首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The septal membranes of the median and lateral giant axons of earthworm, which contain gap junctions, were exposed by cutting one segment of the cord. Patch recordings were obtained from the exposed cytoplasmic side of the septum. Seal resistances ranged from 2 to 15 G omega. The patch could be excised (detached) or left attached to the whole cell. Two types of channels were observed. One type was blocked by tetraethylammonium (TEA) or Cs+ and had a unitary conductance of 30-40 pS. It appears to be a K+ channel. The other channel type had a unitary conductance of 90-110 pS and was unaffected by TEA+ or Cs+. In the detached configuration the channel was shown to conduct Cs+, K+, Na+, TMA+, Cl- and TEA+ even in the presence of 2 mM Zn2+, 1 mM Ni2+, 1 mM Co2+, and 4 mM 4-aminopyridine. The conductance ratios relative to K+ were 1.0 for Cs+, 0.84 for Na+, 0.64 for TMA+, 0.52 for Cl- and 0.2 for TEA+. The channel appears to be voltage insensitive whether monitored in detached or attached recording mode. Both H+ and Ca2+ reduce the probability of opening. Thus, the 100 pS channel has many of the properties expected of a gap junction channel.  相似文献   

2.
The whole cell patch-clamp technique, in both standard and perforated patch configurations, was used to study the influence of Na+-Ca++ exchange on rundown of voltage-gated Ca++ currents and on the duration of tail currents mediated by Ca++-dependent Cl- channels. Ca++ currents were studied in GH3 pituitary cells; Ca++-dependent Cl- currents were studied in AtT-20 pituitary cells. Na+-Ca++ exchange was inhibited by substitution of tetraethylammonium (TEA+) or tetramethylammonium (TMA+) for extracellular Na+. Control experiments demonstrated that substitution of TEA+ for Na+ did not produce its effects via a direct interaction with Ca++-dependent Cl- channels or via blockade of Na+-H+ exchange. When studied with standard whole cell methods, Ca++ and Ca++-dependent Cl- currents ran down within 5-20 min. Rundown was accelerated by inhibition of Na+-Ca++ exchange. In contrast, the amplitude of both Ca++ and Ca++-dependent Cl- currents remained stable for 30-150 min when the perforated patch method was used. Inhibition of Na+-Ca++ exchange within the first 30 min of perforated patch recording did not cause rundown. The rate of Ca++-dependent Cl- current deactivation also remained stable for up to 70 min in perforated patch experiments, which suggests that endogenous Ca++ buffering mechanisms remained stable. The duration of Ca++-dependent Cl- currents was positively correlated with the amount of Ca++ influx through voltage-gated Ca++ channels, and was prolonged by inhibition of Na+-Ca++ exchange. The influence of Na+-Ca++ exchange on Cl- currents was greater for larger currents, which were produced by greater influx of Ca++. Regardless of Ca++ influx, however, the prolongation of Cl- tail currents that resulted from inhibition of Na+-Ca++ exchange was modest. Tail currents were prolonged within tens to hundreds of milliseconds of switching from Na+- to TEA+-containing bath solutions. After inhibition of Na+-Ca++ exchange, tail current decay kinetics remained complex. These data strongly suggest that in the intact cell, Na+-Ca++ exchange plays a direct but nonexclusive role in limiting the duration of Ca++-dependent membrane currents. In addition, these studies suggest that the perforated patch technique is a useful method for studying the regulation of functionally relevant Ca++ transients near the cytoplasmic surface of the plasma membrane.  相似文献   

3.
Gatto C  Helms JB  Prasse MC  Huang SY  Zou X  Arnett KL  Milanick MA 《Biochemistry》2006,45(44):13331-13345
The effects of three classes of organic cations on the inhibition of the plasma membrane Ca pump (PMCA) were determined and compared to inhibition of the Na pump. Quaternary amines (tetramethylammonium, tetraethylammonium, and tetrapropylammonium, TMA, TEA, and TPA, respectively) did not inhibit PMCA. This is not to imply that PMCA is inherently selective against monovalent cations because guanidine and tetramethylguanidine inhibited PMCA by competing with Ca(2+). The divalent organic cation, ethyl diamine, inhibited PMCA but was not competitive with Ca(2+). In contrast, propyl diamine did compete with Ca(2+) and was about 10-fold more potent than butyl diamine in inhibiting PMCA. For the Na pump, both TEA and TPA inhibited, but TMA did not. TEA, guanidine, and tetramethylguanidine inhibition was competitive with Na(+) for ATPase activation and with K(+) for pNPPase activation, both of which are cytoplasmic substrate cation effects. Thus, these findings are consistent with TEA, guanidine, and tetramethylguanidine inhibiting from the cytoplasmic side of the Na pump; in contrast, we have previously shown that TPA did not inhibit from the cytoplasmic side. The divalent alkane diamines ethyl, propyl, and butyl diamine all inhibited the Na pump and all competed at the intracellular surface. The order of potency was ED > PD > BD consistent with an optimal size for binding; similarly, for the quaternary amines TMA is apparently too small to make appropriate contacts, and TPA is too large. Homology models based upon the high-resolution SERCA structure are included to contextualize the kinetic observations.  相似文献   

