首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The older segments of the U.S. population are expanding rapidly and account for a disproportionate amount of health care, including treatment for pain-related musculoskeletal disorders. In a prospective study with objective measures and one-year follow-up, Middaugh et al. (1988) found that older patients (55-78 yr; N = 17, 76% success) treated in a multidisciplinary chronic pain rehabilitation program enjoyed a success rate equal to that of younger patients (29-48 yr, N = 20, 70% success). The current study presents additional data on these two groups of patients to compare their ability to learn the physiological self-regulation skills taught in the biofeedback/relaxation component of the multimodal program. This component included progressive muscle relaxation training, diaphragmatic breathing instruction, and EMG biofeedback. Repeated measures ANOVA showed significant increases in digital skin temperature (peripheral vasodilation) and decreases in respiration rate both within and across training sessions (p values = .04 to .0001) with no differences between age groups (p greater than .05). EMG measures for the upper trapezius ms in patients with cervical pain showed similar deficits in muscle control at evaluation and similar improvements with biofeedback training for the two age groups. These findings indicate that older pain patients responded well to the biofeedback/relaxation training component of the multimodal pain program.  相似文献   

2.
Factors that may confound comparisons between electromyographic (EMG) biofeedback training and its control conditions include feedback quality and experience of success. We investigated the usefulness of a control procedure designed to overcome these potential sources of confounding. The procedure consisted of training muscle tension stability. We used it as a control for frontal EMG relaxation training in children with asthma. To equate the groups for feedback quality and experience of success, we gave each child in the control condition audio feedback decreasing in pitch when muscle tension was at or near baseline levels, and feedback increasing in pitch when muscle tension was either substantially above or below baseline levels. Children in both groups were instructed to decrease the pitch of the tone. In comparison to children in the relaxation condition, the children in the control condition exhibited stable levels of muscle tension throughout eight training sessions. We concluded that feedback for stable muscle tension may be a useful control procedure for EMG biofeedback training whenever experimental and control procedures differ in either feedback quality of degree to which they permit subjects to experience success.This research was supported by NIH-Grant HL 27402. We are grateful to Paul Schnitter who constructed the EMG stability feedback device.  相似文献   

3.
The present study examined the effects of progressive relaxation training and EMG biofeedback on acute glucose disposal in diabetic subjects, as measured by glucose tolerance and three other measures of diabetic metabolic control. Twenty subjects with non-insulin-using Type II diabetes took part in progressive relaxation training and EMG biofeedback in a pre-post treatment versus wait-list experimental design. Treatment effects were assessed on glucose tolerance along with three measures of diabetic control: fasting blood glucose, two-hour postprandial blood glucose, and fructosamine. Stress reduction and relaxation was assessed with two physiological measures and two subjective questionnaires. The training program produced significant reductions in stress, as measured by State Anxiety, and significant changes in physiological measures of muscle activity and skin conductance compared to the control condition. However, no changes were found in glucose tolerance (while practicing relaxation) nor in any of the three measures of general diabetic metabolic control. The major implication of this study is that relaxation training does not appear to directly improve diabetic control in mildly stressed non-insulin-using Type II diabetic patients.  相似文献   

4.
The use and utility of EMG biofeedback with chronic schizophrenic patients   总被引:1,自引:0,他引:1  
This study examined the efficacy of muscle relaxation training via electromyographic (EMG) biofeedback from the frontalis and forearm extensor muscles of schizophrenic inpatients. Thirty chronically hospitalized patients were randomly assigned to one of three conditions: EMG biofeedback from the forearm extensor and frontalis muscles, progressive relaxation, and a control group. Treatment consisted of one session of orientation and baseline, and six sessions of training. The results indicated that the schizophrenic patients receiving EMG training had significantly lower EMG recordings than the progressive relaxation group, which, in turn, was significantly lower than the control group. Analyses of covariance on the Tension-Anxiety scale from the Profile of Mood States revealed no significant effects, while finger-tapping rates were significantly improved only for the arm receiving feedback training in the EMG group. On the Nurses Observation Scale for Inpatient Evaluation the biofeedback group significantly improved on the Social Competence and Social Interest factors.We would like to express our appreciation for the contributions the following people made to this project: Drs. Barry Smith, Robert Steele, Agnes Hartfield, Jeffrey Barth, Althea Wagman, and the late Harold Weiner; Earl Downs and the participating staff at Springfield State Hospital Center; and Robert Kline and Michael Kelley, who performed the data analyses. This research was supported in part by a grant from the Computer Science Center at the University of Maryland.  相似文献   

