首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kim SY  Yang ES  Lee YS  Lee J  Park JW 《Biochimie》2011,93(2):269-276
Organisms exposed to ionizing radiation (IR) undergo increases in the production of reactive oxygen species (ROS), which are determinant components in the induction of apoptosis. Sensitive to apoptosis gene (SAG) encodes a redox-inducible and apoptosis-protective antioxidant protein. This report demonstrates that the modulation of SAG expression in cultured cells regulates IR-induced apoptosis. A protective role for SAG against IR-induced apoptosis was found in U937 cells transfected with SAG cDNA. A significant decrease in the endogenous production of ROS was also observed in SAG over-expressing cells, compared to control cells, exposed to 2 Gy γ-irradiation. These results suggest that SAG plays an important role in regulating IR-induced apoptosis, presumably by maintaining the cellular redox status. Because SAG is over-expressed in many human cancers, targeting SAG expression may have therapeutic value in cancer treatment. Transfection of the pancreatic cancer cell line PC3 with SAG small interfering RNA markedly attenuated the expression of SAG, augmenting their susceptibility to IR-induced apoptosis. The knockdown of SAG expression by RNA interference combined with radiotherapy may be a potential method for radiosensitization.  相似文献   

2.
Ionizing radiation induces the production of reactive oxygen species (ROS), which play an important causative role in apoptotic cell death. α-Phenyl-N-t-butylnitrone (PBN) is one of the most widely used spin-trapping compounds for investigating the existence of free radicals in biological systems. We investigated the effects of PBN on ionizing radiation-induced apoptosis in U937 cells. Upon exposure to 2 Gy of γ-irradiation, there was a distinct difference between the control cells and the cells pre-treated with 2 mM PBN for 2 h in regard to apoptotic parameters, cellular redox status, mitochondria function and oxidative damage to cells. PBN effectively suppressed morphological evidence of apoptosis and DNA fragmentation in U937 cells exposed to ionizing radiation. The [GSSG]/[GSH+GSSG] ratio and the generation of intracellular ROS were higher and the [NADPH]/[NADP++NADPH] ratio was lower in control cells compared to PBN-treated cells. The ionizing radiation-induced mitochondrial damage reflected by the altered mitochondrial permeability transition, the increase in the accumulation of ROS, and the reduction of ATP production were significantly higher in control cells compared to PBN-treated cells. PBN pre-treated cells showed significant inhibition of apoptotic features such as activation of caspase-3, up-regulation of Bax and p53, and down-regulation of Bcl-2 compared to control cells upon exposure to ionizing radiation. This study indicates that PBN may play an important role in regulating the apoptosis induced by ionizing radiation presumably through scavenging of ROS.  相似文献   

3.
Posttranslational modifications (PTMs) have been reported in hemoglobin (Hb) treated with ROS/RNS in cell-free experiments. However, little is known about oxidative PTMs of Hb occurring within the erythrocytes. The aim of this study is to characterize the patterns of Hb PTMs in erythrocytes under oxidative stress. Using mass spectrometry, we investigated specifically methionine/tryptophan oxidation, tyrosine nitration, and the modification via 4-hydroxynonenal (HNE), a product of lipid-peroxidation, on Hb. We demonstrated that the treatment with H2O2/nitrite induced higher levels of Hb oxidation/nitration in purified Hb preparations than in unpurified hemolysates and erythrocytes, indicating that ROS/RNS are primarily removed by antioxidative mechanisms. We further studied Hb from erythrocytes exposed to γ-irradiation. An irradiation of 30–100 Gy triggered a remarkable increase of intracellular ROS. However, 30 Gy did not induce apparent changes in Hb oxidation/nitration and hemolysis, while Hb oxidation/nitration and hemolysis were significantly enhanced by 100 Gy, suggesting that Hb oxidation/nitration are the consequence of overwhelmed antioxidative mechanisms after oxidative attack and reflect the severity of the oxidative damage of erythrocytes. Although irradiation was known to induce lipid-peroxidation, we could not detect HNE-Hb adducts in irradiated erythrocytes. Analyzing PTM patterns suggests Hb nitration as a more suitable indicator of the oxidative damage of erythrocytes.  相似文献   