4.
Ming Li  Sang Hak Lee 《Luminescence》2007,22(6):588-593
A capillary electrophoresis with electrogenerated chemiluminescence (CE-ECL) method for the determination of trimethylamine (TMA) in fish was studied. In the presence of TMA, ECL from the reaction of analyte and in situ generated tris(2,2'-bipyridyl)ruthenium(III) [Ru(bpy)(3) (3+)] at electrode surface could be produced. The ECL detection was performed using a Pt working electrode biased at 1.23 V (vs. Ag/AgCl) potential in a 10 mmol/L sodium borate buffer solution, pH 9.2, containing 3 mmol/L Ru(bpy)(3) (2+). A linear calibration curve (correlation coefficient = 0.9996) was obtained in the range 8 x 10(-5)-4 x 10(-8) mol/L for TMA concentration. Recoveries obtained were in the range 98.78-101.46%. The method was successfully applied for the assay of TMA in fish, in combination with solid phase extraction (SPE) disks for sample clean-up and enrichment.  相似文献   

5.
We applied a fast concentration jump system to produce step changes in Ca2+ concentration [( Ca2+]i) on the cytoplasmic side of the inside-out membrane patch, excised from isolated rat hippocampal pyramidal neurons, and examined the time course of the activation phase of the large-conductance K channel (the BK channel; approximately 266 pS) after a step rise in [Ca2+]i. Diffusion of Ca2+ from the electrode tip to the cytoplasmic surface of the patch was estimated to be almost completed in 10 ms. After a step increase in [Ca2+]i from 0.04 to 3.2-1,000 microM, the activation of the K channel started after a clear latency of 280-18 ms and proceeded along a sigmoidal function. This was in sharp contrast with the rapid deactivation that began without delay and that was completed within 50 ms. The latency in activation was not accounted for by the binding of Ca2+ to EGTA in unstirred layers in the patch, since this binding was reported to be slow, taking up to seconds at physiological pH. Calmodulin (1 microM) did not affect the delay, the activation rate, or the steady-state current level. The calmodulin inhibitors W-7 and W-5 caused flickering of the single-channel current. These results indicate a delayed activation of the BK channel after a step rise in [Ca2+]i, suggesting that the BK current does not contribute to the repolarization of the action potential. Calmodulin is probably not involved in the activation process of the channel.  相似文献   

6.
Short (<1 sec) duration depolarization of Xenopus laevis oocytes to voltages greater than +40 mV activates a sodium-selective channel (Na(x)) with sodium permeability five to six times greater than the permeability of other monovalent cations examined, including K+, Rb+, Cs+, TMA+, and Choline+. The permeability to Li+ is about equal to that of Na+. This channel was present in all oocytes examined. The kinetics, voltage dependence and pharmacology of Na(x)distinguish it from TTX-sensitive or epithelial sodium channels. It is also different from the sodium channel of Xenopus oocytes activated by prolonged depolarization, which is more highly selective for Na+, requires prolonged depolarization to be activated, and is blocked by Li+. Intracellular Mg2+ reversibly inhibits Na(x), whereas extracellular Mg2+ does not have an inhibitory effect. Intracellular Mg2+ inhibition of Na(x), is voltage dependent, suggesting that Mg2+ binding occurs within the membrane field. Eosin is also a reversible voltage-dependent intracellular inhibitor of Na(x), suggesting that a P-type ATPase may mediate the current. An additional cytoplasmic factor is involved in maintaining Na(x) since the current runs down in internally perfused oocytes and excised membrane patches. The rundown is reversible by reintroduction of the membrane patch into oocyte cytoplasm. The cytoplasmic factor is not ATP, because ATP has no effect on Na(x) current magnitude in either cut-open or inside-out patch preparations. Extracellular Gd3+ is also an inhibitor of Na(x). Na(x) activation follows a sigmoid time course. Its half-maximal activation potential is +100 mV and the effective valence estimated from the steepness of conductance activation is 1.0. Na(x) deactivates monoexponentially upon return to the holding potential (-40 mV). The deactivation rate is voltage dependent, increasing at more negative membrane potentials.  相似文献   

