首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endothelial cells are critical targets in both hypoxia-and reoxygenation-mediated lung injury. Reactive O2 species (ROS) have been implicated in the pathogenesis of hypoxic and reoxygenation lung injury, and xanthine dehydrogenase/oxidase (XDH/XO) is a major generator of the ROS. Porcine pulmonary artery endothelial cells (PAEC) have no detectable XDH/XO. This study was undertaken to examine (1) ROS production by hypoxic porcine PAEC and their mitochondria and (2) ROS production and injury in reoxygenated PAEC lacking XDH/XO activity. Intracellular H2O2 generation and extracellular H2O2 and O/2 release were measured after exposure to normoxia (room air-5% CO2), hypoxia (0% O2 -95% N-5% CO2), or hypoxia followed by normoxia or hyperoxia (95% O2-5% CO2). Exposure to hypoxia results in significant reductions in intracellular H2 O2 formation and extracellular release of H2 O2 and O2 by PAEC and mitochondria. The reductions occur with as little as a 2 h exposure and progress with continued exposure. During reoxygenation, cytotoxicity was not observed, and the production of ROS by PAEC and their mitochondria never exceeded levels observed in normoxic cells. The absence of XDH/XO may prevent porcine PAEC from developing injury and increased ROS production during reoxygenation. © 1995 Wiley-Liss, Inc.  相似文献   

2.
Tumour hypoxia plays a role in chemoresistance in several human tumours. However, how hyperbaric oxygen leads to chemotherapeutic gain is unclear. This study investigates the relation of reactive oxygen species (ROS) generation with anti-tumoural effect of adriamycin (ADR) on CCRF-CEM cells under hypoxic (2% O2) and normoxic (21% O2) conditions. A new method was used to measure intracellular ROS variations through the fluorescence lifetime of 1-pyrenebutyric acid. At 24 h, ADR, probably via semiquinone radical, enhances ROS levels in normoxic cells compared to hypoxic cells. Long-term studies show that ROS are also generated by a second mechanism related to cell functions perturbation. ADR arrests the cell cycle progression both under hypoxia and normoxia, indicating that oxygen and ROS does not influence the DNA damaging activity of ADR. The findings reveal that moderate improvement of ADR cytotoxicity results from higher ROS formation in normoxic cells, leading to elevated induction of cell death.  相似文献   

3.
Six male rowers rowed maximally for 2500 m in ergometer tests during normoxia (fractional concentration of oxygen in inspired air, F IO2 0.209), in hyperoxia (F IO2 0.622) and in hypoxia (F IO2 0.158) in a randomized single-blind fashion. Oxygen consumption (O2), force production of strokes as well as integrated electromyographs (iEMG) and mean power frequency (MPF) from seven muscles were measured in 500-m intervals. The iEMG signals from individual muscles were summed to represent overall electrical activity of these muscles (sum-iEMG). Maximal force of a stroke (F max) decreased from the 100% pre-exercise maximal value to 67 (SD 12)%, 63 (SD 15)% and 76 (SD 13)% (P<0.05 to normoxia, ANOVA) and impulse to 78 (SD 4)%, 75 (SD 14)% and 84 (SD 7)% (P<0.05) in normoxia, hypoxia and hyperoxia, respectively. A strong correlation between F max and O2 was found in normoxia but not in hypoxia and hyperoxia. The mean sum-iEMG tended to be lower (P<0.05) in hypoxia than in normoxia but hyperoxia had no significant effect on it. In general, F IO2 did not affect MPF of individual muscles. In conclusion, it was found that force output during ergometer rowing was impaired during hypoxia and improved during hyperoxia when compared with normoxia. Moreover, the changes in force output were only partly accompanied by changes in muscle electrical activity as sum-iEMG was affected by hypoxic but not by hyperoxic gas. The lack of a significant correlation between F max and O2 during hypoxia and hyperoxia may suggest a partial uncoupling of these processes and the existence of other limiting factors in addition to O2. Accepted: 2 June 1997  相似文献   

4.

Background

Greater diaphragm fatigue has been reported after hypoxic versus normoxic exercise, but whether this is due to increased ventilation and therefore work of breathing or reduced blood oxygenation per se remains unclear. Hence, we assessed the effect of different blood oxygenation level on isolated hyperpnoea-induced inspiratory and expiratory muscle fatigue.

