首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 505 毫秒
1.
Creating, restoring, and sustaining forests in urban areas are complicated by habitat fragmentation, invasive species, and degraded soils. Although there is some research on the outcomes of urban reforestation plantings during the first 5 years, there is little research on longer term outcomes. Here, we compare the successional trajectories of restored and unrestored forest sites 20 years after initiating restoration. The sites are located within the Rodman's Neck area of Pelham Bay Park, in the northeast corner of the Bronx in New York City (NYC), U.S.A. Compared with unrestored sites, we saw improvements in species diversity, greater forest structure complexity, and evidence of the regeneration and retention of native tree species in restored sites. In addition, we found differences in restoration outcomes depending on the level of intervention: clearing exotic shrubs and vines and planting native trees and shrubs improved tree diversity and canopy closure to a greater extent than clearing exotics alone, and the mechanical removal of invasive plants after the native plantings further improved some measures of restoration, such as tree species diversity and native tree regeneration. The results of this study suggest that the goal of a sustainable forest ecosystem dominated by native trees and other plant species may not be achievable without continued human intervention on site. In addition, these results indicate that the restoration approach adopted by NYC's reforestation practitioners is moving the site toward a more desirable vegetative community dominated by native species.  相似文献   

2.
Summary Seed availability is a major factor limiting the recruitment of rain forest to cleared land, but little is known about the composition of the soil seed bank under different reforestation pathways. We quantified changes in the viable soil seed bank following rain forest clearing and pasture establishment and subsequent reforestation in subtropical eastern Australia. Major reforestation pathways in the region include planting of a diverse suite of native trees for ecological restoration purposes, autogenic regrowth dominated by the non‐native tree Camphor Laurel (Cinnamomum camphora) and management of this regrowth to accelerate the development of a native tree community. These pathways differ considerably in cost: restoration plantings are expensive, autogenic regrowth is free, whilst managing regrowth generally costs much less than restoration plantings. We surveyed five sites within each of three reforestation pathways as well as reference sites in remnant rain forest and pasture. The composition of the seed bank was determined by germinating plants from soil samples collected from each site. Germinants were classified into several functional groups according to life form, origin, dispersal mode and successional stage. The majority of functional groups varied significantly in abundance or richness between rain forest and pasture sites. Most of the functional groups that varied between rain forest and pasture were restored to values similar to rain forest by at least one of the three reforestation pathways examined. The species richness of native woody plants in the soil seed bank was slightly higher in restoration plantings than in autogenic or managed regrowth; nevertheless, the species richness and abundance of native woody plants and vines were higher in the seed bank of autogenic regrowth than pasture, and both attributes were enhanced by the management of regrowth sites. The results of this study show that autogenic regrowth can make an important contribution to rain forest restoration at a landscape scale. The optimal reforestation approach or mix of approaches will depend on the desired rate of recovery and the resources available for restoration.  相似文献   

3.
Deforestation is a global process that has strongly affected the Atlantic Forest in South America, which has been recognised as a threatened biodiversity hotspot. An important proportion of deforested areas were converted to forest plantations. Araucaria angustifolia is a native tree to the Atlantic Forest, which has been largely exploited for wood production and is currently cultivated in commercial plantations. An important question is to what extent such native tree plantations can be managed to reduce biodiversity loss in a highly diverse and vulnerable forest region . We evaluated the effect of stand age, stand basal area, as a measure of stand density, and time since last logging on the density and richness of native tree regeneration in planted araucaria stands that were successively logged over 60 years, as well as the differences between successional groups in the response of plant density to stand variables. We also compared native tree species richness in planted araucaria stands to neighbouring native forest. Species richness was 71 in the planted stands (27 ha sampled) and 82 in native forest (18 ha sampled) which approximate the range of variation in species richness found in the native forests of the study area. The total abundance and species richness of native trees increased with stand age and time since last logging, but ecological groups differed in their response to such variables. Early secondary trees increased in abundance with stand age 3–8 times faster than climax or late secondary trees. Thus, the change in species composition is expected to continue for a long term. The difference in species richness between native forest and planted stands might be mainly explained by the difference in plant density. Therefore, species richness in plantations can contribute to local native tree diversity if practices that increase native tree density are implemented.  相似文献   