7.
Inactivation of Na channels has been studied in voltage-clamped, internally perfused squid giant axons during changes in the ionic composition of the intracellular solution. Peak Na currents are reduced when tetramethylammonium ions (TMA+) are substituted for Cs ions internally. The reduction reflects a rapid, voltage-dependent block of a site in the channel by TMA+. The estimated fractional electrical distance for the site is 10% of the channel length from the internal surface. Na tail currents are slowed by TMA+ and exhibit kinetics similar to those seen during certain drug treatments. Steady state INa is simultaneously increased by TMA+, resulting in a "cross-over" of current traces with those in Cs+ and in greatly diminished inactivation at positive membrane potentials. Despite the effect on steady state inactivation, the time constants for entry into and exit from the inactivated state are not significantly different in TMA+ and Cs+. Increasing intracellular Na also reduces steady state inactivation in a dose-dependent manner. Ratios of steady state INa to peak INa vary from approximately 0.14 in Cs+- or K+-perfused axons to approximately 0.4 in TMA+- or Na+-perfused axons. These results are consistent with a scheme in which TMA+ or Na+ can interact with a binding site near the inner channel surface that may also be a binding or coordinating site for a natural inactivation particle. A simple competition between the ions and an inactivation particle is, however, not sufficient to account for the increase in steady state INa, and changes in the inactivation process itself must accompany the interaction of TMA+ and Na+ with the channel.  相似文献   

8.
Although activation of a sea urchin egg by sperm leads to three phases of membrane conductance increase in the egg, the mechanism by which the sperm causes these conductance changes is not known. We used the loose patch clamp technique to localize the conductance changes in voltage clamped eggs. A patch of the egg's membrane was isolated from the bath by pressing the loose patch clamp pipette against the egg surface. Sperm added to the bath attached to the surface of the egg in a region other than at the isolated membrane patch. During phase 1 of the activation current, no changes of the membrane conductance were detected. At the time of, and subsequent to the onset of phase 2, large currents recorded between the interior of the patch pipette and the bath were attributed to changes of the seal resistance between the surface of the egg and the pipette. A local change of membrane conductance was observed during phase 2 despite the changes of seal resistance. During phase 2, the large amplitude and short duration of the local membrane conductance increase relative to the membrane, conductance increase for the whole egg during phase 2 indicated that the conductance increase occurred over the entire surface of the egg, but not simultaneously. The time when the peak conductance for the membrane patch occurred, relative to the time of onset for phase 2 in the whole egg, depended on the distance, measured in a straight line, between the site of sperm attachment and the tip of the pipette. These data indicate that the localized conductance increase progressed over the surface of the egg from the site of sperm attachment to the opposite pole of the egg. It is proposed that the local conductance increase, the cortical reaction, and the change of seal resistance are all evoked by a common cytoplasmic message that progresses throughout the cytoplasm of the egg from the site of sperm attachment to the opposite pole of the egg.  相似文献   

