首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
4-Hydroxynonenal (HNE) is known to be atherogenic, but its mechanism of action in atherogenesis is not clear. Therefore, this study investigated the role of HNE in macrophage foam cell formation and the underlying mechanism involved in HNE-induced expression of scavenger receptors (SRs). In the aortic sinus of ApoE-deficient mice fed a high-fat diet, multiple plaque lesions were accompanied by increased accumulation of HNE adducts in the enhanced Mac-2 stained area. In an in vitro study, HNE exposure to J774A.1 macrophages led to increased expression of class A SR (SR-A) and CD36 at the protein level with a concomitant increase in endocytic uptake of oxLDL. In contrast to CD36 protein expression, which was associated with an increase in mRNA expression, the HNE-enhanced SR-A protein expression was neither accompanied by its mRNA expression nor affected by actinomycin D. HNE enhanced the incorporation rates of 35S-Met/Cys into SR-A, and HNE-induced SR-A protein expression was effectively attenuated by translation inhibitors such as cycloheximide and rapamycin. Taken together, these data suggest that HNE contributes to macrophage foam cell formation through increased synthesis of SR-A at the level of mRNA translation, consequently leading to the progression of atherosclerosis.  相似文献   

2.
《Free radical research》2013,47(7):742-750
Abstract

4-Hydroxynonenal (HNE) mediates oxidative stress-linked pathological processes; however, its role in the generation of reactive oxygen species (ROS) in macrophages is still unclear. Thus, this study investigated the sources and mechanisms of ROS generation in macrophages stimulated with HNE. Exposure of J774A.1 cells to HNE showed an increased production of ROS, which was attenuated by NADPH oxidase as well as 5-lipoxygenase (5-LO) inhibitors. Linked to these results, HNE increased membrane translocation of p47phox promoting NADPH oxidase activity, which was attenuated in peritoneal macrophages from 5-LO-deficient mice as well as in J774A.1 cells treated with a 5-LO inhibitor, MK886 or 5-LO siRNA. In contrast, HNE-enhanced 5-LO activity was not affected by inhibition of NADPH oxidase. Furthermore, leukotriene B4, 5-LO metabolite, was found to enhance NADPH oxidase activity in macrophages. Altogether, these results suggest that 5-LO plays a critical role in HNE-induced ROS generation in murine macrophages through activation of NADPH oxidase.  相似文献   

3.
COX-2 is rapidly expressed by various stimuli and plays a key role in conversion of free arachidonic acid to prostaglandins (PGs). 4-Hydroxy-2-nonenal (HNE), one of the lipid peroxidation end-products, has been recently identified as a potent COX-2 inducer in rat epithelial cell RL34 cells (Kumagai et al. (2000) Biochem. Biophys. Res. Commun. 273, 437-441). Here we investigated the molecular mechanism underlying the COX-2 induction by HNE mainly focusing on the activation of p38 mitogen-activated protein kinase (MAPK) pathways. The observations that (i) HNE induced phosphorylation of p38 MAPK and MKK3/MKK6 within 5 min and that (ii) SB203580, a p38 MAPK-specific inhibitor, suppressed the HNE-induced COX-2 expression suggested that the p38 MAPK pathway was involved in the HNE-induced COX-2 expression. Overexpression of p38 MAPK enhanced the HNE-induced COX-2 expression, whereas the overexpression of dominant negative p38 MAPK suppressed it. Furthermore, we also found that HNE upregulated the COX-2 expression by the stabilization of COX-2 mRNA via the p38 MAPK pathway.  相似文献   

4.
5.
CD36, belongs to class B scavenger receptor family, is a macrophage receptor for oxidized low-density lipoprotein (oxLDL) and has been proven to play a critical role in atherosclerotic foam cell formation. In addition, CD36 expression is regulated by many factors including oxLDL and HDL. A recent study suggests that CD36 can also bind with oxidized high-density lipoprotein (oxHDL). However, the direct role of oxHDL in atherosclerosis is still not clear and it is not known whether oxHDL has any influence on the expression of CD36 in macrophages. Here, we performed experiments to investigate the effect of oxHDL on the expression of CD36 on human peripheral blood monocytes–macrophages and the possible mechanisms. Our results suggest that the uptake of oxHDL by CD36 on macrophages accelerates foam cell formation. In addition, oxHDL can down-regulate both the mRNA and surface protein expression of CD36 on human peripheral macrophages in vitro. oxHDL increased the mRNA expression and protein phosphorylation of peroxisome proliferators-activated receptor-γ (PPARγ). Using different mitogen-activated protein kinase (MAPK) inhibitors, we demonstrated that oxHDL regulated CD36 and PPARγ expression in a p38-MAP kinase dependent mechanism.  相似文献   