4.
Secondary forests are an increasingly common feature in tropical landscapes worldwide and understanding their regeneration is necessary to design effective restoration strategies. It has previously been shown that the woody species community in secondary forests can follow different successional pathways according to the nature of past human activities in the area, yet little is known about patterns of herbaceous species diversity in secondary forests with different histories of land use. We compared the diversity and abundance of herbaceous plant communities in two types of Central Amazonian secondary forests—those regenerating on pastures created by felling and burning trees and those where trees were felled only. We also tested if plant density and species richness in secondary forests are related to proximity to primary forest. In comparison with primary forest sites, forests regenerating on non‐burned habitats had lower herbaceous plant density and species richness than those on burned ones. However, species composition and abundance in non‐burned stands were more similar to those of primary forest, whereas several secondary forest specialist species were found in burned stands. In both non‐burned and burned forests, distance from the forest edge was not related to herbaceous density and species richness. Overall, our results suggest that the natural regeneration of herbaceous species in secondary tropical forests is dependent on a site's post‐clearing treatment. We recommend evaluating the land history of a site prior to developing and implementing a restoration strategy, as this will influence the biological template on which restoration efforts are overlaid.  相似文献   

5.
Planning for the restoration of degraded ecosystems has a strong basis in facilitation successional theory, which, as applied in restoration practice, states that planting of structurally dominant tree species will assist the entry of other native species into a restored community. In Australia, tree planting has been widely applied in restoration of grassy woodland ecosystems. Trees have been postulated to reduce the cover and diversity of weed species, thus facilitating recolonization of native woodland species (indirect facilitation). The expected outcomes of this process include reduced species richness and abundance of exotic plant species and increased species richness and abundance/dominance of natives in areas beneath tree canopies, with these trends strengthening with time. To assess whether this was occurring, we carried out a comparative analysis of species assemblages found underneath and outside of planted tree canopies in sites replanted with juvenile canopy tree species 3–5 or 8–10 years previously. We sampled revegetated stands of Cumberland Plain Woodland, an endangered ecological community in Western Sydney, Australia. We found that neither the number nor abundance of native ground layer species beneath canopies increased as a result of trees being planted at sites of both ages. Where seed is limited, we predicted an increase in abundance of existing native species under planted tree canopies. On this point, the results were mixed and showed some natives with an increased abundance while others decreased. Exotic species richness showed the reverse of the expected pattern, being greater under tree canopies. These findings lend no support to the theory of indirect facilitation. We conclude that simple facilitation models may be inadequate to support planning of grassy woodland restoration and that those models incorporating successional time lags and restoration barriers are likely to be more informative about the development of communities initiated by tree planting.  相似文献   

6.
Invasive bird-dispersed plants often share the same suite of dispersers as co-occurring native species, resulting in a complex management issue. Integrated management strategies could incorporate manipulation of dispersal or establishment processes. To improve our understanding of these processes, we quantified seed rain, recruit and seed bank density, and species richness for bird-dispersed invasive and native species in three early successional subtropical habitats in eastern Australia: tree regrowth, shrub regrowth and native restoration plantings. We investigated the effects of environmental factors (leaf area index (LAI), distance to edge, herbaceous ground cover and distance to nearest neighbour) on seed rain, seed bank and recruit abundance. Propagule availability was not always a good predictor of recruitment. For instance, although native tree seed rain density was similar, and species richness was higher, in native plantings, compared with tree regrowth, recruit density and species richness were lower. Native plantings also received lower densities of invasive tree seed rain than did tree regrowth habitats, but supported a similar density of invasive tree recruits. Invasive shrub seed rain was recorded in highest densities in shrub regrowth sites, but recruit density was similar between habitats. We discuss the role of microsite characteristics in influencing post-dispersal processes and recruit composition, and suggest ways of manipulating these processes as part of an integrated management strategy for bird-dispersed weeds in natural areas.  相似文献   

7.
The clearing of natural vegetation for agriculture has reduced the capacity of natural systems to provide ecosystem functions. Ecological restoration can restore desirable ecosystem functions, such as creating habitat for animal conservation and carbon sequestration as woody biomass. In order to maintain these beneficial ecosystem functions, restoration projects need to mature into self‐perpetuating communities. Here we compared the ecological attributes of two types of restoration, “active” tree plantings with “passive” natural forest regeneration (“natural regrowth”) to existing remnant vegetation in a cleared agricultural landscape. Specifically, we measured differences between forest categories in factors that may predict future restoration failure or ecosystem collapse: aboveground plant biomass and biomass accrual over time (for regrowing stands), plant density and size class distributions, and diversity of functional groups based on seed dispersal and growth strategy traits. We found that natural regrowth and planted forests were similar in many ecological characteristics, including biomass accrual. Despite this, planted stands contained fewer tree recruit and shrub individuals, which may be due to limited recruitment in plantings. If this continues, these forests may be at risk of collapsing into nonforest states after mature trees senesce. Lower shrub density and richness of mid‐story trees may lead to lower structural complexity in planting plots, and alongside lower richness of fleshy‐fruited plant species may reduce animal resources and animal use of the restored stand. In our study region, natural regrowth may result in restored woodland communities with greater conservation and carbon mitigation value.  相似文献   