9.
An epithelial sodium channel (ENaC) is composed of three homologous subunits: alpha, beta, and gamma. To elucidate the function of the cytoplasmic, NH(2) terminus of rat ENaC (rENaC) subunits, a series of mutant cDNAs was constructed and the cRNAs for all three subunits were expressed in Xenopus oocytes. Amiloride-sensitive Na(+) currents (I(Na)) were measured by the two-electrode voltage clamp technique. Deletion of the cytoplasmic, NH(2) terminus of alpha (Delta2-109), beta (Delta2-49), or gamma-rENaC (Delta2-53) dramatically reduced I(Na). A series of progressive, NH(2)-terminal deletions of alpha-rENaC were constructed to identify motifs that regulate I(Na). Deletion of amino acids 2-46 had no effect on I(Na): however, deletion of amino acids 2-51, 2-55, 2-58, and 2-67 increased I(Na) by approximately 4-fold. By contrast, deletion of amino acids 2-79, 2-89, 2-100, and 2-109 eliminated I(Na). To evaluate the mechanism whereby Delta2-67-alpha-rENaC increased I(Na), single channels were evaluated by patch clamp. The single-channel conductance and open probability of alpha,beta,gamma-rENaC and Delta2-67-alpha,beta,gamma-rENaC were similar. However, the number of active channels in the membrane increased from 6 +/- 1 channels per patch with alpha,beta,gamma-rENaC to 11 +/- 1 channels per patch with Delta2-67-alpha,beta,gamma-rENaC. Laser scanning confocal microscopy confirmed that there were more Delta2-67-alpha,beta, gamma-rENaC channels in the plasma membrane than alpha,beta, gamma-rENaC channels. Deletion of amino acids 2-67 in alpha-rENaC reduced the endocytic retrieval of channels from the plasma membrane and increased the half-life of the channel in the membrane from 1.1 +/- 0.2 to 3.5 +/- 1.1 h. We conclude that the cytoplasmic, NH(2) terminus of alpha-, beta-, and gamma-rENaC is required for channel activity. The cytoplasmic, NH(2) terminus of alpha-rENaC contains two key motifs. One motif regulates the endocytic retrieval of the channel from the plasma membrane. The second motif is required for channel activity.  相似文献   

10.
Endogenous trimethylamine (TMA) oxidation was inhibited by giving (±)-5-vinyl-2-oxazolidenethione to laying hens that had been bred for low TMA oxidase activity. The addition of TMA oxide to the diet (5 g kg?1) immediately produced an enormous increase in the TMA content of their eggs and a strong crab-like taint. Hens from another flock whose eggs were tainted when they were previously fed on capelin meal as a protein supplement (100 g kg?1) again showed this abnormality when TMA oxide was added to the diet (0.5 g kg?1) to simulate the amounts supplied by the meal. Tests with intravenous 14C-TMA demonstrated that their ability to oxidise TMA was lower than that of unaffected hens. Dietary TMA oxide and intravenous TMA reduced the oxidation of the test dose of 14C-TMA. The oxide had no effect when given intravenously and did not inhibit TMA oxidase in vitro. It was concluded that TMA oxide is an important source of TMA in fish meal and that tainting occurs when hens with inherently low TMA oxidase activity are overloaded with TMA derived from dietary TMA oxide and choline by the action of enteric bacteria. The sporadic occurrence of the taint in the field may be due partly to wide variations in the oxide content of fish meals.  相似文献   

11.
The time-, frequency-, and voltage-dependent blocking actions of several cationic drug molecules on open Na channels were investigated in voltage-clamped, internally perfused squid giant axons. The relative potencies and time courses of block by the agents (pancuronium [PC], octylguanidinium [C8G], QX-314, and 9-aminoacridine [9-AA]) were compared in different intracellular ionic solutions; specifically, the influences of internal Cs, tetramethylammonium (TMA), and Na ions on block were examined. TMA+ was found to inhibit the steady state block of open Na channels by all of the compounds. The time-dependent, inactivation-like decay of Na currents in pronase-treated axons perfused with either PC, 9-AA, or C8G was retarded by internal TMA+. The apparent dissociation constants (at zero voltage) for interaction between PC and 9-AA with their binding sites were increased when TMA+ was substituted for Cs+ in the internal solution. The steepness of the voltage dependence of 9-AA or PC block found with internal Cs+ solutions was greatly reduced by TMA+, resulting in estimates for the fractional electrical distance of the 9-AA binding site of 0.56 and 0.22 in Cs+ and TMA+, respectively. This change may reflect a shift from predominantly 9-AA block in the presence of Cs+ to predominantly TMA+ block. The depth, but not the rate, of frequency-dependent block by QX-314 and 9-AA is reduced by internal TMA+. In addition, recovery from frequency-dependent block is not altered. Elevation of internal Na produces effects on 9-AA block qualitatively similar to those seen with TMA+. The results are consistent with a scheme in which the open channel blocking drugs, TMA (and Na) ions, and the inactivation gate all compete for a site or for access to a site in the channel from the intracellular surface. In addition, TMA ions decrease the apparent blocking rates of other drugs in a manner analogous to their inhibition of the inactivation process. Multiple occupancy of Na channels and mutual exclusion of drug molecules may play a role in the complex gating behaviors seen under these conditions.  相似文献   

12.