4.
《Free radical research》2013,47(12):1488-1498
ABSTRACT

Ionizing radiation induced perturbations in cellular redox homeostasis are manifested as cell cycle arrest, inflammatory response, and apoptosis. Present study was focused on determination of radioprotective efficacy of a secondary metabolite N-acetyl-l-tryptophan glucoside (NATG) isolated from radioresistant bacterium Bacillus sp. INM-1. Macrophage J774A.1 cells were treated with NATG (0.025–200?μg/ml) before γ-irradiation (10-50?Gy) and radioprotective efficacy in terms of cellular metabolic activity was assessed using MTT assay. Radiation-induced intracellular ROS generation and its inhibition by NATG (0.25?μg/ml) pretreatment was evaluated using 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) probe. Effects of NATG pretreatment with or without γ-irradiation (20?Gy) on cell cycle perturbations and apoptosis regulation was evaluated using flowcytometry. Results of the study displayed 0.25 and 50?μg/ml as effective dose (ED) and lethal dose (LD50) dose of NATG. A significant (p?<?0.05) decrease in DCFDA fluorescence corresponding to decreased ROS levels was observed in NATG pretreated irradiated cells as compared to irradiated alone cells. Cell cycle progression analysis demonstrated decrease (~10%) in G1, G2, and S phase cells at 24?h post-treatment time interval in NATG pretreated cells as compared to control group. However, radiation-induced or NATG-induced treatment did not cause any alterations in G2/M arrest. APO-BrDU analysis demonstrated significant (p?<?0.05) reduction in apoptosis level at 24?h time interval in NATG pretreated irradiated cells as compared to alone irradiated cells. Conclusively, present study suggests that NATG offers radioprotection by apoptosis inhibition mechanism without altering cell-cycle progression in J774A.1 cells. Further studies to evaluate detailed molecular mechanisms of radioprotection offered by NATG are ongoing.  相似文献   

5.
Exposure of cells to ionizing radiation leads to the formation of reactive oxygen species (ROS) that are associated with radiation-induced cytotoxicity. Because of the serious damaging potential of ROS, cells depend on the elaboration of the antioxidant defense system (AODS), both enzymatic and nonenzymatic oxidant defense mechanisms. The deficiency in important components of the endogenous AODS leads to the accumulation of oxidative stress inducing oxidative damage. The antioxidant enzymes superoxide dismutase and glutathione peroxidase are key intracellular antioxidants in the metabolism of ROS. In the current study, we investigated the potential role of these antioxidant enzymes in radioresistance during the evaluation of the compensatory role of some exogenous micronutrients against oxidative stress Animals were categorized into eight groups, receiving vitamin E (α-tocopherol) and/or selenium (Se) with or without whole-body γ-irradiation (6.5 Gy). The results indicate that antioxidant pretreatments before irradiation may have some beneficial effects against irradiation-induced injury. The results also indicate that selenium and vitamin E act alone and in an additive fashion as radioprotecting agents. The results further suggest that selenium confers protection in part by inducing or activating cellular free-radical scavenging systems and by enhancing peroxide breakdown, whereas vitamin E appears to confer its protection by an alternate complementary mechanism.  相似文献   

6.
The effects of γ-irradiation on inflammatory gene expression, including NF-κB activation, in the kidney of C57/BL6 mice exposed to 1–9 Gy doses of 60Co γ-irradiation. Radiation enhanced the NF-κB activation and oxidative stress caused a dose-dependent disruption in the redox balance. The significance of this study is the new molecular information gained on γ-irradiation effects through the activation of pro-inflammatory genes by NF-κB via the MAPK signaling pathway. Considering the exquisite sensitivity of NF-κB and other pro-inflammatory mediators to the redox status, we conclude that the activation of inflammatory processes by irradiation is likely initiated by increased oxidative stress.  相似文献   