8.
This paper presents a new synthesis of the role of native and non‐native species in diverse pathways and processes that influence forest regeneration on anthropogenic grassland in the moist tropics. Because of altered species composition, abiotic conditions and landscape habitat mosaics, together with human interventions, these successional pathways differ from those seen in pre‐clearing forests. However, representation of different functional life forms of plant (tree, vine, grass, herb and fern) and animal (frugivorous seed disperser, granivorous seed predator, seedling herbivore and carnivore) shows consistent global variation among areas of pasture, intact forest, and post‐grassland regrowth. Biotic webs of interaction involve complex indirect influences and feedbacks, which can account for wide observed variation in regeneration trajectories over time. Important processes include: limitation of tree establishment by dense grasses; recruitment and growth of pioneer pasture trees (shading grasses and facilitating bird‐assisted seed dispersal); and smothering of trees by vines. In these interactions, species’ functional roles are more important than their biogeographic origins. Case studies in eastern Australia show native rain forest plant species diversity in all life forms increasing over time when pioneer trees are non‐native (e.g., Cinnamomum camphora, Solanum mauritianum), concurrent with decreased grass and fern cover and increased abundance of trees and vine tangles. The global literature shows both native and non‐native species facilitating and inhibiting regeneration. However conservation goals are often targeted at removing non‐native species. Achieving large‐scale tropical forest restoration will require increased recognition of their multiple roles, and compromises about allocating resources to their removal.  相似文献   

9.
The role of exotic tree plantations for biodiversity conservation is contested. Such plantations nevertheless offer various ecosystem service benefits, which include carbon storage and facilitation of indigenous tree species regeneration. To assess forest restoration potential in tropical exotic tree plantations, we assessed native cloud forest tree regeneration in 166 plots in ca. 50‐year‐old plantations of five timber species that are widely used in tropical plantations (Pinus patula, Eucalyptus saligna, Cupressus lusitanica, Grevillea robusta and Acacia mearnsii). Differences in species abundance, diversity and composition were compared among plantations, and between plantations and disturbed and undisturbed indigenous Afromontane cloud forest (southeast Kenya) relicts after controlling for environmental variation between plots (i.e. altitude, distance to indigenous forest, soil depth, slope, aspect) and for environmental and stand structural variation (i.e. dominant tree height and basal area). Regenerating trees were mostly early‐successional species. Indigenous tree species regeneration was significantly higher in Grevillea plantations, where the seedling community also included late‐successional tree species. Regeneration under Eucalyptus was particularly poor. Acacia had a strong invasive nature, reducing its potential role and usefulness in indigenous forest restoration. Our study underlined that exotic tree plantations have differential effects on native tree species regeneration, with high potential for Grevillea plantations and low potential for invasive exotic species.  相似文献   

10.
对宝天曼地区不同恢复阶段栓皮栎林的高等植物物种多样性特征进行了初步分析。结果表明,各层物种丰富度和多样性指数在不同恢复阶段栓皮栎林表现出草本层>灌木层>乔木层的趋势。乔木层物种丰富度和多样性指数基本上随恢复时间的增加而增加;灌木层在未破坏的栓皮栎林内较低,而在其他恢复阶段的栓皮栎林内基本相同;草本层在恢复5年、15年和25年的栓皮栎林中较高,而在恢复45年和未破坏的栓皮栎林内较低。乔木层物种均匀度指数在未破坏的栓皮栎林中较高,在恢复25年的栓皮栎林中较低;灌木层在恢复45年的栓皮栎林中较高,在恢复15年的栓皮栎林较低;草本层在恢复5年的栓皮栎林中较高,在恢复15年的栓皮栎林中较低。不同恢复阶段栓皮栎林各层次间的物种多样性差异大多不显著,只有乔木层和草本层及灌木层和草本层之间的物种丰富度指数有显著差异。不同恢复阶段栓皮栎林在乔木层物种多样性特征上的差异最大,在灌木层物种多样性特征上有一定差异,在草本层物种多样性特征上没有明显的差异。  相似文献   