Background

The Tissue Microarray (TMA) facilitates high-throughput analysis of hundreds of tissue specimens simultaneously. However, bottlenecks in the storage and manipulation of the data generated from TMA reviews have become apparent. A number of software applications have been developed to assist in image and data management; however no solution currently facilitates the easy online review, scoring and subsequent storage of images and data associated with TMA experimentation.

Results

This paper describes the design, development and validation of the Virtual Tissue Matrix (VTM). Through an intuitive HTML driven user interface, the VTM provides digital/virtual slide based images of each TMA core and a means to record observations on each TMA spot. Data generated from a TMA review is stored in an associated relational database, which facilitates the use of flexible scoring forms. The system allows multiple users to record their interpretation of each TMA spot for any parameters assessed. Images generated for the VTM were captured using a standard background lighting intensity and corrective algorithms were applied to each image to eliminate any background lighting hue inconsistencies or vignetting. Validation of the VTM involved examination of inter-and intra-observer variability between microscope and digital TMA reviews. Six bladder TMAs were immunohistochemically stained for E-Cadherin, β-Catenin and PhosphoMet and were assessed by two reviewers for the amount of core and tumour present, the amount and intensity of membrane, cytoplasmic and nuclear staining.

Conclusion

Results show that digital VTM images are representative of the original tissue viewed with a microscope. There were equivalent levels of inter-and intra-observer agreement for five out of the eight parameters assessed. Results also suggest that digital reviews may correct potential problems experienced when reviewing TMAs using a microscope, for example, removal of background lighting variance and tint, and potential disorientation of the reviewer, which may have resulted in the discrepancies evident in the remaining three parameters.  相似文献   

13.
Block by L-cis-diltiazem of the cyclic GMP-activated conductance was studied in excised inside-out patches from the salamander rod outer segment. When L-cis-diltiazem was applied from the cytoplasmic face of the patch, current suppression increased monotonically with membrane depolarization, the ratio of blocked to unblocked current varying e-fold in 50 mV. This suggests that L-cis-diltiazem interacts with a binding site located about half-way across the membrane field, and is unable to fully traverse the cyclic GMP-activated channel. The kinetics of block were accelerated by increasing L-cis-diltiazem concentration and by depolarization. These results can be fitted by a single barrier model in which the barrier peak is located about a third of the way across the membrane field from the cytoplasmic face. Application of L-cis-diltiazem from the extracellular face of the patch also resulted in an enhancement of block with membrane depolarization. Indirect evidence supports the notion that this block resulted from partition of the unchanged form of the blocker across the membrane, and its subsequent interaction with the cytoplasmic face of the conductance.  相似文献   

14.
Dimensions of the narrow portion of a recombinant NMDA receptor channel.   总被引:10,自引:2,他引:8  
Glutamate-activated single-channel and ensemble currents were recorded from Xenopus laevis oocytes and HEK 293 cells expressing a recombinant NMDA receptor, assembled from NR1 and NR2A subunits. Cesium was the main charge carrier, and organic cations were used to determine the presence of vestibules of this channel and to estimate its pore diameter. The large organic cations tris-(hydroxymethyl)-aminomethane (Tris), N-methyl-glucamine (NMG), arginine (NMG), arginine (Arg), choline, and tetramethylammonium (TMA), when added in millimolar concentrations to the extracellular or cytoplasmic side, produced a voltage-dependent blockade of single-channel Cs+ currents. These molecules behaved as impermeant ions that only partially traverse the channel from either side. The smaller cations trimethylammonium (TriMA) and dimethylammonium (DMA) produced a small and nearly voltage-independent reduction in current amplitude, suggesting that they are permeant. In biionic experiments with Cs+ as the reference ion, the large blocking cations NMG, Arg, Tris, TMA, choline, hexamethonium (Hme), triethylammonium (TriEA), and tetraethylammonium (TEA) showed no measurable permeability. TriMA and smaller ammonium derivatives were permeant. Both the permeability and single-channel conductance of organic cations, relative to Cs+, decreased as the ion size increased. The results suggest that the NMDA receptor has extracellular and cytoplasmic mouths that can accommodate large cations up to 7.3 A in mean diameter. The narrow portion of the pore is estimated to have a mean diameter of 5.5 A.  相似文献   