7.
As humans are exposed to a variety of chemical agents as well as radiation, health effects of radiation should be evaluated in combination with chemicals. To explore combined genotoxic effects of radiation and chemicals, we examined modulating effects of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), a direct-acting methylating agent, against genotoxicity of γ-radiation. Human lymphoblastoid TK6 cells and its mismatch-deficient derivative, i.e., MT1 cells, were treated with MNNG for 24h before they were exposed to γ-irradiation at a dose of 1.0 Gy, and the resulting genotoxicity was examined. In TK6 cells, the pretreatments with MNNG at low doses suppressed frequencies of the thymidine kinase (TK) gene mutation and micronucleus (MN) formation induced by γ-irradiation and thus the dose responses of TK and MN assays were U-shaped along with the pretreatment doses of MNNG. In contrast, the genotoxic effects of MNNG and γ-irradiation were additive in MT1 cells and the frequencies of TK mutations and MN induction increased along with the doses of MNNG. Apoptosis induced by γ-radiation was suppressed by the pretreatments in TK6 cells, but not in MT1 cells. The expression of p53 was induced and cell cycle was delayed at G2/M phase in TK6, but not in MT1 cells, by the treatments with MNNG. These results suggest that pretreatments of MNNG at low doses suppress genotoxicity of γ-radiation in human cells and also that mismatch repair proteins are involved in the apparent adaptive responses.  相似文献   

8.
Lee JH  Tak JK  Park KM  Park JW 《Biochimie》2007,89(12):1509-1516
Ionizing radiation induces the production of reactive oxygen species, which play an important causative role in apoptotic cell death. Therefore, compounds that scavenge reactive oxygen species may confer regulatory effects on apoptosis. Recently, it has been shown that the decomposition product of the spin-trapping agent α-phenyl-N-t-butylnitrone, N-t-butyl hydroxylamine (NtBHA), mimics α-phenyl-N-t-butylnitrone and is much more potent in delaying reactive oxygen species-associated senescence. We investigated the effects of NtBHA on ionizing radiation-induced apoptosis. Upon exposure to 2 Gy of γ-irradiation, there was a distinct difference between the control cells and the cells pre-treated with 0.1 mM NtBHA for 2 h in regard to apoptotic parameters, cellular redox status, mitochondria function, and oxidative damage to cells. NtBHA effectively suppressed morphological evidence of apoptosis and DNA fragmentation in U937 cells exposed to ionizing radiation. The generation of intracellular reactive oxygen species was higher and the GSH level was lower in control cells compared to NtBHA-treated cells. The ionizing radiation-induced mitochondrial damage reflected by the altered mitochondrial permeability transition, the increase in the accumulation of reactive oxygen species, and the reduction of ATP production were significantly higher in control cells compared to NtBHA-treated cells. NtBHA pre-treated cells showed significant inhibition of apoptotic features such as activation of caspase-3, up-regulation of Bax and p53, and down-regulation of Bcl-2 compared to control cells upon exposure to ionizing radiation. This study indicates that NtBHA may play an important role in regulating the apoptosis induced by ionizing radiation presumably through scavenging of reactive oxygen species.  相似文献   

9.
The radioprotective effect of a non-toxic bioactive component in plant milk thistle, silibinin against genotoxicity induced by γ-irradiation was investigated in vivo/in vitro. Under in vitro conditions of irradiation, silibinin protected plasmid pBR322 DNA against γ-radiation-induced strand breaks in a concentration dependent manner (0–200 μM). Under cellular conditions of radiation exposure (3 Gy), silibinin offered protection to lymphocyte DNA as evidenced from reduction in DNA damage and micronuclei formation, which showed correlation to the extent of intracellular reactive oxygen species reduction. Our extended animal studies suggest that oral administration of silibinin (70 mg/kg for 3 days) to mice prior to whole-body γ-exposure (7.5 Gy) resulted in significant protection to radiation-induced mortality and DNA damage in blood leukocytes. However, silibinin treatment after irradiation was not as effective as pre-administration. In conclusion, present study indicated that silibinin has a strong potential to prevent radiation-induced DNA damage under both in vitro and in vivo.  相似文献   

