首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sea ice is a large and diverse ecosystem contributing significantly to primary production in ice-covered regions. In the Arctic Ocean, sea ice consists of mixed multi-year ice (MYI), often several metres thick, and thinner first-year ice (FYI). Current global warming is most severe in Arctic regions; as a consequence, summer sea ice cover is decreasing and MYI is disappearing at an alarming rate. Despite its apparent hostility, sea ice is inhabited by a diverse microbial community of bacteria and protists, many of which are photosynthetic. Here we present an assessment of eukaryotic biodiversity in MYI and FYI from the central Arctic Ocean using high-throughput 454 sequencing of 18S rRNA and rDNA amplicons. We compared the rDNA-based ‘total’ biodiversity with the ‘active’ biodiversity from rRNA amplicons and found differences between them including an over-representation of Ciliophora, Bicosoecida and Bacillariophyceae operational taxonomic units (OTUs) in the active part of the community. Differences between the two libraries are more pronounced at the lower taxonomic level: certain genera, such as Melosira, are more abundant in the rRNA library, indicating activity of these genera. Furthermore, we found that one FYI station showed a higher activity of potential grazers which was probably due to the advanced stage of melt evident by higher ice temperatures and highly porous ice compared with the other stations.  相似文献   

2.
There is mounting evidence that multiyear ice (MYI) is a unique component of the Arctic Ocean and may play a more important ecological role than previously assumed. This study improves our understanding of the potential of MYI as a suitable habitat for sea ice algae on a pan‐Arctic scale. We sampled sea ice cores from MYI and first‐year sea ice (FYI) within the Lincoln Sea during four consecutive spring seasons. This included four MYI hummocks with a mean chl a biomass of 2.0 mg/m2, a value significantly higher than FYI and MYI refrozen ponds. Our results support the hypothesis that MYI hummocks can host substantial ice‐algal biomass and represent a reliable ice‐algal habitat due to the (quasi‐) permanent low‐snow surface of these features. We identified an ice‐algal habitat threshold value for calculated light transmittance of 0.014%. Ice classes and coverage of suitable ice‐algal habitat were determined from snow and ice surveys. These ice classes and associated coverage of suitable habitat were applied to pan‐Arctic CryoSat‐2 snow and ice thickness data products. This habitat classification accounted for the variability of the snow and ice properties and showed an areal coverage of suitable ice‐algal habitat within the MYI‐covered region of 0.54 million km2 (8.5% of total ice area). This is 27 times greater than the areal coverage of 0.02 million km2 (0.3% of total ice area) determined using the conventional block‐model classification, which assigns single‐parameter values to each grid cell and does not account for subgrid cell variability. This emphasizes the importance of accounting for variable snow and ice conditions in all sea ice studies. Furthermore, our results indicate the loss of MYI will also mean the loss of reliable ice‐algal habitat during spring when food is sparse and many organisms depend on ice‐algae.  相似文献   

3.
With near-complete replacement of Arctic multi-year ice (MYI) by first-year ice (FYI) predicted to occur within this century, it remains uncertain how the loss of MYI will impact the abundance and distribution of sea ice associated algae. In this study we compare the chlorophyll a (chl a) concentrations and physical properties of MYI and FYI from the Lincoln Sea during 3 spring seasons (2010-2012). Cores were analysed for texture, salinity, and chl a. We identified annual growth layers for 7 of 11 MYI cores and found no significant differences in chl a concentration between the bottom first-year-ice portions of MYI, upper old-ice portions of MYI, and FYI cores. Overall, the maximum chl a concentrations were observed at the bottom of young FYI. However, there were no significant differences in chl a concentrations between MYI and FYI. This suggests little or no change in algal biomass with a shift from MYI to FYI and that the spatial extent and regional variability of refrozen leads and younger FYI will likely be key factors governing future changes in Arctic sea ice algal biomass. Bottom-integrated chl a concentrations showed negative logistic relationships with snow depth and bulk (snow plus ice) integrated extinction coefficients; indicating a strong influence of snow cover in controlling bottom ice algal biomass. The maximum bottom MYI chl a concentration was observed in a hummock, representing the thickest ice with lowest snow depth of this study. Hence, in this and other studies MYI chl a biomass may be under-estimated due to an under-representation of thick MYI (e.g., hummocks), which typically have a relatively thin snowpack allowing for increased light transmission. Therefore, we suggest the on-going loss of MYI in the Arctic Ocean may have a larger impact on ice–associated production than generally assumed.  相似文献   