15.
Experiments were conducted to delineate the vascular effector systems that contribute to setting mesenteric vascular tone in swine during the first postnatal month. Terminal mesenteric arteries (TMA), which function as resistance vessels, were studied in vitro with a microvascular perfusion system allowing independent pressure and flow manipulation. When pressure was varied 0-100 mmHg in the absence of flow, TMA from 1-day-old animals demonstrated myogenic vasoconstriction, whereas TMA from 40-day-old animals did not. In 1- but not 40-day-old TMA, the endothelin A (ET(A)) receptor antagonist BQ-610 shifted the pressure-diameter curve upward, whereas the ET(B) receptor antagonist BQ-788 and the L-arginine analog N(G)-monomethyl-L-arginine (L-NMMA) shifted the curve downward; in all instances, myogenic vasoconstriction was preserved. Flow eliminated myogenic vasoconstriction in 1-day-old TMA, i.e., diameter increased as a function of pressure. The effect of BQ-610 was lost under flow conditions; however, BQ-788 and N-acyl-L-Trp-3,5-bis-(trifluoromethyl) benzyl ester, an antagonist specific to the substance P neurokinin-1 (NK(1)) receptor, shifted the pressure-diameter curve downward in the presence of flow, whereas L-NMMA restored myogenic vasoconstriction. Adding flow had no effect on the pressure-diameter relationship in 40-day-old TMA. Other blocking agents, including prazosin, losartan, indomethacin, and charybdotoxin, had no effect on the pressure-diameter relationship in either age group under flow or no-flow conditions. Constitutive production of nitric oxide (NO) and endothelin-1 participates in setting resistance in 1-day-old TMA, and important stimulants to NO production include flow and activation of ET(B) and NK(1) receptors. In contrast, 40-day-old TMA act as passive conduits in which the elastic properties of the vessel are the primary determinant of diameter.  相似文献   

16.
Osmotic water permeability of Necturus gallbladder epithelium   总被引:6,自引:5,他引:1       下载免费PDF全文
An electrophysiological technique that is sensitive to small changes in cell water content and has good temporal resolution was used to determine the hydraulic permeability (Lp) of Necturus gallbladder epithelium. The epithelial cells were loaded with the impermeant cation tetramethylammonium (TMA+) by transient exposure to the pore-forming ionophore nystatin in the presence of bathing solution TMA+. Upon removal of the nystatin a small amount of TMA+ is trapped within the cell. Changes in cell water content result in changes in intracellular TMA+ activity which are measured with intracellular ion-sensitive microelectrodes. We describe a method that allows us to determine the time course for the increase or decrease in the concentration of osmotic solute at the membrane surface, which allows for continuous monitoring of the difference in osmolality across the apical membrane. We also describe a new method for the determination of transepithelial hydraulic permeability (Ltp). Apical and basolateral membrane Lp's were assessed from the initial rates of change in cell water volume in response to anisosmotic mucosal or serosal bathing solutions, respectively. The corresponding values for apical and basolateral membrane Lp's were 0.66 x 10(-3) and 0.38 x 10(-3) cm/s.osmol/kg, respectively. This method underestimates the true Lp values because the nominal osmotic differences (delta II) cannot be imposed instantaneously, and because it is not possible to measure the true initial rate of volume change. A model was developed that allows for the simultaneous determination of both apical and basal membrane Lp's from a unilateral exposure to an anisosmotic bathing solution (mucosal). The estimates of apical and basal Lp with this method were 1.16 x 10(-3) and 0.84 x 10(-3) cm/s.osmol/kg, respectively. The values of Lp for the apical and basal cell membranes are sufficiently large that only a small (less than 3 mosmol/kg) transepithelial difference in osmolality is required to drive the observed rate of spontaneous fluid absorption by the gallbladder. Furthermore, comparison of membrane and transepithelial Lp's suggests that a large fraction of the transepithelial water flow is across the cells rather than across the tight junctions.  相似文献   

17.
Removal of trimethylamine (TMA) by 10 different living Sansevieria spp. and their dried leaf materials was studied. The results showed that living Sansevieria kirkii was the most effective plant while Sansevieria masoniana was the least effective in TMA removal. Two major pathways were involved in stomata opening and epicuticular wax on the leaf surface. In the presence of TMA, the stomata opening in Sansevieria spp. was induced, which enhanced TMA removal under light conditions. Dried leaf powders of Sansevieria spp. adsorbed TMA through their waxes. Therefore, both living and non-living Sansevieria spp. can be effectively used for removal of TMA.  相似文献   