Methods

Twelve healthy males performed three 15-min isocapnic hyperpnoea tests (85% of maximum voluntary ventilation with controlled breathing pattern) in normoxic, hypoxic (SpO2 = 80%) and hyperoxic (FiO2 = 0.60) conditions, in a random order. Before, immediately after and 30 min after hyperpnoea, transdiaphragmatic pressure (Pdi,tw ) was measured during cervical magnetic stimulation to assess diaphragm contractility, and gastric pressure (Pga,tw ) was measured during thoracic magnetic stimulation to assess abdominal muscle contractility. Two-way analysis of variance (time x condition) was used to compare hyperpnoea-induced respiratory muscle fatigue between conditions.

Results

Hypoxia enhanced hyperpnoea-induced Pdi,tw and Pga,tw reductions both immediately after hyperpnoea (Pdi,tw : normoxia -22 ± 7% vs hypoxia -34 ± 8% vs hyperoxia -21 ± 8%; Pga,tw : normoxia -17 ± 7% vs hypoxia -26 ± 10% vs hyperoxia -16 ± 11%; all P < 0.05) and after 30 min of recovery (Pdi,tw : normoxia -10 ± 7% vs hypoxia -16 ± 8% vs hyperoxia -8 ± 7%; Pga,tw : normoxia -13 ± 6% vs hypoxia -21 ± 9% vs hyperoxia -12 ± 12%; all P < 0.05). No significant difference in Pdi,tw or Pga,tw reductions was observed between normoxic and hyperoxic conditions. Also, heart rate and blood lactate concentration during hyperpnoea were higher in hypoxia compared to normoxia and hyperoxia.

Conclusions

These results demonstrate that hypoxia exacerbates both diaphragm and abdominal muscle fatigability. These results emphasize the potential role of respiratory muscle fatigue in exercise performance limitation under conditions coupling increased work of breathing and reduced O2 transport as during exercise in altitude or in hypoxemic patients.  相似文献   

5.
Normal heart rate (HR), and the HR responses to hypoxia and hyperoxia during early heart development in chick embyros have not been studied in detail, particularly in undisturbed embryos within the intact egg. HR was measured in day 3–9 chick embryos at 38 °C using relatively noninvasive impedance cardiography. Embryos were exposed to air (control) and to hypoxic (10% O2) or hyperoxic (100% O2) gas for a 2-h or 4-h period, during which HR was continually monitored. Control (normoxic) HR increased from about 150 beats per min (bpm) on day 3 to about 240 bpm on days 7–9. HR in very early embryos showed a variety of moderate responses to hypoxia (all survived), but as development progressed beyond day 6, hypoxic exposure induced a profound bradycardia that frequently terminated in death before the end of the measurement period. In contrast to the marked developmental changes in hypoxic sensitivity, HR showed little response to hyperoxia throughout development, suggesting no “hypoxic drive” to HR. We speculate that hypoxia has little effect early in development because of the embryo's small absolute O2 demand, but as the embryo grows, hypoxia represents a progressively more severe perturbation. Although general trends were identified, there was considerable variation in both HR and HR responses to ambient O2 changes between individuals of the same developmental stage. Accepted: 16 December 1998  相似文献   

6.
7.
Induction of endothelial nitric oxide synthase (eNOS) contributes to the mechanism of heart protection against ischemia-reperfusion damage. We analyzed the effects of hypoxia and hyperoxia on eNOS expression in isolated working rat hearts after ischemia-reperfusion damage. Adult male Wistar rats were submitted to chronic hypoxia (2 weeks) and hyperoxia (72 h). The hearts were submitted to 15 min of ischemia and reperfused for 60 min, then we evaluated hemodynamic parameters and creatine phosphokinase (CPK) release. eNOS expression was estimated by RT-PCR; enzyme localization was evaluated by immunohistochemistry and the eNOS protein levels were detected by Western blot. All hemodynamic parameters in hypoxic conditions were better with respect to other groups. The CPK release was lower in hypoxic (P<0.01) than in normoxic and hyperoxic conditions. The eNOS deposition was significantly higher in the hypoxic group versus the normoxic or hyperoxic groups. The eNOS protein and mRNA levels were increased by hypoxia versus both other groups. Chronic hypoxic exposure may decrease injury and increase eNOS protein and mRNA levels in heart subjected to ischemia-reperfusion.  相似文献   