6.
4-hydroxy-2-nonenal (HNE) activates a variety of signaling pathways. We have recently evaluated the effect of oxidized fatty acid metabolites on cyclooxygenase-2 (COX-2) induction in rat liver epithelial RL34 cells and found that, among the compounds tested, HNE most dramatically induced COX-2. A p38 mitogen-activated protein kinase (p38 MAPK) pathway has been shown to play a key role in the mechanism of the HNE-induced COX-2 expression. It appears that the HNE-induced activation of p38 MAPK leads to the stabilization of COX-2 mRNA.  相似文献   

7.
8.
IL-13 is a Th2 cytokine that promotes alternative activation (M2 polarization) in primary human monocytes. Our studies have characterized the functional IL-13 receptor complex and the downstream signaling events in response to IL-13 stimulation in alternatively activated monocytes/macrophages. In this report, we present evidence that IL-13 induces the activation of a Src family tyrosine kinase, which is required for IL-13 induction of M2 gene expression, including 15-lipoxygenase (15-LO). Our data show that Src kinase activity regulates IL-13-induced p38 MAPK tyrosine phosphorylation via the upstream kinases MKK3 or MKK6. Our findings also reveal that the IL-13 receptor-associated tyrosine kinase Jak2 is required for the activation of both Src kinase as well as p38 MAPK. Further, we found that Src tyrosine kinase-mediated activation of p38 MAPK is required for Stat1 and Stat3 serine 727 phosphorylation in alternatively activated monocytes/macrophages. Additional studies identify Hck as the specific Src family member, stimulated by IL-13 and involved in regulating both p38 MAPK activation and p38 MAPK-mediated 15-LO expression. Finally we show that the Hck regulates the expression of other alternative state (M2)-specific genes (Mannose receptor, MAO-A, and CD36) and therefore conclude that Hck acts as a key regulator controlling gene expression in alternatively activated monocytes/macrophages.  相似文献   

9.

Background

A complex interplay between Leishmania and macrophages influences parasite survival and necessitates disruption of signaling molecules, eventually resulting in impairment of macrophage function. In this study, we demonstrate the immunomodulatory activity of Berberine chloride in Leishmania infected macrophages.

Principal Findings

The IC50 of Berberine chloride, a quaternary isoquinoline alkaloid was tested in an amastigote macrophage model and its safety index measured by a cell viability assay. It eliminated intracellular amastigotes, the IC50 being 2.8 fold lower than its IC50 in promastigotes (7.10 µM vs. 2.54 µM) and showed a safety index >16. Levels of intracellular and extracellular nitric oxide (NO) as measured by flow cytometry and Griess assay respectively showed that Berberine chloride in Leishmania infected macrophages increased production of NO. Measurement of the mRNA expression of iNOS, IL-12 and IL-10 by RT-PCR along with levels of IL-12p40 and IL-10 by ELISA showed that in infected macrophages, Berberine chloride enhanced expression of iNOS and IL-12p40, concomitant with a downregulation of IL-10. The phosphorylation status of extracellular signal related kinase (ERK1/2) and p38 mitogen activated protein kinase (p38 MAPK) was studied by western blotting. In infected macrophages, Berberine chloride caused a time dependent activation of p38 MAPK along with deactivation of ERK1/2; addition of a p38 MAPK inhibitor SB203580 inhibited the increased generation of NO and IL-12p40 by Berberine chloride as also prevented its decrease of IL-10.