10.
Exposure of cells to ionizing radiation leads to formation of reactive oxygen species, which are associated with radiation-induced cytotoxicity. Therefore, compounds that scavenge reactive oxygen species may confer radioprotective effects. Superoxide dismutase (SOD) mimetics have been shown to be protective against cell injury caused by reactive oxygen species. The objective of this study was to investigate the effects of manganese(III) tetrakis(N-methyl-2-pyridyl)porphyrin (MnTMPyP), a cell-permeable SOD mimetic, on radiation-dependent toxicity. We investigated the protective role of MnTMPyP against ionizing radiation in U937 cells and mice. On exposure to ionizing radiation, there was a distinct difference between control cells and cells pretreated with MnTMPyP with respect to viability, cellular redox status, and oxidative damage to cells. Lipid peroxidation, oxidative DNA damage, and protein oxidation were significantly lower in the cells treated with MnTMPyP when the cells were exposed to ionizing radiation. The [GSSG]/[GSH + GSSG] ratio and the generation of intracellular reactive oxygen species were higher and the [NADPH]/[NADP+ + NADPH] ratio was lower in control cells compared with MnTMPyP-treated cells. Ionizing radiation-induced mitochondrial damage, as reflected by the altered mitochondrial permeability transition, increase in accumulation of reactive oxygen species, reduction of ATP production, and morphological change, was significantly higher in control cells than in MnTMPyP-treated cells. MnTMPyP administration for 14 days at a daily dosage of 5 mg/kg provided substantial protection against killing and oxidative damage in mice exposed to whole-body irradiation. These data indicate that MnTMPyP may have great application potential as a new class of in vivo, non-sulfur-containing radiation protectors.  相似文献   

11.
Mouse spermatogonial germ cells are highly sensitive to ionizing radiation. Lithium salts are reported to stimulate the postirradiation recovery of hematopoietic marrow cells. We have, therefore, examined whether administered lithium chloride (LiCl) would also be able to protect the mouse germinal cells against radiation injury. Taking DNA synthesis as an endpoint, our results show that the testicular DNA-specific activity in irradiated mice was higher by 61% on average when they had been pretreated with LiCl both 24 h and 1 h prior to γ-irradiation (2.0 Gy). It was also observed that the DNA synthetic activity in the germinal cells fully recovered after LiCl pretreatment at doses of 40 mg per kg body weight prior to total body irradiation of 0.05–0.25 Gy, whereas at doses of 0.5–6.0 Gy, following the same procedure of LiCl pretreatment, only an incomplete recovery was observed. The dose reduction factor for LiCl is 1.84. The current findings indicate that pretreatment with LiCl provides considerable protection against radiation damage in mouse spermatogonia. Received: 18 October 1996 / Accepted in revised form: 3 April 1997  相似文献   

12.

Background

Ionizing irradiation causes not only growth arrest and cell death, but also release of growth factors or signal transmitters, which promote cancer malignancy. Extracellular ATP controls cancer growth through activation of purinoceptors. However, there is no report of radiation-induced ATP release from cancer cells. Here, we examined γ-irradiation-induced ATP release and its mechanism in B16 melanoma.

Methods

Extracellular ATP was measured by luciferin–luciferase assay. To investigate mechanism of radiation-induced ATP release, we pharmacologically inhibited the ATP release and established stable P2X7 receptor-knockdown B16 melanoma cells using two short hairpin RNAs targeting P2X7 receptor.