8.
The discontinuous gas exchange cycle (DGC) is a breathing pattern displayed by many insects, characterized by periodic breath-holding and intermittently low tracheal O(2) levels. It has been hypothesized that the adaptive value of DGCs is to reduce oxidative damage, with low tracheal O(2) partial pressures (PO(2) ≈ 2-5 kPa) occurring to reduce the production of oxygen free radicals. If this is so, insects displaying DGCs should continue to actively defend a low tracheal PO(2) even when breathing higher than atmospheric levels of oxygen (hyperoxia). This behaviour has been observed in moth pupae exposed to ambient PO(2) up to 50 kPa. To test this observation in adult insects, we implanted fibre-optic oxygen optodes within the tracheal systems of adult migratory locusts Locusta migratoria exposed to normoxia, hypoxia and hyperoxia. In normoxic and hypoxic atmospheres, the minimum tracheal PO(2) that occurred during DGCs varied between 3.4 and 1.2 kPa. In hyperoxia up to 40.5 kPa, the minimum tracheal PO(2) achieved during a DGC exceeded 30 kPa, increasing with ambient levels. These results are consistent with a respiratory control mechanism that functions to satisfy O(2) requirements by maintaining PO(2) above a critical level, not defend against high levels of O(2).  相似文献   

9.
Nitric oxide (NO) shows cytotoxicity, and its reaction products with reactive oxygen species, such as peroxynitrite, are potentially more toxic. To examine the role of O2 in the NO toxicity, we have examined the proliferation of cultured human umbilical vein endothelial cells in the presence or absence of NO donor, ((Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)-amino]diazen-1-ium-1,2-diolate) (DETA-NONOate) (100–500 μM), under normoxia (air), hypoxia (< 0.04% O2) or hyperoxia (88–94% O2). It was found that the dose dependency on NONOate was little affected by the ambient O2 concentration, showing no apparent synergism between the two treatments. We have also examined the effects of exogenous NO under normoxia and hyperoxia on the cellular activities of antioxidant enzymes involved in the H2O2 elimination, since many of them are known to be inhibited by NO or peroxynitrite in vitro. Under normoxia DETA-NONOate (500 μM) caused 25% decrease in catalase activity and 30% increases in glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities in 24 h. Under hyperoxia NO caused about 25% decreases in activities of catalase, glutathione reductase and glucose-6-phosphate dehydrogenase. The H2O2 removal rate by NO-treated cells was computed on the mathematical model for the enzyme system. It was concluded that the cellular antioxidant function is little affected by NO under normoxia but that it is partially impaired when the cells are exposed to NO under hyperoxia.  相似文献   

10.
Here, we evaluated the influence of breathing oxygen at different partial pressures during recovery from exercise on performance at sea-level and a simulated altitude of 1800 m, as reflected in activation of different upper body muscles, and oxygenation of the m. triceps brachii. Ten well-trained, male endurance athletes (25.3±4.1 yrs; 179.2±4.5 cm; 74.2±3.4 kg) performed four test trials, each involving three 3-min sessions on a double-poling ergometer with 3-min intervals of recovery. One trial was conducted entirely under normoxic (No) and another under hypoxic conditions (Ho; FiO2 = 0.165). In the third and fourth trials, the exercise was performed in normoxia and hypoxia, respectively, with hyperoxic recovery (HOX; FiO2 = 1.00) in both cases. Arterial hemoglobin saturation was higher under the two HOX conditions than without HOX (p<0.05). Integrated muscle electrical activity was not influenced by the oxygen content (best d = 0.51). Furthermore, the only difference in tissue saturation index measured via near-infrared spectroscopy observed was between the recovery periods during the NoNo and HoHOX interventions (P<0.05, d = 0.93). In the case of HoHo the athletes’ Pmean declined from the first to the third interval (P < 0.05), whereas Pmean was unaltered under the HoHOX, NoHOX and NoNo conditions. We conclude that the less pronounced decline in Pmean during 3 x 3-min double-poling sprints in normoxia and hypoxia with hyperoxic recovery is not related to changes in muscle activity or oxygenation. Moreover, we conclude that hyperoxia (FiO2 = 1.00) used in conjunction with hypoxic or normoxic work intervals may serve as an effective aid when inhaled during the subsequent recovery intervals.  相似文献   