Conclusions

Berberine chloride modulated macrophage effector responses via the mitogen activated protein kinase (MAPK) pathway, highlighting the importance of MAPKs as an antiparasite target.  相似文献   

10.
Apoptosis of macrophage foam cells loaded with modified/oxidized lipids is implicated in destabilization of advanced atherosclerotic plaques in humans. Concentration of HNE, main aldehydic product of plasma LDL peroxidation, elevates in atherosclerotic lesions as well as in cultured cells under oxidative stress. Although this reactive aldehyde has been shown to promote apoptosis with the involvement of p38 MAPK and JNK in various mammalian cell lines, roles of B-cell lymphoma 2 (Bcl-2) family proteins remain to be deciphered. We demonstrated that HNE-induced apoptosis was accompanied by concurrent downregulations of antiapoptotic Bcl-x(L) and Mcl-1 as well as upregulation of proapoptotic Bak. Furthermore, phoshorylation of Bcl-2 at Thr56, Ser70, and probably more phosphorylation sites located on N-terminal loop domain associated with HNE-induced apoptosis in both U937 and HeLa cells while ectopic expression of a phospho-defective Bcl-2 mutant significantly attenuated apoptosis. In parallel to this, HNE treatment caused release of proapoptotic Bax from Bcl-2. Pharmacological inhbition of IKK inhibited HNE-induced Bcl-2 phosphorylation. Similarly, silencing IKKα and -β both ended up with abrogation of Bcl-2 phosphorylation along with attenuation of apoptosis. Moreover, both IKKα and -β coimmunoprecipitated with Bcl-2 and in vitro kinase assay proved the ability of IKK to phosphorylate Bcl-2. In view of these findings and considering HNE inhibits DNA-binding activity of nuclear factor-κB (NF-κB) through prevention of IκB phosphorylation/ubiquitination/proteolysis, IKK appears to directly interfere with Bcl-2 activity through phosphorylation in HNE-mediated apoptosis independent of NF-κB signaling.  相似文献   

11.
12.
In this study, we evaluated the molecular mechanisms involved in morphine-induced macrophage apoptosis. Both morphine and TGF-beta promoted P38 mitogen-activated protein kinase (MAPK) phosphorylation, and this phosphorylation was inhibited by SB 202190 as well as by SB 203580. Anti-TGF-beta Ab as well as naltrexone (an opiate receptor antagonist) inhibited morphine-induced macrophage P38 MAPK phosphorylation. Anti-TGF-beta Ab also attenuated morphine-induced p53 as well as inducible NO synthase expression; in contrast, N(G)-nitro-L-arginine methyl ester, an inhibitor of NO synthase, inhibited morphine-induced P38 MAPK phosphorylation and Bax expression. Morphine also enhanced the expression of both Fas and Fas ligand (FasL), whereas anti-FasL Ab prevented morphine-induced macrophage apoptosis. Moreover, naltrexone inhibited morphine-induced FasL expression. In addition, macrophages either deficient in FasL or lacking p53 showed resistance to the effect of morphine. Inhibitors of both caspase-8 and caspase-9 partially prevented the apoptotic effect of morphine on macrophages. In addition, caspase-3 inhibitor prevented morphine-induced macrophage apoptosis. These findings suggest that morphine-induced macrophage apoptosis proceeds through opiate receptors via P38 MAPK phosphorylation. Both TGF-beta and inducible NO synthase play an important role in morphine-induced downstream signaling, which seems to activate proteins involved in both extrinsic (Fas and FasL) and intrinsic (p53 and Bax) cell death pathways.  相似文献   

13.
Fibrinogen-like protein 2 (FGL2)/fibroleukin has been reported to play a vital role in the pathogenesis of some critical inflammatory diseases by possessing immunomodulatory activity through the mediation of “immune coagulation” and the regulation of maturation and proliferation of immune cells. We observed upregulated FGL2 expression in alveolar macrophages from peripheral lungs of chronic obstructive pulmonary disease (COPD) patients and found a correlation between FGL2 expression and increased macrophage activation markers (CD11b and CD14). The role of FGL2 in the activation of macrophages was confirmed by the detection of significantly decreased macrophage activation marker (CD11b, CD11c, and CD71) expression as well as the inhibition of cell migration and inflammatory cytokine (IL-8 and MMP-9) production in an LPS-induced FGL2 knockdown human monocytic leukemia cell line (THP-1). Increased FGL2 expression co-localized with upregulated phosphorylated p38 mitogen-activated protein kinase (p38-MAPK) in the lung tissues from COPD patients. Moreover, FGL2 knockdown in THP-1 cells significantly downregulated LPS-induced phosphorylation of p38-MAPK while upregulating phosphorylation of c-Jun N-terminal kinase (JNK). Thus, we demonstrate that FGL2 plays an important role in macrophage activation in the lungs of COPD patients through MAPK pathway modulation.  相似文献   