11.
To combat global warming and biodiversity loss, we require effective forest restoration that encourages recovery of species diversity and ecosystem function to deliver essential ecosystem services, such as biomass accumulation. Further, understanding how and where to undertake restoration to achieve carbon sequestration and biodiversity conservation would provide an opportunity to finance ecosystem restoration under carbon markets. We surveyed 30 native mixed‐species plantings in subtropical forests and woodlands in Australia and used structural equation modeling to determine vegetation, soil, and climate variables most likely driving aboveground biomass accrual and bird richness and investigate the relationships between plant diversity, aboveground biomass accrual, and bird diversity. We focussed on woodland and forest‐dependent birds, and functional groups at risk of decline (insectivorous, understorey‐nesting, and small‐bodied birds). We found that mean moisture availability strongly limits aboveground biomass accrual and bird richness in restoration plantings, indicating potential synergies in choosing sites for carbon and biodiversity purposes. Counter to theory, woody plant richness was a poor direct predictor of aboveground biomass accrual, but was indirectly related via significant, positive effects of stand density. We also found no direct relationship between aboveground biomass accrual and bird richness, likely because of the strong effects of moisture availability on both variables. Instead, moisture availability and patch size strongly and positively influenced the richness of woodland and forest‐dependent birds. For understorey‐nesting birds, however, shrub cover and patch size predicted richness. Stand age or area of native vegetation surrounding the patch did not influence bird richness. Our results suggest that in subtropical biomes, planting larger patches to higher densities, ideally using a diversity of trees and shrubs (characteristics of ecological plantings) in more mesic locations will enhance the provision of carbon and biodiversity cobenefits. Further, ecological plantings will aid the rapid recovery of woodland and forest bird richness, with comparable aboveground biomass accrual to less diverse forestry plantations.  相似文献   

12.
Dispersal or recruitment limitation may arrest succession after disturbance. In north-eastern South Africa the Acacia karroo successional pathway is used to facilitate coastal forest recovery after strip-mining. However, although A. karroo establishes naturally, it forms monospecific stands, arresting forest succession for decades. This casts doubt on the efficacy of this restoration pathway. We investigated the causes of arrested succession. The seed and seedling banks of A. karroo stands and of forest at Cape Vidal, and three A. karroo stands (7–27 years old) on rehabilitated strip-mined dunes at nearby Richards Bay were examined. The establishment and growth of seedlings at Cape Vidal were also considered. The seed bank was larger and more diverse in forest, but the seedling bank was larger in Acacia stands. At Richards Bay, the size of the seed bank increased and the seedling bank decreased with Acacia stand age. Excluding mammalian herbivores in Acacia stands at Cape Vidal resulted in greater species richness and survival of naturally established seedlings, as well as two experimentally planted species. Neither seed dispersal nor seedling establishment limited recruitment of tree species in Acacia stands. Herbivory arrested forest succession by causing the differential mortality of seedlings. In contrast, at Richards Bay where there were few mammalian herbivores, the advanced regeneration in A. karroo stands converged on the diversity of nearby forests 29 years after restoration. Controlling herbivore access and seeding Acacia stands with forest species are site-specific options for preventing arrested succession when using the A. karroo successional pathway.  相似文献   

13.
Large‐scale forest restoration relies on approaches that are cost‐effective and economically attractive to farmers, and in this context agroforestry systems may be a valuable option. Here, we compared ecological outcomes among (1) 12–15‐year‐old coffee agroforests established with several native shade trees, (2) 12–15‐year‐old high‐diversity restoration plantations, and (3) reference old‐growth forests, within a landscape restoration project in the Pontal do Paranapanema region, in the Atlantic Forest of southeastern Brazil. We compared the aboveground biomass, canopy cover, and abundance, richness, and composition of trees, and the regenerating saplings in the three forest types. In addition, we investigated the landscape drivers of natural regeneration in the restoration plantations and coffee agroforests. Reference forests had a higher abundance of trees and regenerating saplings, but had similar levels of species richness compared to coffee agroforests. High‐diversity agroforests and restoration plantations did not differ in tree abundance. However, compared to restoration plantations, agroforests showed higher abundance and species richness of regenerating saplings, a higher proportion of animal‐dispersed species, and higher canopy cover. The abundance of regenerating saplings declined with increasing density of coffee plants, thus indicating a potential trade‐off between productivity and ecological benefits. High‐diversity coffee agroforests provide a cost‐effective and ecologically viable alternative to high‐diversity native tree plantations for large‐scale forest restoration within agricultural landscapes managed by local communities, and should be included as part of the portfolio of reforestation options used to promote the global agenda on forest and landscape restoration.  相似文献   