11.
This demonstrates a MR imaging method to measure the spatial distribution of pulmonary blood flow in healthy subjects during normoxia (inspired O2, fraction (FIO2) = 0.21) hypoxia (FIO2 = 0.125), and hyperoxia (FIO2 = 1.00). In addition, the physiological responses of the subject are monitored in the MR scan environment. MR images were obtained on a 1.5 T GE MRI scanner during a breath hold from a sagittal slice in the right lung at functional residual capacity. An arterial spin labeling sequence (ASL-FAIRER) was used to measure the spatial distribution of pulmonary blood flow 1,2 and a multi-echo fast gradient echo (mGRE) sequence 3 was used to quantify the regional proton (i.e. H2O) density, allowing the quantification of density-normalized perfusion for each voxel (milliliters blood per minute per gram lung tissue). With a pneumatic switching valve and facemask equipped with a 2-way non-rebreathing valve, different oxygen concentrations were introduced to the subject in the MR scanner through the inspired gas tubing. A metabolic cart collected expiratory gas via expiratory tubing. Mixed expiratory O2 and CO2 concentrations, oxygen consumption, carbon dioxide production, respiratory exchange ratio, respiratory frequency and tidal volume were measured. Heart rate and oxygen saturation were monitored using pulse-oximetry. Data obtained from a normal subject showed that, as expected, heart rate was higher in hypoxia (60 bpm) than during normoxia (51) or hyperoxia (50) and the arterial oxygen saturation (SpO2) was reduced during hypoxia to 86%. Mean ventilation was 8.31 L/min BTPS during hypoxia, 7.04 L/min during normoxia, and 6.64 L/min during hyperoxia. Tidal volume was 0.76 L during hypoxia, 0.69 L during normoxia, and 0.67 L during hyperoxia. Representative quantified ASL data showed that the mean density normalized perfusion was 8.86 ml/min/g during hypoxia, 8.26 ml/min/g during normoxia and 8.46 ml/min/g during hyperoxia, respectively. In this subject, the relative dispersion4, an index of global heterogeneity, was increased in hypoxia (1.07 during hypoxia, 0.85 during normoxia, and 0.87 during hyperoxia) while the fractal dimension (Ds), another index of heterogeneity reflecting vascular branching structure, was unchanged (1.24 during hypoxia, 1.26 during normoxia, and 1.26 during hyperoxia). Overview. This protocol will demonstrate the acquisition of data to measure the distribution of pulmonary perfusion noninvasively under conditions of normoxia, hypoxia, and hyperoxia using a magnetic resonance imaging technique known as arterial spin labeling (ASL). Rationale: Measurement of pulmonary blood flow and lung proton density using MR technique offers high spatial resolution images which can be quantified and the ability to perform repeated measurements under several different physiological conditions. In human studies, PET, SPECT, and CT are commonly used as the alternative techniques. However, these techniques involve exposure to ionizing radiation, and thus are not suitable for repeated measurements in human subjects.Download video file.(74M, mov)  相似文献   

12.
We examined physiological phenotypes of Drosophila melanogaster in hypoxic to hyperoxic atmospheres. We performed measurements on life span or behavioural function in 5, 21, 40, 60, and 80% O2, and combined this with literature data for 2% and 100% O2. O2 incubation resulted in a concentration-dependent reduction of life span in both hypoxia and hyperoxia, though different measures of life span were affected differently. We also examined how behavioural and metabolic functions were affected by exposure to hyperoxia (up to 60% O2). Climbing behaviour was measured as a fast (4 s) and slow (55 s) response in a negative geotaxis assay. In normoxia, both measures of climbing response declined exponentially until disappearing completely. Interestingly, survivorship was very high until the loss of climbing ability, after which it dropped rapidly. This pattern appeared accelerated in 40% O2. However, while flies in 60% O2 also apparently lost their fast climbing ability immediately prior to the drop in survivorship, they maintained considerable climbing ability over the longer trial. Metabolism, measured by CO2 release, did not change with age in normoxic flies, but was significantly lower in flies exposed to hyperoxia, particularly as the flies aged. There was, however, a slight increase in water loss rate with age in normoxia, while in hyperoxia, water loss was reduced. Uniquely, the water loss rates of flies in 60% O2 doubled immediately prior to the end of their life span. Because ageing results in generally irreversible functional declines, we examined if functional declines in hyperoxia (60% O2) were also irreversible, or whether some functioning could recover after a return to normoxia. After 7 days of recovery, water loss rates decreased, CO2 exhalation slightly increased, and climbing ability was partially recovered. Therefore, the effect of O2 on D. melanogaster function is non-linear, may be reversible, and may include unique phenotypes that arise at some O2 concentrations, and not others.  相似文献   