5.
Factors that may confound comparisons between electromyographic (EMG) biofeedback training and its control conditions include feedback quality and experience of success. We investigated the usefulness of a control procedure designed to overcome these potential sources of confounding. The procedure consisted of training muscle tension stability. We used it as a control for frontal EMG relaxation training in children with asthma. To equate the groups for feedback quality and experience of success, we gave each child in the control condition audio feedback decreasing in pitch when muscle tension was at or near baseline levels, and feedback increasing in pitch when muscle tension was either substantially above or below baseline levels. Children in both groups were instructed to decrease the pitch of the tone. In comparison to children in the relaxation condition, the children in the control condition exhibited stable levels of muscle tension throughout eight training sessions. We concluded that feedback for stable muscle tension may be a useful control procedure for EMG biofeedback training whenever experimental and control procedures differ in either feedback quality of degree to which they permit subjects to experience success.  相似文献   

6.
The use of noncontingent feedback controls in studies of the efficacy and process of electromyographic (EMG) biofeedback may yield results confounded by differential expectancies for relaxation. Furthermore, the role of expectancies in producing psychological and physical relaxation as well as reducing muscle activity is unclear. This study investigated the effects of feedback delays and induced relaxation expectancies on EMG activity and experienced relaxation. One hundred four non-clinical subjects participated in one auditory frontal EMG biofeedback training session. Subjects were assigned to one of four computerized feedback delay conditions (0.0037, 0.7493, 2.2481, 6.7444 s) and to one of two relaxation expectancy conditions (positive or negative). During 20 minutes of biofeedback training, all groups decreased frontal activity. Feedback delays interacted with training epochs in affecting EMG; the longest delay group reduced frontal activity more slowly than the shortest delay group during training. Positive relaxation expectancies produced greater experienced relaxation than did negative relaxation expectancies. Instrumental and expectancy factors in EMG biofeedback appear to operate independently of each other by reducing physiological activity and producing psychological relaxation respectively.  相似文献   

7.
Successful treatment of torticollis with electromyographic (EMG) biofeedback has been reported in a number of single case and single group studies. The present investigation represents the first controlled outcome study. Twelve torticollis patients were randomly assigned to EMG biofeedback or relaxation training and graded neck exercises (RGP). The procedure involved three sessions of baseline assessment, 15 sessions of EMG BF or RGP, 6 sessions of EMG BF or RGP plus home-management, 6 sessions of home-management alone, and follow-up 3 months after the end of treatment. A variety of outcome measures were used including physiological (EMG from the two sternocleidomastoid muscles, skin conductance level), behavioral (angle of head deviation, range of movement of the head), and self-report (depression, functional disability, body concept), therapist and "significant other" reports and independent observer assessment of videos. In both groups, neck muscle activity was reduced from pre- to posttreatment. This reduction was greater in the EMG biofeedback group. There was evidence of feedback-specific neck muscle relaxation in the EMG biofeedback group. Therefore, the outcome was not due to nonspecific factors and could be attributed to feedback-specific effects. Changes in skin conductance level showed that neck muscle relaxation was not simply mediated by a general reduction of "arousal." Significant improvements of extent of head deviation, and range of movement of the head, as well as reductions of depression were present, which were not different in the two groups. At the end of treatment, no patient was asymptomatic. Any therapeutic benefit was generally maintained at follow-up. The results and the procedural simplicity of RGP make the issue of cost-efficacy of EMG biofeedback a pertinent one. Further controlled outcome studies of EMG biofeedback treatment of torticollis with larger samples are required.  相似文献   

