首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Plant promoter prediction with confidence estimation   总被引:10,自引:0,他引:10       下载免费PDF全文
  相似文献   

5.
6.
7.
8.
本研究旨在基于已获得的第三代纳米孔全长转录组数据对东方蜜蜂微孢子虫Nosema ceranae基因的可变剪接(alternative splicing,AS)和可变多聚腺苷酸化(alternative polyadenylation,APA)进行分析.通过Astalavista软件鉴定东方蜜蜂微孢子虫基因的AS事件类型...  相似文献   

9.
10.
Promoter usage and alternative splicing   总被引:1,自引:0,他引:1  
  相似文献   

11.
12.
13.

Background

Alternative splicing (AS) functions to expand proteomic complexity and plays numerous important roles in gene regulation. However, the extent to which AS coordinates functions in a cell and tissue type specific manner is not known. Moreover, the sequence code that underlies cell and tissue type specific regulation of AS is poorly understood.

Results

Using quantitative AS microarray profiling, we have identified a large number of widely expressed mouse genes that contain single or coordinated pairs of alternative exons that are spliced in a tissue regulated fashion. The majority of these AS events display differential regulation in central nervous system (CNS) tissues. Approximately half of the corresponding genes have neural specific functions and operate in common processes and interconnected pathways. Differential regulation of AS in the CNS tissues correlates strongly with a set of mostly new motifs that are predominantly located in the intron and constitutive exon sequences neighboring CNS-regulated alternative exons. Different subsets of these motifs are correlated with either increased inclusion or increased exclusion of alternative exons in CNS tissues, relative to the other profiled tissues.

Conclusion

Our findings provide new evidence that specific cellular processes in the mammalian CNS are coordinated at the level of AS, and that a complex splicing code underlies CNS specific AS regulation. This code appears to comprise many new motifs, some of which are located in the constitutive exons neighboring regulated alternative exons. These data provide a basis for understanding the molecular mechanisms by which the tissue specific functions of widely expressed genes are coordinated at the level of AS.  相似文献   

14.
15.
16.
The level of supercoiling in the chromosome can affect gene expression. To clarify the basis of supercoiling sensitivity, we analyzed the structural features of nucleotide sequences in the vicinity of promoters for the genes with expression enhanced and decreased in response to loss of chromosomal supercoiling in Escherichia coli. Fourier analysis of promoter sequences for supercoiling-sensitive genes reveals the tendency in selection of sequences with helical periodicities close to 10 nt for relaxation-induced genes and to 11 nt for relaxation-repressed genes. The helical periodicities in the subsets of promoters recognized by RNA polymerase with different sigma factors were also studied. A special procedure was developed for the study of correlations between the intensities of periodicities in promoter sequences and the expression levels of corresponding genes. Significant correlations of expression with the AT content and with AT periodicities about 10, 11, and 50 nt indicate their role in regulation of supercoiling-sensitive genes.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号