13.
低氧环境和运动训练均可导致人体体重降低,然而,低氧结合中强度训练对肥胖人群能量代谢及氧化应激的影响尚不清楚。本研究招募了60名无系统运动训练史的健康男性大学生,将受试者分为低氧组和常氧组,每组30名。在一个110 m^2的训练室内通过低氧训练系统模拟人工低氧环境(海拔高度:2 500 m,氧浓度:15%)。两组受试者进行1个月的低氧/常氧中强度骑行训练。此外,对低氧和常氧中强度训练的大鼠进行力竭跑台运动测试,苏木精和伊红(HE)染色评价大鼠骨骼肌形态学变化,RT-PCR检测低氧诱导因子1α(HIF-1α) mRNA的表达。研究显示,运动后低氧组的体重、脂肪重量和BMI均显著低于常氧组(p<0.05)。运动后低氧组的血清TC、HDL-C和LDL-C含量均显著低于常氧组(p<0.05),而总TG含量与常氧组无显著差异(p>0.05)。运动后,低氧组的游离脂肪酸含量显著高于常氧组(p<0.05),两组血糖无显著差异(p>0.05)。运动后,低氧组的SOD和GSH-PX水平显著高于常氧组(p<0.05),而MDA水平显著低于常氧组(p<0.05)。运动后,低氧组的IL-1β、IL-6和TNF-α水平显著低于常氧组(p<0.05)。力竭运动后,低氧组大鼠的骨骼肌形态学改变异常情况明显低于常氧组。低氧组的HIF-1αm RNA水平显著高于常氧组。本研究表明,与常氧相比,低氧中强度训练可有效降低肥胖人群的血脂水平,促进脂肪动员,减弱氧化应激损伤,抑制促炎细胞因子表达,从而促进体重减轻,并防止糖尿病、高血脂等肥胖相关疾病的发生。此外,低氧中强度可通过上调HIF-1α来提高机体抗氧化能力并减弱运动损伤。  相似文献   

14.
Summary Cultured type II pneumocyte responses to in vitro normoxia (95% air: 5% CO2) or hyperoxia (95% O2:5% CO2) were quantified. Normoxic culture (0 to 96 h) of rabbit type II cells resulted in enhanced cell-monolayer protein and DNA content. During this same time, cellular activities of superoxide dismutase (SOD), catalase, and glutathione peroxidase (GSH Px) decreased. Compared to cultures maintained in normoxia, hyperoxic exposure of cultures resulted in decreased cell-associated protein and DNA content. Exposure to hyperoxia also resulted in cytotoxicity as demonstrated by elevated cellular release of DNA, lactate dehydrogenase (LDH), and preincorporated 8-[14C]adenine. Cellular catalase and GSH Px activities in hyperoxic cells decreased similarly to normoxic controls. In contrast, cellular SOD activity in hyperoxic cells decreased less than in normoxic cultures. Cellular SOD activity in hyperoxic cultures, when normalized for cellular protein, but not DNA, was greater than normoxic values after 24 to 96 h of exposure. Unlike the decrease in cellular antioxidant enzymes during normoxic and hyperoxic culture, cellular LDH activity increased during both these exposures. Cellular LDH activity in 24 to 96 h hyperoxia-exposed cells increased to a lesser extent than normoxic controls. The extent of depression in LDH activity was dependent on whether the activity was normalized for cellular protein or DNA. Type II pneumocytes, which normally undergo hyperplasia and hypertrophy during hyperoxia in vivo, exhibited oxygen sensitivity in vitro. Exposure of type II cells to hyperoxia in vitro resulted in alterations in cellular SOD and LDH activities, but recognition of such changes were dependent on whether enzymatic activities were normalized for cellular DNA or protein. This work was supported by a grant from the Health Effects Institute, grant HL40458 from the National Institutes of Health, Bethesda, MD, and a grant from the American Lung Association, New York, NY.  相似文献   