8.
This study examines the relationship between Spiegel's Hypnotic Induction profile (HIP) and ability to perform EMG relaxation under conditions of self-induced and audio-assisted biofeedback training. One hundred women volunteered for screening with Spiegel's test for hypnotizability. Thirty students were then selected from the top, middle, and bottom of the HIP scoring distribution for EMG biofeedback training in relaxation. Three treatment trials included baseline, EMG biofeedback with self-induced relaxation, and EMG biofeedback with audio relaxation instructions. Contrary to predictions, high HIPs were not significantly different from low HIPs on any of the treatment measures, although all students showed a training effect. The middle HIPs demonstrated significantly higher levels of EMG activity than the extreme groups.  相似文献   

9.
The purpose of this study was to examine the relative effectiveness of electromyographic biofeedback training (EMG BFT), meditation, and progressive muscle relaxation (PMR) in eliciting a relaxation or trophotropic response as measured by frontalis muscle tension, heart rate, electrodermal response, respiration rate, and skin temperature. Fifty-four college students were randomly assigned to one of five groups: (1) control, (2) placebo control, (3) EMG BFT, (4) meditation, (5) PMR. After baseline measures were obtained subjects were trained in 10 30-minute training sessions and posttested. Comparisons by ANOVAs indicated there was a significant decrease in muscle tension in the EMG BFT and meditation groups and significant decreases in respiration rate in the meditation and PMR groups. No other changes were attributed to treatment.  相似文献   

10.
This study examined the efficacy of muscle relaxation training via electromyographic (EMG) biofeedback from the frontalis and forearm extensor muscles of schizophrenic inpatients. Thirty chronically hospitalized patients were randomly assigned to one of three conditions: EMG biofeedback from the forearm extensor and frontalis muscles, progressive relaxation, and a control group. Treatment consisted of one session of orientation and baseline, and six sessions of training. The results indicated that the schizophrenic patients receiving EMG training had significantly lower EMG recordings than the progressive relaxation group, which, in turn, was significantly lower than the control group. Analyses of covariance on the Tension-Anxiety scale from the Profile of Mood States revealed no significant effects, while finger-tapping rates were significantly improved only for the arm receiving feedback training in the EMG group. On the Nurses Observation Scale for Inpatient Evaluation the biofeedback group significantly improved on the Social Competence and Social Interest factors.  相似文献   

11.
Peripheral pain and ataxic tremor can appear suddenly following thalamic stroke and can significantly alter a patient's psychological, social, and physical functioning. The present paper reports the case of a 70-year-old Caucasian female who sustained an acute left posterior cerebral artery infarction involving the thalamus and left mesiotemporal regions. She subsequently developed Central Poststroke Pain and ataxic movement of her right arm and hand in addition to a significant right-side claudication. She was treated over 16 weeks (6 weeks of EMG biofeedback and 10 weeks of psychotherapy) with a combination of EMG biofeedback, progressive muscle relaxation, behavioral pain coping skills training, Forced Use Therapy, and Cognitive Behavioral Therap 7 years after her initial cerebral accident. The case demonstrates the utility of biofeedback when combined as part of a comprehensive treatment program to address the multiple complications associated with thalamic stroke.  相似文献   

12.
The use of noncontingent feedback controls in studies of the efficacy and process of electromyographic (EMG) biofeedback may yield results confounded by differential expectancies for relaxation. Furthermore, the role of expectancies in producing psychological and physical relaxation as well as reducing muscle activity is unclear. This study investigated the effects of feedback delays and induced relaxation expectancies on EMG activity and experienced relaxation. One hundred four non-clinical subjects participated in one auditory frontal EMG biofeedback training session. Subjects were assigned to one of four computerized feedback delay conditions (0.0037, 0.7493, 2.2481, 6.7444 s) and to one of two relaxation expectancy conditions (positive or negative). During 20 minutes of biofeedback training, all groups decreased frontal activity. Feedback delays interacted with training epochs in affecting EMG; the longest delay group reduced frontal activity more slowly than the shortest delay group during training. Positive relaxation expectancies produced greater experienced relaxation than did negative relaxation expectancies. Instrumental and expectancy factors in EMG biofeedback appear to operate independently of each other by reducing physiological activity and producing psychological relaxation respectively.This study was completed by the first author under the direction of the second author in partial fulfillment of the requirements for the Master of Arts degree. We gratefully acknowledge the computerization advice and assistance provided by Larry Wheeler, and the assistance in data collection provided by Dawn Dexter and Michael Winstanley.  相似文献   