14.
The effects of black-locust invasion on plant forest diversity are still poorly investigated. Vascular plants are likely to be influenced by increasing nutrient availability associated with the nitrogen-fixing activity of black-locust, whereas it is not clear if, along with stand aging, black-locust formations regain forest species. The main aim of the present study was to test whether the increase of black-locust stand age promoted a plant variation in mature stands leading to assemblages similar to those of native forests. Therefore, plant richness and composition of stands dominated by native trees were compared with pure black-locust stands of different successional stages. Our study confirmed that the replacement of native forests by pure black-locust stands causes both plant richness loss and shifts in species composition. In black-locust stands plant communities are dominated by nitrophilous species and lack many of the oligothrophic and acidophilus species typical of native forests. Plant communities of native forests are more diverse with respect to pure black-locust stands, suggesting that black-locust invasion also causes a homogenization of the plant forest biota. We did not detect differences across the successional gradient of black-locust stands, and mature stands do not recover the diversity of plant species which are lost by the replacement of the native forests by black-locust. Accordingly some efforts in reducing the negative impacts of black-locust invasion on plant forest biota should be focused at least in those areas where conservation is among management priorities, such in the case of habitats included in the Habitat Directive (92/43 ECE).  相似文献   

15.
The composition of arthropods in trees has long been a topic of interest, with many studies exploring ways in which arthropod communities differ among tree species or entire forests. Few studies, however, have examined arthropods from trees in restoration plantings, and little is known about how different tree plantings might lead to different biodiversity outcomes. The aim of our study was to determine if a focal tree species hosted a different arthropod fauna depending on its context. We examined arthropod assemblages from the foliage of Eucalyptus microcarpa (Grey Box) trees present in two kinds of plantings: (i) simple plantings with only Eucalyptus trees, and (ii) mixed plantings with both Eucalyptus and Acacia trees. We examined the composition of the assemblages, and looked for associations between ant and psyllid (Hemiptera) diversity across each kind of planting. We found more species of psyllids, beetles and ants in E. microcarpa trees when they were grown in simple plantings compared with the mixed species plantings. We also found that psyllid richness and abundance was positively correlated with ant richness and abundance across all plantings. Our study shows that a more diverse context (i.e. a mixed planting) is not necessarily associated with a more diverse fauna within a focal tree species, and that simple Eucalyptus-only plantings may encourage higher numbers of insect herbivores. The apparent association between psyllids and ants suggests a complex interaction that may drive patterns in tree arthropod assemblages.  相似文献   

16.
Vertebrate fauna was studied over 10 years following revegetation of a Eucalyptus tereticornis ecosystem on former agricultural land. We compared four vegetation types: remnant forest, plantings of a mix of native tree species on cleared land, natural regeneration of partially cleared land after livestock removal, and cleared pasture land with scattered paddock trees managed for livestock production. Pasture differed significantly from remnant in both bird and nonbird fauna. Although 10 years of ecosystem restoration is relatively short term in the restoration process, in this time bird assemblages in plantings and natural regeneration had diverged significantly from pasture, but still differed significantly from remnant. After 10 years, 70 and 66% of the total vertebrate species found in remnant had been recorded in plantings and natural regeneration, respectively. Although the fauna assemblages within plantings and natural regeneration were tracking toward those of remnant, significant differences in fauna between plantings and natural regeneration indicated community development along different restoration pathways. Because natural regeneration contained more mature trees (dbh > 30 cm), native shrub species, and coarse woody debris than plantings from the beginning of the study, these features possibly encouraged different fauna to the revegetation areas from the outset. The ability of plantings and natural regeneration to transition to the remnant state will be governed by a number of factors that were significant in the analyses, including shrub cover, herbaceous biomass, tree hollows, time since fire, and landscape condition. Both active and passive restoration produced significant change from the cleared state in the short term.  相似文献   