15.
This study aimed to examine the proliferative behavior and molecular mechanisms of rat bone marrow-derived MSCs (rBMSCs) cultured under three different oxygen concentrations. Passaged rBMSCs exhibited significantly greater proliferation rates at 1% O2 and 5% O2 than those at 18% O2 and the cells exposed to 1% O2 showed the highest proliferative potential, which was evidenced by the growth curves, colony-forming efficiencies, and CCK-8 absorbance values. The rBMSCs grown under hypoxic culture conditions (1% O2 and 5% O2) had the increased percentage of cells in S?+?G2/M-phase and the decreased apoptotic index, compared with normoxia (18% O2). It was revealed for the first time that there were more phosphohistone H3 (PHH3)-positive cells and higher expressions of proliferating cell nuclear antigen (PCNA) in the hypoxic cultures of rBMSCs than in the normoxic culture. Hypoxia upregulated the anti-apoptotic protein Bcl-2 and downregulated the pro-apoptotic proteins Bax and the cleaved caspase-3 in cultured rBMSCs. The levels of hypoxia-inducible factor-1α (HIF-1α) and phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2) were increased in the hypoxic-cultured rBMSCs. Nevertheless, no significant difference was observed in p53 level of rBMSCs between different oxygen concentrations. In conclusion, the hypoxia exerts a promoting effect on the in vitro expansion of rBMSCs via several signaling and molecular pathways involved in the control of cell cycle and apoptosis.  相似文献   

16.
We asked whether lung innervation was essential for the normal postnatal development of the lung in conditions of normoxia, hypoxia, or hyperoxia. Litters of newborn rats were assigned to a normoxic [inspired oxygen partial pressure (PIO2) = 150 Torr, eight litters], hypoxic (PIO2 = 100 Torr, nine litters), or hyperoxic (PIO2 = 360 Torr, nine litters) group. Each litter consisted of 12 pups. Two days after birth, one-third of the litter had the vagus and sympathetic trunk cut in the neck on the left side [left denervated (L)], one-third was denervated on the right side (R), and one-third was sham-operated (S). From day 3, all pups were exposed to the designed PIO2, until day 8 or days 21-22. Almost all rats, whether S, R, or L, survived in normoxia and hyperoxia, whereas in hypoxia survival at day 22 of R and L was approximately 60-65%. Body growth was the same in S, R, and L and less in hypoxia than in normoxia or hyperoxia. At days 8 and 22, hematocrit and hemoglobin concentration, heart and lung dry and wet weights, and lung DNA content did not differ among S, R, and L, whether the pups were raised in normoxia, hypoxia, or hyperoxia. At days 21-22, aerobic metabolism and breathing pattern, both measured during air breathing, as well as compliance of isolated lungs, were also similar among S, R, and L for each of the conditions in which the pups were raised.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The dynamics of microvascular circulation and tissue oxygenation in response to the hypoxic test and the subsequent hyperoxia have been studied. The microcirculatory and tissue oxygenation parameters (laser Doppler flowmetry and optical tissue oximetry) were recorded in 30 apparently healthy young men during the hypoxic test (HT): breathing a gas mixture with 10% O2 for 10 min followed by hyperoxia (30% O2) for 3 min. It was established that, during the HT, no change in the relative level of tissue saturation with oxygen (SO2) occurred, but the relative degree of oxygen extraction by tissues (ΔSaO2-SO2) decreased significantly with a rapid recovery in the hypoxic phase. This is accompanied by the activation of the neurogenic sympathetic-related vasomotor mechanisms (NT), as well as the endothelium-dependent microvascular tone component (EDTC) with a decrease in the shunting index (SI) mostly in the hyperoxic phase but not during hypoxia. The nature of the microcirculatory response to hypoxia depends on the initial level of resistance/sensitivity to hypoxia. In hypoxia-sensitive subjects, the HT causes SaO2 and ΔSaO2-SO2 to decrease in the absence of significant shifts in the microcirculation regulation. Among the subjects resistant to hypoxia, HT leads to the nutritive blood flow activation by increasing the initially decreased EDTC and the neurogenic sympathetic component of microhemodynamics regulation and to a reduction of blood shunting. At the same time, ΔSaO2-SO2 does not significantly change, and the activation of microcirculation is also retained in the hyperoxic recovery phase. The identified functional criteria of the contribution of the endothelial and neurogenic vasomotor regulatory components of microhemodynamics in the HT substantiate the involvement of the microcirculatory component and confirm the important role of the hyperoxic phase in the adaptive response of the body to acute hypoxia/hyperoxia.  相似文献   