13.
Persistent pain is a common health problem for older adults, age 60+, with a prevalence twice that in younger adults. Yet, older adults with chronic pain and headache are underrepresented in behaviorally oriented clinical programs that have proven effective for younger adults. A review of the literature indicates that older adults develop multiple pain-related problems that are similar to those of younger individuals. When offered the opportunity, older pain patients accept and benefit from multidisciplinary pain programs, cognitive–behavioral therapies and biofeedback training. A study comparing 58 older and 59 younger adults in a multidisciplinary pain program indicates that older pain patients readily acquire the physiological self-regulation skills taught in biofeedback-assisted relaxation training, and achieve comparable decreases in pain for the pain program as a whole.  相似文献   

14.
Patellofemoral pain syndrome (PFPS) is usually due to weakness of vastus medialis obliquus (VMO) resulting in abnormal patellar tracking. One of the objectives of rehabilitation is to strengthen the VMO so as to counterbalance the vastus lateralis (VL) action during normal activities. This study compared the effects of an 8-week exercise program with and without EMG biofeedback on the relative activations of VMO and VL. Twenty-six subjects with PFPS were randomly allocated into an "exercise" group (Group 1) and a "biofeedback+exercise" group (Group 2). Both groups performed the same exercise program but subjects in Group 2 received real time EMG biofeedback information on the relative activations of VMO and VL during the exercises. After 8 weeks of training, Group 1 had insignificant changes in their VMO/VL EMG ratio (p=0.355), whereas Group 2 had significantly greater VMO/VL EMG ratio (p=0.017) when performing normal activities throughout a 6-h assessment period. The present result reveals that the incorporation of an EMG biofeedback into a physiotherapy exercise program could facilitate the activation of VMO muscle such that the muscle could be preferentially recruited during daily activities.  相似文献   

15.
Successful treatment of torticollis with electromyographic (EMG) biofeedback has been reported in a number of single case and single group studies. The present investigation represents the first controlled outcome study. Twelve torticollis patients were randomly assigned to EMG biofeedback or relaxation training and graded neck exercises (RGP). The procedure involved three sessions of baseline assessment, 15 sessions of EMG BF or RGP, 6 sessions of EMG BF or RGP plus home-management, 6 sessions of home-management alone, and follow-up 3 months after the end of treatment. A variety of outcome measures were used including physiological (EMG from the two sternocleidomastoid muscles, skin conductance level), behavioral (angle of head deviation, range of movement of the head), and self-report (depression, functional disability, body concept), therapist and significant other reports and independent observer assessment of videos. In both groups, neck muscle activity was reduced from pre- to posttreatment. This reduction was greater in the EMG biofeedback group. There was evidence of feedback-specific neck muscle relaxation in the EMG biofeedback group. Therefore, the outcome was not due to nonspecific factors and could be attributed to feedback-specific effects. Changes in skin conductance level showed that neck muscle relaxation was not simply mediated by a general reduction of arousal. Significant improvements of extent of head deviation, and range of movement of the head, as well as reductions of depression were present, which were not different in the two groups. At the end of treatment, no patient was asymptomatic. Any therapeutic benefit was generally maintained at follow-up. The results and the procedural simplicity of RGP make the issue of cost-efficacy of EMG biofeedback a pertinent one. Further controlled outcome studies of EMG biofeedback treatment of torticollis with larger samples are required.This work was funded by grants from the Medical Research Council and the Dystonia Society.  相似文献   

