12.
Lead (100 ppm) was given in doubly deionised water for 30 days to one group of rats. The other groups received lead along with exogenous antioxidants like vitamin E (50 IU/kg), vitamin C (800 mg/kg) or Spirulina (1500 mg/kg) in food for a similar period. Levels of lipid peroxidation products such as malondialdehyde, conjugated diene and hydroperoxide were measured in liver, lung and kidney of treated rats. In lead treated animals there was a significant increase in the levels of these lipid peroxidative products. Administration of exogenous antioxidants in the lead treated animals reduced the levels of malondialdehyde, conjugated diene and hydroperoxide. It indicated that vitamin E, vitamin C and Spirulina had significant (P < 0.001) antioxidant activity thereby protecting the animals from lead induced toxicity.  相似文献   

13.
Effect of phytyl side chain of vitamin E on its antioxidant activity   总被引:6,自引:0,他引:6  
Inhibition of the oxidation of methyl linoleate and soybean phosphatidylcholine in homogeneous solution and in aqueous dispersion by four chain-breaking antioxidants, vitamin E (alpha-tocopherol), 2,2,5,7,8-pentamethyl-6-chromanol, 2,6-di-tert-butyl-4-methylphenol, and stearyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate, was studied to examine the effect of the phytyl side chain of vitamin E on its antioxidant activity. These four antioxidants exerted similar antioxidative activities. They were also effective as antioxidants in protecting the oxidation of soybean phosphatidylcholine liposomes in water dispersion. However, when they were incorporated into dimyristoyl phosphatidylcholine liposomes, only 2,2,5,7,8-pentamethyl-6-chromanol and 2,6-di-tert-butyl-4-methylphenol could suppress the oxidation of soybean phosphatidylcholine liposomes dispersed in the same aqueous system. It was concluded that the antioxidative properties of vitamin E and its model without the phytyl side chain are quite similar within micelles and liposomes as well as in homogeneous solution but that the phytyl side chain enhances the retainment of vitamin E in liposomes and suppresses the transfer of vitamin E between liposomal membranes.  相似文献   

14.
《Free radical research》2013,47(5):337-345
Abstract

The major causes for cataract formation are free radicals, and these free radicals are neutralized by the presence of endogenous antioxidants in the eye. Using xenobiotics, it has been confirmed that free radicals mediate the formation of cataract. Two cataract model-selenite model and the diabetic cataract model-have been developed to study the pathophysiology of cataract formation due to free radicals and the role of antioxidants during the process of cataractogenesis. This review focuses on natural compounds with antioxidant properties that could actually be applied as an interventional strategy on a large scale and are also relatively inexpensive. A brief overview of plants with antioxidant properties that in addition possess potential anti-cataract properties has been discussed. In addition to plants, three natural compounds (curcumin, vitamin C and vitamin E), on which a lot of data exist showing anti-cataract and antioxidant activities, have also been discussed. These antioxidants can be supplemented in the diet for a better defence against free radicals. Studies on vitamin C and vitamin E have proved that they are capable of preventing lipid peroxidation, thereby preventing the generation of free radicals, but their efficacy as anti-cataract agent is questionable. Unlike vitamins C and E, curcumin is well established as an anti-cataract agent, but the issue of curcumin bioavailability is yet to be addressed. Nanotechnology proves to be a promising area in increasing the curcumin bioavailability, but still a lot more research needs to be done before the use of curcumin as an effective anti-cataract agent for humans.  相似文献   

15.
Micronutrient antioxidants are thought to be generally important for health in many animals, but factors determining levels in individuals and species are not well understood. Diet and season are obvious environmental variables that might predict the degree to which species can accumulate such nutrients. We analyzed antioxidant levels [Trolox-equivalent antioxidant capacity (TEAC), uric acid (UA), vitamin E, and four carotenoids] in 95 bird species and compared these to species-level data on diet from the literature. Using compositional principal components analysis, we identified two main axes of diet variation: invertebrate consumption and seed-to-fruit ratio. We then examined associations between diet axes and antioxidant measures, with and without control for life-history variation and phylogeny. We also analyzed a subset of 13 species for which we had data on seasonality of antioxidant levels and diet, assessing the variance in antioxidant levels explained by seasonality, diet, and species. Unsurprisingly, there were strong associations between antioxidant levels and diet. TEAC and UA concentration were consistently positively associated with invertebrate consumption and seed-to-fruit ratio, and carotenoid concentrations (e.g. zeaxanthin and β-carotene) were negatively associated with invertebrate consumption. However, vitamin E was not associated with diet as measured here. Importantly, there is much variation in antioxidants that is not explained by diet, and we are able to identify diet-independent effects of species, season/breeding stage, and life history on antioxidant levels. Circulating antioxidant concentrations within and across species can therefore be viewed as a function of multiple factors, including but not limited to diet, and antioxidant metabolism appears to differ across species and seasons irrespective of diet.  相似文献   