17.
The effect of management related factors on species richness of epiphytic bryophytes and lichens was studied in managed deciduous-coniferous mixed forests in Western-Hungary. At the stand level, the potential explanatory variables were tree species composition, stand structure, microclimate and light conditions, landscape and historical variables; while at tree level host tree species, tree size and light were studied. Species richness of the two epiphyte groups was positively correlated. Both for lichen and bryophyte plot level richness, the composition and diversity of tree species and the abundance of shrub layer were the most influential positive factors. Besides, for bryophytes the presence of large trees, while for lichens amount and heterogeneity of light were important. Tree level richness was mainly determined by host tree species for both groups. For bryophytes oaks, while for lichens oaks and hornbeam turned out the most favourable hosts. Tree size generally increased tree level species richness, except on pine for bryophytes and on hornbeam for lichens. The key variables for epiphytic diversity of the region were directly influenced by recent forest management; historical and landscape variables were not influential. Forest management oriented to the conservation of epiphytes should focus on: (i) the maintenance of tree species diversity in mixed stands; (ii) increment the proportion of deciduous trees (mainly oaks); (iii) conserving large trees within the stands; (iv) providing the presence of shrub and regeneration layer; (v) creating heterogeneous light conditions. For these purposes tree selection and selective cutting management seem more appropriate than shelterwood system.  相似文献   

18.
The taungya agro‐forestry system is an under‐researched means of forest restoration that may result in high tree diversity. Within a forest reserve in Ghana, the forest core and its surrounding Teak‐ and Cedrela‐taungya on logged, cropped and burned land were mapped with ALOS satellite imagery. Native trees, seedlings and saplings were enumerated in 70 random, nested plots, equally divided between forest and taungya. The native tree regeneration was assessed by species richness (SR), Shannon‐Wiener Index (SWI), Shannon Evenness Index (SEI) and species density (SeD) for seedlings, saplings and trees separately and combined and subsequently correlated with canopy covers (CC) in taungya. As anticipated, the taungya diversity was lower than the forest diversity but higher than reported from nontaungya exotic plantations. In the forest, the diversity of native trees increased from seedlings through saplings to trees. The reverse was found in the taungya. Taungya seedling diversity was not significantly different from the forest, while the sapling and tree diversity were significantly lower. Weak correlations of CC with SR, SWI, SEI and SeD were found. Our results suggest the need for treatment to maintain the tree diversity beyond the seedling stage in the taungya.  相似文献   

19.
Domestic livestock influence patterns of secondary succession across forest ecosystems. However, the effects of cattle on the regeneration of tropical dry forests (TDF) in Mexico are poorly understood, largely because it is difficult to locate forests that are not grazed by cattle or other livestock. We describe changes in forest composition and structure along a successional chronosequence of TDF stands with and without cattle (chronic grazing or exclusion from grazing for ~ 8 year). Forest stands were grouped into five successional stages, ranging from recently abandoned to mature forest, for a total of 2.7 ha of the sampled area. The absence of cattle increased woody plant (tree and shrub) density and species richness, particularly in mid-successional and mature forest stands. Species diversity and evenness were generally greater in sites where cattle were removed and cattle grazing in early successional stands reduced establishment and/or recruitment of new individuals and species. Removal of cattle from forest stands undergoing succession appears to facilitate a progressive and non-linear change of forest structure and compositional attributes associated with rapid recovery, while cattle browsing acts as a chronic disturbance factor that compromises the resilience and structural and functional integrity of the TDF in northwestern Mexico. These results are important for the conservation, management, and restoration of Neotropical dry forests.  相似文献   

20.
Ecological restoration of abandoned, formerly forested farmland can improve the delivery of ecosystem services and benefit biodiversity conservation. Restoration programs can involve removing isolated, non‐native trees planted by farmers for fruit or wood. As such “legacy” trees can attract seed dispersers and create microclimates that help native seedlings to establish, removing them may actually slow forest recovery. Working on abandoned farmland in Kibale National Park, Uganda, we evaluated the effect of legacy trees on forest recovery by measuring the number, diversity, and biomass of native seedlings and saplings regenerating in plots centered on avocado (Persea americana), mango (Mangifera indica), and Eucalyptus legacy trees compared with adjacent plots without legacy trees. The assemblages of native, forest‐dependent tree species in plots around avocado and mango trees were distinct from each other and from those around eucalyptus and all the near‐legacy plots. In particular, avocado plots had higher stem density and species richness of forest‐dependent species than near‐avocado plots, particularly large‐seeded, shade‐tolerant, and animal‐dispersed species—key targets of many restoration plans. Furthermore, many of the species found in high numbers were among those failing to establish in ongoing large‐scale forest restoration in Kibale. Taken together, our results demonstrate that the legacy trees facilitate the dispersal and establishment of native tree species. Retaining the existing legacy trees for a number of years could usefully complement existing management strategies to restore more biodiverse native forest in degraded lands. However, careful monitoring is needed to ensure that the legacy trees do not themselves establish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号