16.
Eighteen patients with chronic low back pain (lbp) of muscle tension origin were given an EMG biofeedback training. Compared to seven controls they showed a significant decrease during training in muscle tension and subsequently in pain. However, at follow-up EMG levels dropped to the initial (high) level. Pain scores of patients with high pain decrements during training showed further improvement during follow-up, which was not the case with patients showing less substantial improvement. The importance of cognitions was discussed.  相似文献   

17.
Therapeutic mechanisms hypothesized to underlie improvements in tension headache activity achieved with combined relaxation and eleclromyographic (EMG) biofeedback therapy were examined. These therapeutic mechanisms included (1) changes in EMG activity in frontal and trapezii muscles, (2) changes in central pain modulation as indexed by the duration of the second exteroceptive silent period (ES2), and (3) changes in headache locus of control and self-efficacy. Forty-four young adults with chronic tension-type headaches were assigned either to six sessions of relaxation and EMG biofeedback training (N = 30) or to an assessment only control group (N = 14) that required three assessment sessions. Measures of self-efficacy and locus of control were collected at pre- and posttreatment, and ES2 was evaluated at the beginning and end of the first, third, and lost session. EMG was monitored before, during, and following training trials. Relaxation/EMG biofeedback training effectively reduced headache activity: 51.7% of subjects who received relaxation/biofeedback therapy recorded at least a 50% reduction in headache activity following treatment, while controls failed to improve on any measure. Improvements in headache activity in treated subjects were correlated with increases in self-efficacy induced by biofeedback training but not with changes in EMG activity or in ES2 durations. These results provide additional support for the hypothesis that cognitive changes underlie the effectiveness of relaxation and biofeedback therapies, at least in young adult tension-type headache sufferers.  相似文献   

18.
The present case study investigated the effects of competing task demands on biofeedback training to reduce frontalis muscle tension. Baseline levels of frontalis muscle tension were recorded for relaxation and problem solving. The subject was trained to decrease muscle tension with biofeedback for the problem-solving task alone. The results indicated that EMG training during problem-solving was successfully accomplished. Frontalis muscle tension during relaxation baseline did not change as a result of reductions in muscle tension during problem-solving feedback training. This suggests that the decrease of muscle tension cannot be attributed to reductions in overall muscle tension levels. Instead, training was specific to the problem-solving feedback phases. Additionally, it was found that accuracy in problem-solving did not decline as a result of simultaneous feedback training. Thus EMG biofeedback training can be accomplished and exercised without disruption of ongoing mental activity.  相似文献   

19.
The present case study investigated the effects of competing task demands on biofeedback training to reduce frontalis muscle tension. Baseline levels of frontalis muscle tension were recorded for relaxation and problem solving. The subject was trained to decrease muscle tension with biofeedback for the problem-solving task alone. The results indicated that EMG training during problem solving was successfully accomplished. Frontalis muscle tension during relaxation baseline did not change as a result of reductions in muscle tension during problem-solving feedback training. This suggests that the decrease of muscle tension cannot be attributed to reductions in overall muscle tension levels. Instead, training was specific to the problem-solving feedback phases. Additionally, it was found that accuracy in problem-solving did not decline as a result of simultaneous feedback training. Thus EMG biofeedback training can be accomplished and exercised without disruption of ongoing mental activity.  相似文献   

20.
A 44-year-old female cancer patient was given progressive muscle relaxation training and multiple muscle-site EMG biofeedback to reduce the conditioned negative responses she had apparently developed to her chemotherapy treatments. Following three baseline chemotherapy sessions, the patient was given relaxation training and biofeedback during four consecutive chemotherapy treatments and was asked to practice her relaxation skills daily in the hospital or at home. After the patient felt able to relax on her own, relaxation training and biofeedback were terminated and three follow-up sessions were held. Results indicated that during the chemotherapy sessions in which the patient received relaxation training and biofeedback, she showed reductions in physiological arousal (EMG, pulse rate, systolic blood pressure, and diastolic blood pressure) and reported feeling less anxious and nauseated. Moreover, these changes were maintained during the follow-up sessions. These results suggest that relaxation training plus multiple muscle-site biofeedback may be an effective adjunctive procedure for reducing some of the adverse side effects of cancer chemotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号