18.
The aim of this study was to quantify the response of Peyer's patch B cells, surface IgA-bearing (sIgA) B cells, and surface IgM-bearing (sIgM) B cells to Giardia muris infection. Following infection of a cohort of immunocompetent BALB/c mice with G. muris cysts, Peyer's patch cell suspensions were prepared at serial time points during the infection, incubated with fluorescein-conjugated monoclonal antibodies directed against murine leukocytes, B cells, sIgA B cells, sIgM B cells, or T cells, and analyzed by flow cytometry. Of total Peyer's patch leukocytes, the percentages of B cells, sIgA B cells, and sIgM B cells in uninfected BALB/c mice were 64.7 +/- 2.0% (mean +/- SEM), 30.3 +/- 1.5%, and 52.5 +/- 2.4%, respectively. The total number of Peyer's patch leukocytes increased significantly (1.8 X) during G. muris infection, and returned to control levels as the infection was cleared. The percentages of Peyer's patch T and total B cells did not change significantly during Giardia infection. However, sequential changes were observed in the percentages and numbers of sIgM and sIgA B cells during the infection. Peyer's patch sIgM B cells rapidly increased in percentage and number, reaching maximum levels 1 week after cyst inoculation. After remaining constant the first week, the number of Peyer's patch sIgA B cells increased during the second week of G. muris infection, reaching a maximum level 11-14 days after cyst inoculation. The data support the hypothesis that immunoglobulin isotype switching in Peyer's patches is induced by antigen exposure.  相似文献   

19.
Amperometric and impedimetric biosensor for detecting trimethylamine (TMA) which represents good parameters for estimating fish freshness has been developed. The biosensor is based on a conducting polypyrrole substituted with ferrocenyl, where flavin-containing monooxygenase 3 (FMO3) enzyme was immobilised by covalent bonding. FMO3 catalyzes the monooxygenation TMA to trimethylamine N-oxide (TMO). For catalysis FMO require flavin adenine (FAD) as a prosthetic group, NADPH as a cofactor and molecular oxygen as cosubstrate. Ferrocenyl group substituted on the polypyrrole matrix will serve as redox probe for monitoring the response of the biosensor to TMA. The construction of the biosensor was characterized by FT-IR, cyclic voltammetry and impedance measurements. Detection is done through the analysis of the current of oxidation signal of the ferrocenyl groups and compared to the measurement of impedance related to the electrical properties of the layers. Amperometric and impedimetric response were measured as a function of TMA concentration in range of 0.4 μgm L(-1)-80 μgm L(-1) (6.5 μmol L(-1)-1.5 mmol L(-1)). Amperometric measurements show a decrease in current response which is in correlation with the increase of the charge transfer resistance demonstrated by impedance. Calibration curve obtained by impedance spectroscopy shows a high sensitivity with a dynamic range from (0.4 μgm L(-1) to 80 μgm L(-1)). We demonstrated, using ferrocene as redox probe for catalytic reaction of FMO3, that high sensitivity and dynamic range was obtained. The biosensor was stable during 16 days. The biosensor shows high selectivity and its sensitivity to TMA in real samples was evaluated using fish extract after deterioration during storage.  相似文献   

20.
Tissue microarray (TMA) technology allows the miniaturization and characterization of multiple tissue samples on a single slide and commonly uses formalin-fixed paraffin-embedded (FFPE) tissue or acetone-fixed frozen tissue. The former provides good morphology but can compromise antigenicity, whereas the latter provides compromised morphology with good antigenicity. Here, we report the development of TMAs in glycol methacrylate resin, which combine the advantages of both methods in one embedding format. Freshly collected tissue fixed in -20C acetone or 10% neutral buffered formaldehyde were cored and arrayed into an intermediary medium of 2% agarose before infiltration of the agarose array with glycol methacrylate resin. Acetone-fixed resin TMA demonstrated improved morphology over acetone-fixed frozen TMA, with no loss of antigenicity. Staining for extracellular, cell surface, and nuclear antigens could be realized with monoclonal and polyclonal antibodies as well as with monomeric single-chain Fv preparations. In addition, when compared with FFPE TMA, formalin-fixed tissue in a resin TMA gave enhanced morphology and subcellular detail. Therefore, resin provides a universal format for the construction of TMAs, providing improved tissue morphology while retaining antigenicity, allows thin-section preparation, and could be used to replace preparation of frozen and FFPE TMAs for freshly collected tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号