Results

Cells were exposed to 0.5–8 Gy of γ-rays. Extracellular ATP was increased, peaking at 5 min after 0.5 Gy irradiation. A selective P2X7 receptor channel antagonist, but not anion transporter inhibitors, blocked the release of ATP. Further, radiation-induced ATP release was significantly decreased in P2X7 receptor-knockdown cells. Our results indicate that γ-irradiation evokes ATP release from melanoma cells, and P2X7 receptor channel plays a significant role in mediating the ATP release.

General Significance

We suggest that extracellular ATP could be a novel intercellular signaling molecule released from cancer cells when cells are exposed to ionizing radiation.  相似文献   

13.
Lee JH  Park JW 《Free radical research》2005,39(12):1325-1333
Ionizing radiation induces the production of reactive oxygen species (ROS), which play an important causative role in apoptotic cell death. alpha-Phenyl-N-t-butylnitrone (PBN) is one of the most widely used spin-trapping compounds for investigating the existence of free radicals in biological systems. We investigated the effects of PBN on ionizing radiation-induced apoptosis in U937 cells. Upon exposure to 2 Gy of gamma-irradiation, there was a distinct difference between the control cells and the cells pre-treated with 2 mM PBN for 2 h in regard to apoptotic parameters, cellular redox status, mitochondria function and oxidative damage to cells. PBN effectively suppressed morphological evidence of apoptosis and DNA fragmentation in U937 cells exposed to ionizing radiation. The [GSSG]/[GSH+GSSG] ratio and the generation of intracellular ROS were higher and the [NADPH]/[NADP+ +NADPH] ratio was lower in control cells compared to PBN-treated cells. The ionizing radiation-induced mitochondrial damage reflected by the altered mitochondrial permeability transition, the increase in the accumulation of ROS, and the reduction of ATP production were significantly higher in control cells compared to PBN-treated cells. PBN pre-treated cells showed significant inhibition of apoptotic features such as activation of caspase-3, up-regulation of Bax and p53, and down-regulation of Bcl-2 compared to control cells upon exposure to ionizing radiation. This study indicates that PBN may play an important role in regulating the apoptosis induced by ionizing radiation presumably through scavenging of ROS.  相似文献   

14.
Radiotherapy is one of the most effective modalities for treatment of neoplastic diseases. Radiation damage is to a large extent caused by overproduction of reactive oxygen species. To improve the therapeutic index, identifying effective substances for prevention or treatment of postirradiation intestinal and bone marrow injury should be prompted. This study was designed to evaluate the protective effects of cimetidine on the in rats exposed to γ-irradiation (5 Gy) and exploring the B-cell lymphoma 2 (Bcl2)/Bcl2 associated X (bax) pathway as a probable underlying mechanism. Eighteen adult male rats were randomly grouped into three: control, untreated irradiated rats, and irradiated rats pretreated with cimetidine. Seven days postirradiation the rats were culled, the bone marrow (BM) and jejunum tissue samples were collected for biochemical, histological, and immunohistological evaluation of BM cell count (BMCs), intestinal fibrosis, oxidative stress, tumor necrosis factor-α, Bcl2, and Bax. Cimetidine pretreatment significantly reversed the loss of BMCs, intestinal lining destruction, and fibrosis seen in the untreated irradiated rats and significantly decreased the underlying oxidative stress, inflammation, and Bax/Bcl2 ratio. There was a significant differential correlation between Bax/Bcl2 ratio, tissue oxidative stress level, and tissue injury. Cimetidine represents a very promising radioprotective agent with a potential differential beneficial effect on both cancer cells (inducing apoptosis) as previously proved through different studies and adjacent healthy cells (providing radioprotection via inhibiting apoptosis) as clearly demonstrated through this study, via its antioxidant effect and subsequent regulation of type 2 apoptotic pathway through modulation of Bax/Bcl2 ratio.  相似文献   