4.
何剑峰 《生态学报》2004,24(4):750-754
近年来随着北极地区的开放和全球变化对北极地区生态环境和海冰现存量的影响日益显现,北极浮冰生态学研究得到了广泛的重视和实质性的进展.最新研究结果显示,浮冰本身包含了一个复杂的生物群落,高纬度浮冰生物群落的初级产量远高于原先的估算,浮冰生物群落在北极海洋生态系统中的作用被进一步确认.但由于对浮冰生物群落的研究受后勤保障条件的制约,目前尚有大量科学问题有待今后进一步深入研究,预期我国科学家将在其中做出贡献.  相似文献   

5.
Sea ice, a characteristic feature of polar waters, is home to diverse microbial communities. Sea-ice picoeukaryotes (unicellular eukaryotes with cell size <3 μm) have received little attention compared with diatoms that dominate the spring bloom in Arctic first-year sea ice. Here, we investigated the abundance of all picoeukaryotes, and of 11 groups (chlorophytes, cryptophytes, bolidophytes, haptophytes, Pavlovaphyceae, Phaeocystis spp., pedinellales, stramenopiles groups MAST-1, MAST-2 and MAST-6 and Syndiniales Group II) at 13 first-year sea-ice stations localized in Barrow Strait and in the vicinity of Cornwallis Island, Canadian Arctic Archipelago. We applied Catalyzed Reporter Deposition–Fluorescence In Situ Hybridization to identify selected groups at a single cell level. Pavlovaphyceae and stramenopiles from groups MAST-2 and MAST-6 were for the first time reported from sea ice. Total numbers of picoeukaryotes were significantly higher in the vicinity of Cornwallis Island than in Barrow Strait. Similar trend was observed for all the groups except for haptophytes. Chlorophytes and cryptophytes were the dominant plastidic, and MAST-2 most numerous aplastidic of all the groups investigated. Numbers of total picoeukaryotes, chlorophytes and MAST-2 stramenopiles were positively correlated with the thickness of snow cover. All studied algal and MAST groups fed on bacteria. Presence of picoeukaryotes from various trophic groups (mixotrophs, phagotrophic and parasitic heterotrophs) indicates the diverse ecological roles picoeukaryotes have in sea ice. Yet, >50% of total sea-ice picoeukaryote cells remained unidentified, highlighting the need for further study of functional and phylogenetic sea-ice diversity, to elucidate the risks posed by ongoing Arctic changes.  相似文献   

6.
7.
Organic matter produced by the sea ice microbial community (SIMCo) is an important link between sea ice dynamics and secondary production in near‐shore food webs of Antarctica. Sea ice conditions in McMurdo Sound were quantified from time series of MODIS satellite images for Sept. 1 through Feb. 28 of 2007–2015. A predictable sea ice persistence gradient along the length of the Sound and evidence for a distinct change in sea ice dynamics in 2011 were observed. We used stable isotope analysis (δ13C and δ15N) of SIMCo, suspended particulate organic matter (SPOM) and shallow water (10–20 m) macroinvertebrates to reveal patterns in trophic structure of, and incorporation of organic matter from SIMCo into, benthic communities at eight sites distributed along the sea ice persistence gradient. Mass‐balance analysis revealed distinct trophic architecture among communities and large fluxes of SIMCo into the near‐shore food web, with the estimates ranging from 2 to 84% of organic matter derived from SIMCo for individual species. Analysis of patterns in density, and biomass of macroinvertebrate communities among sites allowed us to model net incorporation of organic matter from SIMCo, in terms of biomass per unit area (g/m2), into benthic communities. Here, organic matter derived from SIMCo supported 39 to 71 per cent of total biomass. Furthermore, for six species, we observed declines in contribution of SIMCo between years with persistent sea ice (2008–2009) and years with extensive sea ice breakout (2012–2015). Our data demonstrate the vital role of SIMCo in ecosystem function in Antarctica and strong linkages between sea ice dynamics and near‐shore secondary productivity. These results have important implications for our understanding of how benthic communities will respond to changes in sea ice dynamics associated with climate change and highlight the important role of shallow water macroinvertebrate communities as sentinels of change for the Antarctic marine ecosystem.  相似文献   