14.
Cytotoxic lipid peroxides such as 4-hydroxy-2-nonenal (HNE) are produced when cells are exposed to toxic chemicals. However, the mechanism by which HNE induces cell death has been poorly understood. In this study, we investigated the molecular mechanism of HNE-induced apoptosis in PC12 cells by measuring the activities of the mitogen-activated protein (MAP) kinases involved in early signal transduction pathways. Within 15-30 min after HNE treatment, c-Jun N-terminal protein kinase (JNK) was maximally activated, before returning to control level after 1 h post-treatment. In contrast, activities of extracellular signal regulated kinase (ERK) and p38 MAP kinase remained unchanged from their basal levels. SEK1, an upstream kinase of JNK, was also activated (phosphorylated) within 5 min after HNE treatment and remained activated for up to 60 min. Marked activation of the JNK pathway through SEK1 was demonstrated by the transient transfection of cDNA for wild type SEK1 and JNK into COS-7 cells. Furthermore, significant reductions in JNK activation and HNE-induced cell death were observed when the dominant negative mutant of SEK1 was co-transfected with JNK. Pretreatment of PC12 cells with a survival promoting agent, 8-(4-chlorophenylthio)-cAMP, prevented both the HNE-induced JNK activation and apoptosis. Nonaldehyde, a nontoxic aldehyde, caused neither apoptosis nor JNK activation. Pretreatment of PC12 cells with SB203580, a specific inhibitor of p38 MAP kinase, had no effect on HNE-induced apoptosis. All these data suggest that the HNE-mediated apoptosis of PC12 cells is likely to be mediated through the selective activation of the SEK1-JNK pathway without activation of ERK or p38 MAP kinase.  相似文献   

15.
Cytotoxic lipid peroxides such as 4-hydroxy-2-nonenal (HNE) are produced when cells are exposed to toxic chemicals. However, the mechanism by which HNE induces cell death has been poorly understood. In this study, we investigated the molecular mechanism of HNE-induced apoptosis in PC12 cells by measuring the activities of the mitogen-activated protein (MAP) kinases involved in early signal transduction pathways. Within 15–30 min after HNE treatment, c-Jun N-terminal protein kinase (JNK) was maximally activated, before returning to control level after 1 h post-treatment. In contrast, activities of extracellular signal regulated kinase (ERK) and p38 MAP kinase remained unchanged from their basal levels. SEK1, an upstream kinase of JNK, was also activated (phosphorylated) within 5 min after HNE treatment and remained activated for up to 60 min. Marked activation of the JNK pathway through SEK1 was demonstrated by the transient transfection of cDNA for wild type SEK1 and JNK into COS-7 cells. Furthermore, significant reductions in JNK activation and HNE-induced cell death were observed when the dominant negative mutant of SEK1 was co-transfected with JNK. Pretreatment of PC12 cells with a survival promoting agent, 8-(4-chlorophenylthio)-cAMP, prevented both the HNE-induced JNK activation and apoptosis. Nonaldehyde, a nontoxic aldehyde, caused neither apoptosis nor JNK activation. Pretreatment of PC12 cells with SB203580, a specific inhibitor of p38 MAP kinase, had no effect on HNE-induced apoptosis. All these data suggest that the HNE-mediated apoptosis of PC12 cells is likely to be mediated through the selective activation of the SEK1-JNK pathway without activation of ERK or p38 MAP kinase.  相似文献   