15.
The protective effect of ebselen, with documented glutathione peroxidase-like activity and antioxidative and anti-inflammatory properties, on the cytotoxicity induced by oxysterol was investigated in ECV-304 cells with cholestane-3beta, 5alpha, 6beta-triol (3-triol), one of the most toxic oxysterols. 3-triol exhibited significant cytotoxicity to ECV-304 cells in dose- and time-dependent manners. Pre-incubations with ebselen at different concentrations for 4 h effectively inhibited the decreases of the cell viability and the intracellular thiols level induced by 3-triol; suppressed the 3-triol-caused increases of the GPx and NOS activities, the LDH leakage and MDA formation. The inhibition of ebselen to the generation of intracellular ROS induced by 3-triol was monitored by luminol-, lucigenin-derived chemiluminescence and DCFH-DA-derived fluorescence assays. Our results suggest that ebselen inhibited 3-triol-induced enhancement of intracellular ROS level and the cytotoxicity of 3-triol is contributed to, for the most part, an enhanced formation of intracellular O2.-; nevertheless, the mitochondria were not the main source of intercellular O2.- contributed to the cytotoxicity of 3-triol. Ebselen lost its high protection against 3-triol-induced injuries in the presence of GSH probably due to the formation of the ebselen-GSH adduct. In conclusion, our investigations provide new utility for ebselen as a prospective antiatherosclerotic in both clinical and non-clinical situations.  相似文献   

16.
γ-irradiation is commonly used to inactivate whole-cell anticancer vaccines containing viable tumor cells. To evaluate the effect of γ-irradiation on transgene expression in tumor cells, human and mouse cell lines were stably transfected with constructs expressing the granulocyte macrophage colony-stimulating factor (GM-CSF) or green fluorescent protein (GFP) gene under the control of the immediate-early CMV promoter. Irradiation of cells at 20–100 Gy caused a loss of proliferation capacity and gradual cell death, with the survival depending on the irradiation dose. G2/M cells accumulated in irradiated cultures, while the portion of S-phase cells was reduced. Surviving cells displayed activation of β-galactosidase and morphological changes associated with cell senescence. Mitochondrial dehydrogenase activity did not change with the irradiation dose. Irradiated cells retained transgene expression. Moreover, the amount of secreted GM-CSF and GFP production significantly increased after γ-irradiation, up to tenfold in cells exposed to 100 Gy. Transgene expression increased gradually and positively correlated with the total irradiation dose. The results demonstrate that γ-irradiation at 100 Gy is optimal for whole-cell anticancer vaccine inactivation.  相似文献   

17.
Ionizing radiation (IR) leads to oxidizing events such as excessive reactive oxygen species (ROS) in the exposed cells, resulting in further oxidative damage to lipids, proteins and DNA. To screen the potential radio-protective drug, the intracellular ROS was measured in irradiated U937 cells pretreated with 80 candidate traditional herbal medicine, respectively. Isofraxidin (IF) was one possible radio-protector in these 80 drugs. This study investigated the radio-protective role of IF, a Coumarin compound, in human leukemia cell lines, for the first time. Results indicate that IF protects against IR-induced apoptosis in U937 cells in the time- and concentration- dependent manner. IF decreases IR-induced intracellular ROS generation, especially hydroxyl radicals formation, inhibits IR-induced mitochondrial membrane potential loss and reduces IR-induced high intracellular Ca2+ levels regardless of ER stress. IF down-regulates the expression of caspase-3, phospho-JNK, phospho-p38 and activates Bax in mitochondria. IF inhibits cytochrome c release from mitochondria to cytosol. IF also moderates IR-induced Fas externalization and caspase-8 activation. IF also exhibits significant protection against IR-induced cell death in other leukemia cell lines such as Molt-4 cells and HL60 cells regardless of p53. Taken together, the data demonstrate that IF protects leukemia cells from radiation-induced apoptosis via ROS/mitochondria pathway in a p53-independent manner.  相似文献   