8.
Ringed seal (Pusa hispida) breeding distribution has been extensively studied across near-shore habitats, but has received limited attention at a seascape scale due to the difficulty in accessing offshore sea ice environments. Employing highly visible predation attempts by polar bears (Ursus maritimus) on ringed seals in subnivean lairs observed by helicopter, the spatial relationship between predatory behaviour and ringed seal breeding habitat was examined. Resource selection functions were used to determine the relative probability of predation attempts on ringed seals in lairs as a function of habitat during a period of low ringed seal natality (2004–2006). Ringed seal pup kill locations were compared between years of low (2003–2006) and high (2007–2011) natality to assess the effect of reproductive output on habitat use. During years of low natality, polar bear hunting attempts were more likely in near-shore fast ice, and pup kills were observed predominately in fast ice (fast = 65 %, pack = 29 %, P = 0.002) at a median distance of 36 km from shore. In years of high natality, pup kills were observed farther from shore (median = 46 km, P = 0.03), and there was no difference in the proportion of observations in fast ice and pack ice (fast = 43 %, pack = 52 %, P = 0.29). These results suggest that the facultative use of adjacent offshore pack ice by breeding ringed seals may be influenced by natality. This study illustrates how documenting the behaviour of a predator can facilitate insight into the distribution of a cryptic prey.  相似文献   

9.
Sea ice loss may have dramatic consequences for population connectivity, extinction–colonization dynamics, and even the persistence of Arctic species subject to climate change. This is of particular concern in face of additional anthropogenic stressors, such as overexploitation. In this study, we assess the population‐genetic implications of diminishing sea ice cover in the endemic, high Arctic Svalbard reindeer (Rangifer tarandus platyrhynchus) by analyzing the interactive effects of landscape barriers and reintroductions (following harvest‐induced extirpations) on their metapopulation genetic structure. We genotyped 411 wild reindeer from 25 sampling sites throughout the entire subspecies' range at 19 microsatellite loci. Bayesian clustering analysis showed a genetic structure composed of eight populations, of which two were admixed. Overall population genetic differentiation was high (mean FST = 0.21). Genetic diversity was low (allelic richness [AR] = 2.07–2.58; observed heterozygosity = 0.23–0.43) and declined toward the outer distribution range, where populations showed significant levels of inbreeding. Coalescent estimates of effective population sizes and migration rates revealed strong evolutionary source–sink dynamics with the central population as the main source. The population genetic structure was best explained by a landscape genetics model combining strong isolation by glaciers and open water, and high connectivity by dispersal across winter sea ice. However, the observed patterns of natural isolation were strongly modified by the signature of past harvest‐induced extirpations, subsequent reintroductions, and recent lack of sea ice. These results suggest that past and current anthropogenic drivers of metapopulation dynamics may have interactive effects on large‐scale ecological and evolutionary processes. Continued loss of sea ice as a dispersal corridor within and between island systems is expected to increase the genetic isolation of populations, and thus threaten the evolutionary potential and persistence of Arctic wildlife.  相似文献   

10.
The net carbon uptake rate and net production rate of mycosporine‐like amino acids (MAAs) were measured in phytoplankton from 2 different melt ponds (MPs; closed and open type pond) in the western Arctic Ocean using a 13C stable isotope tracer technique. The Research Vessel Araon visited ice‐covered western‐central basins situated at 82°N and 173°E in the summer of 2012, when Arctic sea ice declined to a record minimum. The average net carbon uptake rate of the phytoplankton in polycarbonate (PC) bottles in the closed MP was 3.24 mg C · m?3 · h?1 (SD = ±1.12 mg C · m?3 · h?1), while that in the open MP was 1.3 mg C · m?3 · h?1 (SD = ±0.05 mg C · m?3 · h?1). The net production rate of total MAAs in incubated PC bottles was highest (1.44 (SD = ±0.24) ng C · L?1 · h?1) in the open MP and lowest (0.05 (SD = ±0.003) ng C · L?1 · h?1) in the closed MP. The net production rate of shinorine and palythine in incubated PC bottles at the open MP presented significantly high values 0.76 (SD = ±0.12) ng C · L?1 · h?1and 0.53 (SD = ±0.06) ng C · L?1 · h?1. Our results showed that high net production rate of MAAs in the open MP was enhanced by a combination of osmotic and UVR stress and that in situ net production rates of individual MAA can be determined using 13C tracer in MPs in Arctic sea ice.  相似文献   