16.
Tissue degradation and leukocyte extravasation suggest proteolytic destruction of the extracellular matrix (ECM) during severe malaria. Matrix metalloproteinases (MMPs) play an established role in ECM turnover, and increased MMP‐9 protein abundance is correlated with malarial infection. The malaria pigment hemozoin (Hz) is a heme detoxification biomineral that is produced during infection and associated with biologically active lipid peroxidation products such as 4‐hydroxynonenal (HNE) adsorbed to its surface. Hz has innate immunomodulatory activity, and many of its effects can be reproduced by exogenously added HNE. Hz phagocytosis enhances MMP‐9 expression in monocytes; thus, this study was designed to examine the ability of HNE to alter MMP‐9 regulation in activated cells of macrophage lineage. Data show that treatment of lipopolysaccharide‐stimulated RAW 264.7 cells with HNE increased MMP‐9 secretion and activity. HNE treatment abolished the cognate tissue inhibitor of metalloproteinase‐1 protein levels, further decreasing MMP‐9 regulation. Phosphorylation of both p38 mitogen‐activated protein kinase (MAPK) and c‐Jun NH2‐terminal kinase was induced by HNE, but only p38 MAPK inhibition lessened MMP‐9 secretion. These results demonstrate the in vitro ability of HNE to cause MMP‐9 dysregulation in an activated cell model. The findings may extend to myriad pathologies associated with lipid peroxidation and elevated MMP‐9 levels leading to tissue damage. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
15(S)-Hydroxyeicosatetraenoic acid (15(S)-HETE), the major 15-lipoxygenase 1/2 (15-LO1/2) metabolite of arachidonic acid (AA), induces CD36 expression through xanthine oxidase and NADPH oxidase-dependent ROS production and Syk and Pyk2-dependent STAT1 activation. In line with these observations, 15(S)-HETE also induced foam cell formation involving ROS, Syk, Pyk2, and STAT1-mediated CD36 expression. In addition, peritoneal macrophages from Western diet-fed ApoE-/- mice exhibited elevated levels of xanthine oxidase and NADPH oxidase activities, ROS production, Syk, Pyk2, and STAT1 phosphorylation, and CD36 expression compared to those from ApoE-/-:12/15-LO-/- mice and these events correlated with increased lipid deposits, macrophage content, and lesion progression in the aortic roots. Human atherosclerotic arteries also showed increased 15-LO1 expression, STAT1 phosphorylation, and CD36 levels as compared to normal arteries. Together, these findings suggest that 12/15-LO metabolites of AA, particularly 12/15(S)-HETE, might play a crucial role in atherogenesis by enhancing foam cell formation.  相似文献   

18.
19.
20.
Allograft inflammatory factor-1 (AIF-1) is a cytoplasmic, calcium-binding, inflammation-responsive scaffold protein. Several studies have reported increased AIF-1 expression in activated macrophages and have implicated AIF-1 as a marker of activated macrophages. However, the function of AIF-1 in macrophages and the mechanism whereby it participates in macrophage activation are unknown at this time. Immunohistochemical analysis colocalized AIF-1 expression with CD68-positive macrophages in atherosclerotic human coronary arteries. Subsequent experiments were designed to determine a role for AIF-1 in macrophage activation in response to atherogenic stimuli. Stimulation of human and murine macrophages with oxidized LDL significantly increased AIF-1 expression above basal levels. Stable transfection of AIF-1 small interfering RNA (siRNA) in macrophages reduced AIF-1 protein expression by 79% and reduced macrophage proliferation by 52% (P < 0.01). Inhibition of proliferation was not due to induction of apoptosis. Sequences that did not knock down AIF-1 expression had no effect on proliferation. AIF-1 siRNA expression reduced macrophage migration by 60% (P < 0.01). Both proliferation and migration of siRNA-expressing macrophages could be restored by adenoviral expression of AIF-1 (P < 0.001 and 0.005, respectively), suggesting a tight association between AIF-1 expression and macrophage activation. Phosphorylation of Akt, p44/42 MAPK, and p38 kinase were significantly reduced in siRNA macrophages challenged with oxidized LDL (P < 0.05). Phosphorylation of p38 kinase was significantly inhibited in siRNA macrophages stimulated with T lymphocyte conditioned medium (P < 0.05). These data indicate that AIF-1 mediates atherogenesis-initiated signaling and activation of macrophages. allograft inflammatory factor-1; cell activation; small interfering RNA  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号