18.
Synopsis Suspension-feeding fishes use gill structures for both respiration (lamellae) and food capture (rakers). During hypoxic exposure in eutrophic lakes or poorly circulated sloughs, many fishes, including Sacramento blackfish, Orthodon microlepidotus, increase their gill water flows, in part by increasing ventilatory stroke volumes. Stroke volume increases could compromise particle sieving efficiency by spreading interdigitated gill rakers from adjacent gill arches, although blackfish capture food particles by raker-guided water flows to a sticky buccal root. Using van Dam-type respirometers, blackfish respiratory variables and feeding efficiency (Artemia nauplii) were measured under normoxia (> 130 torr PO2) and hypoxia (60 torr PO2). Compared with non-feeding, normoxic conditions, gill ventilation volume, frequency, stroke volume, and gape all increased, while O2 uptake efficiency decreased, during hypoxia and during feeding. O2 consumption increased during feeding treatments, and % uptake of nauplii showed no difference between normoxic and hypoxic groups. Thus, blackfish display respiratory adaptations, including increased ventilatory stroke volumes, to survive in hypoxic environments such as Clear Lake, California. Importantly, they have also evolved a particle capture mechanism that allows efficient suspension-feeding under both normoxic and hypoxic conditions.  相似文献   

19.
The Hb-O2 affinity and the erythropoietic response as a function of time were studied in mice treated with sodium cyanate for up to 2 months. Cyanate increased the Hb-O2 affinity in normoxic mice more than in chronically hypoxic mice. The hemoglobin concentration rose as a function of time both in normoxic and hypoxic conditions but reached higher levels in hypoxia. After 42 days of study (21 days of hypoxia) hemoglobin reached maximum levels and thereafter showed a plateau in both cyanate and control animals. It is concluded that a chronic left-shifted oxygen dissociation curve does not avoid the development of hypoxic polycythemia in mice. Moreover, prolonged cyanate administration potentiates the crythropoietic response to chronic hypoxia. Since polycythemia is an index of tissue hypoxia, the results show that the high hemoglobin affinity did not prevent tissue hypoxia in low PO2 conditions. Results showing beneficial effects of high hemoglobin oxygen affinity induced by cyanate based on acute hypoxic expositions should be cautiously interpreted with regard to their adaptive value in animals chronically exposed to natural or simulated hypoxia.Abbreviations Hb hemoglobin - NaOCN sodium cyanate - ODC oxygen dissociation curve - P 50 PO2 at which hemoglobin is half saturated with O2  相似文献   

20.
Mitochondrial dysfunction plays a principal role in hypoxia-induced endothelial injury, which is involved in hypoxic pulmonary hypertension and ischemic cardiovascular diseases. Recent studies have identified mitochondria-associated membranes (MAMs) that modulate mitochondrial function under a variety of pathophysiological conditions such as high-fat diet-mediated insulin resistance, hypoxia reoxygenation-induced myocardial death, and hypoxia-evoked vascular smooth muscle cell proliferation. However, the role of MAMs in hypoxia-induced endothelial injury remains unclear. To explore this further, human umbilical vein endothelial cells and human pulmonary artery endothelial cells were exposed to hypoxia (1% O2) for 24 hours. An increase in MAM formation was uncovered by immunoblotting and immunofluorescence. Then, we performed small interfering RNA transfection targeted to MAM constitutive proteins and explored the biological effects. Knockdown of MAM constitutive proteins attenuated hypoxia-induced elevation of mitochondrial Ca2+ and repressed mitochondrial impairment, leading to an increase in mitochondrial membrane potential and ATP production and a decline in reactive oxygen species. Then, we found that MAM disruption mitigated cell apoptosis and promoted cell survival. Next, other protective effects, such as those pertaining to the repression of inflammatory response and the promotion of NO synthesis, were investigated. With the disruption of MAMs under hypoxia, inflammatory molecule expression was repressed, and the eNOS-NO pathway was enhanced. This study demonstrates that the disruption of MAMs might be of therapeutic value for treating endothelial injury under hypoxia, suggesting a novel strategy for preventing hypoxic pulmonary hypertension and ischemic injuries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号