11.
Global climate warming has caused major reductions in sea ice in the Arctic, posing a serious threat to ice-associated marine mammals. Herein, novel data on birth mass and pup growth rates over a 15-year period (1993–2007; 10 years with growth data) are reported for bearded seals, as well as initial behavioral responses by this species to major, local declines in sea-ice in Svalbard, Norway. In total, 205 pups were captured; 64 of which were recaptured, some repeatedly, producing 85 growth intervals for nursing pups. Average birth mass of pups was 37.1 ± 3.8 (SD) kg (range 33–47 kg, n = 25); birth mass before vs. after the sea ice collapse (2006 onward) were not found to differ. Pups grew at a rate of 3.0 ± 0.7 kg/day (1.8–4.8 kg/day, n = 64) during the nursing period. LME models suggest that ice concentration did not affect the growth rate of pups. Most females shifted from traditional first-year ice floes to glacier-ice pieces for birthing and nursing their young, following the regional sea ice collapse. However, retraction of tidal glaciers will likely eliminate this replacement birthing and nursing habitat for bearded seals in Svalbard in the coming decades.  相似文献   

12.
Denitrification activity and oxygen dynamics in Arctic sea ice   总被引:1,自引:0,他引:1  
Denitrification and oxygen dynamics were investigated in the sea ice of Franklin Bay (70°N), Canada. These investigations were complemented with measurements of denitrification rates in sea ice from different parts of the Arctic (69°N–85°N). Potential for bacterial denitrification activity (5–194 μmol N m−2 day−1) and anammox activity (3–5 μmol N m−2 day−1) in melt water from both first-year and multi-year sea ice was found. These values correspond to 27 and 7%, respectively, of the benthic denitrification and anammox activities in Arctic sediments. Although we report only potential denitrification and anammox rates, we present several indications that active denitrification in sea ice may occur in Franklin Bay (and elsewhere): (1) despite sea ice-algal primary production in the lower sea ice layers, heterotrophic activity resulted in net oxygen consumption in the sea ice of 1–3 μmol l−1 sea ice per day at in situ light conditions, suggesting that O2 depletion may occur prior to the spring bloom. (2) The ample organic carbon (DOC) and NO3 present in sea ice may support an active denitrification population. (3) Measurements of O2 conditions in melted sea ice cores showed very low bulk concentrations, and in some cases anoxic conditions prevailed. (4) Laboratory studies using planar optodes for measuring the high-resolution two-dimensional O2 distributions in sea ice confirmed the very dynamic and heterogeneous O2 distribution in sea ice, displaying a mosaic of microsites of high and low O2 concentrations. Brine enclosures and channels were strongly O2 depleted in actively melting sea ice, and anoxic conditions in parts of the brine system would favour anaerobic processes.  相似文献   

13.
A large portion of the World’s terrestrial organic carbon is stored in Arctic permafrost soils. However, due to permafrost warming and increased in situ microbial mineralisation of released carbon, greenhouse gas releases from Arctic soils are increasing, including methane (CH4(g)). To identify environmental controls on such releases, we characterised soil geochemistry and microbial community conditions in 13 near-surface Arctic soils collected across Kongsfjorden, Svalbard. Statistically significant correlations were found between proxies for carbonate mineral content (i.e. Ca and Mg) and soil pH (Spearman rho = 0.87, p < 0.001). In turn, pH significantly inversely correlated with bacterial and Type I methanotroph gene abundances across the soils (r = ?0.71, p = 0.01 and r = ?0.74, p = 0.006, respectively), which also co-varied with soil phosphorous (P) level (r = 0.79, p = 0.01 and r = 0.63, p = 0.02, respectively). These results suggest that soil P supply, which is controlled by pH and other factors, significantly influences in situ microbial abundances in these Arctic soils. Overall, we conclude microbial responses to increasing ‘old carbon’ releases in this Arctic region are constrained by nutrient-deficiency in surface soils, with consequential impacts on the flux and composition of carbon gasses released to the atmosphere.  相似文献   