16.
Two major lines of defense exist against oxidant lung injury: tissue antioxidants and antioxidant enzymes. We studied pretreatment with the antioxidants, vitamin E and butylated hydroxyanisole (BHA), and the antioxidant enzymes, superoxide dismutase (SOD) and catalase, in rabbits exposed to 100% O2 for 48 h. BHA (200 mg/kg ip) or vitamin E (50-100 mg/kg po) were given for 2 or 3 days, respectively, before O2 exposure. Combined therapy with polyethylene glycol- (PEG) conjugated SOD (12 mg/kg) and catalase (200,000 U/kg) was given intraperitoneally 1 h before and 24 h after beginning 100% O2. Hyperoxia significantly increased the pulmonary content of malondialdehyde, indicating enhanced lipid peroxidation. One hundred percent O2 also increased lung weight gain and alveolar-capillary permeability to aerosolized 99mTc-labeled diethylenetriaminepentaacetate (99mTc-DTPA, 500 mol wt) and fluorescein isothiocyanate-labeled dextran (7,000 mol wt). Pretreatment with vitamin E, BHA, or the combination of PEG-SOD and PEG-catalase prevented the increase in malondialdehyde, lung weight gain, and alveolar-capillary permeability caused by hyperoxia. These results indicate that augmenting either tissue antioxidants or antioxidant enzymes can prevent the pulmonary injury caused by 48 h of 100% O2 in rabbits.  相似文献   

17.
Antioxidants have a large potential to coevolve with life-histories because of their capacity to counteract the negative effects of free radicals on fitness. However, only a few studies have explored the association between antioxidant levels and life-history strategies comparing a large number of species. Here we used an extensive dataset of 125 species of birds to investigate the association between concentrations of antioxidants (carotenoids and vitamin E) in the liver, which is the main storage organ for fat-soluble antioxidants, and life-history and morphology. We found that high liver antioxidant concentrations were associated with life-history strategies characterized by "live slow, die old", in clear contrast to previous studies reporting a relationship between high plasma antioxidants and life-histories characterized by "live fast, die young". Thus, high carotenoid concentrations were present in species with large body, brain and egg sizes, high absolute metabolic rate and a resident lifestyle, while high vitamin E concentrations were present in species with large brain size and long life span and incubation period. Our results indicate that antioxidants and life-histories coevolve, and that this may be mediated by positive fitness consequences of the accumulation of liver antioxidants, as species with higher antioxidant levels live longer.  相似文献   

18.
Cells under aerobic condition are always threatened with the insult of reactive oxygen species, which are efficiently taken care of by the highly powerful antioxidant systems of the cell. The erythrocytes (RBCs) are constantly exposed to oxygen and oxidative stress but their metabolic activity is capable of reversing the injury under normal conditions. In vitro hemolysis of RBCs induced by 5, 10 and 20 mM glucose was used as a model to study the free radical induced damage of biological membranes in hyperglycemic conditions and the protection rendered by vitamin E on the same. RBCs are susceptible to oxidative damage, peroxidation of the membrane lipids, release of hemoglobin (hemolysis) and alteration in activity of antioxidant enzymes catalase and superoxide dismutase. The glucose induced oxidative stress and the protective effect of vitamin E on cellular membrane of human RBCs manifested as inhibition of membrane peroxidation and protein oxidation and restoration of activities of superoxide dismutase and catalase, was investigated.Thiobarbituric acid reactive substances are generated from decomposition of lipid peroxides and their determination gives a reliable estimate of the amount of lipid peroxides present in the membrane. Vitamin E at 18 μg/ml (normal serum level) strongly enhanced the RBC resistance to oxidative lysis leading to only 50–55% hemolysis in 24 h, whereas RBCs treated with 10 and 20 mM glucose without vitamin E leads to 70–80% hemolysis in 24 h. Levels of enzymic antioxidants catalase, superoxide dismutase and nonenzymic antioxidants glutathione showed restoration to normal levels in presence of vitamin E. The study shows that vitamin E can protect the erythrocyte membrane exposed to hyperglycemic conditions and so a superior antioxidant status of a diabetic patient may be helpful in retarding the progressive tissue damage seen in chronic diabetic patients.  相似文献   

19.
The promoting effect of heterocyclic ring and heteroatom on the antioxidant properties of vitamin E has been investigated systemically by using density functional theory. The calculated results show that the heteroatom plays a more important role in promoting the antioxidant properties than the heterocyclic ring, indicating that replacing O atom by S or Se is impossible to synthesize the novel better antioxidants. Furthermore, the bond dissociation enthalpy (BDE) and ionization potential (IP) of the corresponding molecules are decreased dramatically when the O atom is replaced by NH. In addition, the calculated results also reveal that reducing the atom number of heterocyclic ring is an ideal way to synthesize novel antioxidants with better antioxidant activity than vitamin E.  相似文献   

20.
Oxygen derived free radicals are known to play an important role in the etiology of tissue injury in rheumatoid arthritis. The effect of milk extract of Semecarpus anacardium nuts at the dose level of 150 mg/kg body weight for 14 days on adjuvant arthritis was studied for gaining insight into the intrigue disease in relation to the lipid peroxidation and antioxidant defence system. Increased lipid peroxides' levels in both plasma and tissues (liver, kidney and heart) of adjuvant arthritis was significantly decreased by the administration of the drug. The antioxidant defence system studied in tissues of arthritic animals were altered significantly as evidenced by the decreased level of non-enzymatic antioxidants (GSH, vitamin E, vitamin C, NPSH and TSH) and enzymatic antioxidants (catalase and GPx except SOD). Administration of Semecarpus anacardium nut extract brings back the altered antioxidant defence components to near normal levels. These observations suggest that the diseased stat e of adjuvant arthritis may be associated with augmented lipid peroxidation and the administration of the drug may exert its antiarthritic effect by retarding lipid peroxidation and causing a modulation in cellular antioxidant defence system. (Mol Cell Biochem 175: 65–69, 1997)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号