18.
Ebselen is a seleno-organic compound currently in clinical trials for the treatment of ischemic stroke and subarachnoid hemorrhage. Its putative mode of action as a neuroprotectant is via cyclical reduction and oxidation reactions, in a manner akin to glutathione peroxidase. For this reason, we have investigated the effects of ebselen on the redox-sensitive NMDA receptor. We have found that ebselen readily reversed dithiothreitol (DTT) potentiation of NMDA-mediated currents in cultured neurons and in Chinese hamster ovary (CHO) cells expressing wild-type NMDA NR1/NR2B receptors. In contrast, ebselen was unable to modulate NMDA-induced currents in neurons previously exposed to the thiol oxidant 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), or in CHO cells expressing a mutant receptor lacking the NR1 redox modulatory site, suggesting that ebselen oxidizes the NMDA receptor via this site. In addition, ebselen was substantially less effective in modifying NMDA responses in neurons exposed to alkylating agent N-ethylmaleimide (NEM) following DTT treatment. Ebselen also reversed DTT block of carbachol-mediated currents in Cos-7 cells expressing the alpha(2)beta delta epsilon subunits of the acetylcholine receptor, an additional redox-sensitive ion channel. Ebselen was observed to significantly increase cell viability following a 30-min NMDA exposure in cultured neurons. In contrast, other more typical antioxidant compounds did not afford neuroprotection in a similar paradigm. We conclude that ebselen may be neuroprotective in part due to its actions as a modulator of the NMDA receptor redox modulatory site.  相似文献   

19.
Deinococcus radiodurans, one of the most radioresistant organisms known to date is able to reconstruct an intact genome from hundreds of DNA fragments. Here, we investigate the in vivo role of PprA, a radiation-induced Deinococcus specific protein. We report that DNA double strand break repair in cells devoid of PprA and exposed to 3800 Gy γ-irradiation takes place efficiently with a delay of only 1 h as compared to the wild type, whereas massive DNA synthesis begins 90 min after irradiation as in the wild type, a phenotype insufficient to explain the severe radiosensitivity of the ΔpprA mutant. We show that the slow kinetics of reassembly of DNA fragments in a ΔpprA ΔrecA double mutant was the same as that observed in a ΔrecA single mutant demonstrating that PprA does not play a major role in DNA repair through RecA-independent pathways. Using a tagged PprA protein and immunofluorescence microscopy, we show that PprA is recruited onto the nucleoid after γ-irradiation before DNA double strand break repair completion, and then is found as a thread across the septum in dividing cells. Moreover, whereas untreated cells devoid of PprA displayed a wild type morphology, they showed a characteristic cell division abnormality after irradiation not found in other radiosensitive mutants committed to die, as DNA is present equally in the two daughter cells but not separated at the division septum. We propose that PprA may play a crucial role in the control of DNA segregation and/or cell division after DNA double strand break repair.  相似文献   

20.
苏立伟  任华  赵丽  李玮  张成伟 《生物磁学》2011,(16):3045-3047,3190
目的:探讨组蛋白去乙酰化酶抑制剂曲古霉素A(trichostatin A,TSA)增强人非小细胞肺癌(NscLc)A549对γ-射线敏感性作用及机制。方法:以TSA(0.51zM)预处理细胞18h,再以5Gyγ-射线照射细胞,24h后采用MTT法检测细胞存活率,AnnexinV—PI染色检测细胞凋亡,Westernblot法检测胞浆中和线粒体促凋亡蛋白Bax的表达,流式细胞仪检测细胞线粒体膜电位变化。结果-5Gyγ-射线照射可轻度降低细胞存活率,仅有少量细胞发生凋亡,以TSA预处理再以γ-射线处理细胞,细胞存活率显著下降,凋亡细胞明显增多,伴有线粒体膜电位下降,以及Bax蛋白的激活,表现在线粒体Bax表达较单纯照射组显著增高。结论:TSA通过促进Bax蛋白的活化激活线粒体凋亡途径,增强增强A549细胞对γ-射线的敏感性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号