14.
Arctic sea ice provides microhabitats for biota that inhabit the liquid‐filled network of brine channels and the ice–water interface. We used meta‐analysis of 23 published and unpublished datasets comprising 721 ice cores to synthesize the variability in composition and abundance of sea ice meiofauna at spatial scales ranging from within a single ice core to pan‐Arctic and seasonal scales. Two‐thirds of meiofauna individuals occurred in the bottom 10 cm of the ice. Locally, replicate cores taken within meters of each other were broadly similar in meiofauna composition and abundance, while those a few km apart varied more; 75% of variation was explained by station. At the regional scale (Bering Sea first‐year ice), meiofauna abundance varied over two orders of magnitude. At the pan‐Arctic scale, the same phyla were found across the region, with taxa that have resting stages or tolerance to extreme conditions (e.g., nematodes and rotifers) dominating abundances. Meroplankton, however, was restricted to nearshore locations and landfast sea ice. Light availability, ice thickness, and distance from land were significant predictor variables for community composition on different scales. On a seasonal scale, abundances varied broadly for all taxa and in relation to the annual ice algal bloom cycle in both landfast and pack ice. Documentation of ice biota composition, abundance, and natural variability is critical for evaluating responses to decline in Arctic sea ice. Consistent methodology and protocols must be established for comparability of meiofauna monitoring across the Arctic. We recommend to (1) increase taxonomic resolution of sea ice meiofauna, (2) focus sampling on times of peak abundance when seasonal sampling is impossible, (3) include the bottom 30 cm of ice cores rather than only bottom 10 cm, (4) preserve specimens for molecular analysis to improve taxonomic resolution, and (5) formulate a trait‐based framework that relates to ecosystem functioning.  相似文献   

15.
Global climate change is having profound impacts on polar ice with changes in the duration and extent of both land‐fast ice and drift ice, which is part of the polar ice pack. Sea ice is a distinct habitat and the morphologically identifiable sympagic community living within sea ice can be readily distinguished from pelagic species. Sympagic metazoa and diatoms have been studied extensively since they can be identified using microscopy techniques. However, non‐diatom eukaryotic cells living in ice have received much less attention despite taxa such as the dinoflagellate Polarella and the cercozoan Cryothecomonas being isolated from sea ice. Other small flagellates have also been reported, suggesting complex microbial food webs. Since smaller flagellates are fragile, often poorly preserved, and are difficult for non‐experts to identify, we applied high throughput tag sequencing of the V4 region of the 18S rRNA gene to investigate the eukaryotic microbiome within the ice. The sea ice communities were diverse (190 taxa) and included many heterotrophic and mixotrophic species. Dinoflagellates (43 taxa), diatoms (29 taxa) and cercozoans (12 taxa) accounted for ~80% of the sequences. The sympagic communities living within drift ice and land‐fast ice harbored taxonomically distinct communities and we highlight specific taxa of dinoflagellates and diatoms that may be indicators of land‐fast and drift ice.  相似文献   

16.
In a fast-changing world, polar ecosystems are threatened by climate variability. Understanding the roles of fine-scale processes, and linear and nonlinear effects of climate factors on the demography of polar species is crucial for anticipating the future state of these fragile ecosystems. While the effects of sea ice on polar marine top predators are increasingly being studied, little is known about the impacts of landfast ice (LFI) on this species community. Based on a unique 39-year time series of satellite imagery and in situ meteorological conditions and on the world''s longest dataset of emperor penguin (Aptenodytes forsteri) breeding parameters, we studied the effects of fine-scale variability of LFI and weather conditions on this species'' reproductive success. We found that longer distances to the LFI edge (i.e. foraging areas) negatively affected the overall breeding success but also the fledging success. Climate window analyses suggested that chick mortality was particularly sensitive to LFI variability between August and November. Snowfall in May also affected hatching success. Given the sensitivity of LFI to storms and changes in wind direction, important future repercussions on the breeding habitat of emperor penguins are to be expected in the context of climate change.  相似文献   

17.
We studied the depth distribution and production of kelp along the Greenland coast spanning Arctic to sub‐Arctic conditions from 78 ºN to 64 ºN. This covers a wide range of sea ice conditions and water temperatures, with those presently realized in the south likely to move northwards in a warmer future. Kelp forests occurred along the entire latitudinal range, and their depth extension and production increased southwards presumably in response to longer annual ice‐free periods and higher water temperature. The depth limit of 10% kelp cover was 9–14 m at the northernmost sites (77–78 ºN) with only 94–133 ice‐free days per year, but extended to depths of 21–33 m further south (73 ºN–64 ºN) where >160 days per year were ice‐free, and annual production of Saccharina longicruris and S. latissima, measured as the size of the annual blade, ranged up to sevenfold among sites. The duration of the open‐water period, which integrates light and temperature conditions on an annual basis, was the best predictor (relative to summer water temperature) of kelp production along the latitude gradient, explaining up to 92% of the variation in depth extension and 80% of the variation in kelp production. In a decadal time series from a high Arctic site (74 ºN), inter‐annual variation in sea ice cover also explained a major part (up to 47%) of the variation in kelp production. Both spatial and temporal data sets thereby support the prediction that northern kelps will play a larger role in the coastal marine ecosystem in a warmer future as the length of the open‐water period increases. As kelps increase carbon‐flow and habitat diversity, an expansion of kelp forests may exert cascading effects on the coastal Arctic ecosystem.  相似文献   

18.
The structure of bacterial communities in first‐year spring and summer sea ice differs from that in source seawaters, suggesting selection during ice formation in autumn or taxon‐specific mortality in the ice during winter. We tested these hypotheses by weekly sampling (January–March 2004) of first‐year winter sea ice (Franklin Bay, Western Arctic) that experienced temperatures from ?9°C to ?26°C, generating community fingerprints and clone libraries for Bacteria and Archaea. Despite severe conditions and significant decreases in microbial abundance, no significant changes in richness or community structure were detected in the ice. Communities of Bacteria and Archaea in the ice, as in under‐ice seawater, were dominated by SAR11 clade Alphaproteobacteria and Marine Group I Crenarchaeota, neither of which is known from later season sea ice. The bacterial ice library contained clones of Gammaproteobacteria from oligotrophic seawater clades (e.g. OM60, OM182) but no clones from gammaproteobacterial genera commonly detected in later season sea ice by similar methods (e.g. Colwellia, Psychrobacter). The only common sea ice bacterial genus detected in winter ice was Polaribacter. Overall, selection during ice formation and mortality during winter appear to play minor roles in the process of microbial succession that leads to distinctive spring and summer sea ice communities.  相似文献   

19.
The Arctic climate is changing at an unprecedented rate. What consequences this may have on the Arctic marine ecosystem depends to a large degree on how its species will respond both directly to elevated temperatures and more indirectly through ecological interactions. But despite an alarming recent warming of the Arctic with accompanying sea ice loss, reports evaluating ecological impacts of climate change in the Arctic remain sparse. Here, based upon a large-scale field study, we present basic new knowledge regarding the life history traits for one of the most important species in the entire Arctic, the polar cod (Boreogadus saida). Furthermore, by comparing regions of contrasting climatic influence (domains), we present evidence as to how its growth and reproductive success is impaired in the warmer of the two domains. As the future Arctic is predicted to resemble today''s Atlantic domains, we forecast changes in growth and life history characteristics of polar cod that will lead to alteration of its role as an Arctic keystone species. This will in turn affect community dynamics and energy transfer in the entire Arctic food chain.  相似文献   

20.
Pacific walruses (Odobenus rosmarus divergens) depend on Arctic sea ice as a resting and foraging platform; however, recent years have seen unprecedented seasonal reductions in ice extent. Previous researchers proposed that during unfavorable ice conditions, walruses might prey on other pinnipeds. To examine this hypothesis, we analyzed carbon and nitrogen stable isotope ratios of muscle from walruses (n = 155) sampled from the Bering and Chukchi seas during 2001–2010. We used a Bayesian stable isotope mixing model to examine the proportional contribution of higher trophic level prey (HTLP) (e.g., seals, seabirds) to walrus diets and extrapolated a tissue-specific turnover rate to compare diet of individuals over time. Mode HTLP across years was 19 % ± 8. Results indicate a significant decrease (P < 0.05) in the reliance on HTLP during 2008–2009 (mode HTLP 13 %), one of two sampling periods that experienced great seasonal loss of pan-Arctic sea ice (the other being 2007–2008 with mode HTLP of 23 %). We also reveal intra-annual fluctuations in the contribution of HTLP to the diet of a walrus sampled in 2011 with seal remains in its stomach through high-resolution sectioning along a whisker length. Our findings suggest that walruses forage opportunistically as a result of multiple environmental factors and that sea ice extent alone does not drive consumption of HTLP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号