首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondria are the most important sensor for apoptosis. Extracellular adenosine is well reported to induce apoptosis of tumor cells. Here we found that extracellular adenosine suppresses the cell growth by induction of apoptosis in BEL-7404 liver cancer cells, and identified a novel mechanism that extracellular adenosine triggers apoptosis by increasing Reactive Oxygen Species (ROS) production and mitochondrial membrane dysfunction in the cells. We observed that adenosine increases ROS production, activates c-Caspase-8 and -9 and Caspase effectors, c-Caspase-3 and c-PARP, induces accumulation of apoptosis regulator Bak, decreases Bcl-xL and Mcl-1, and causes the mitochondrial membrane dysfunction and the release of DIABLO, Cytochrome C, and AIF from mitochondria to cytoplasm in the cells; ROS inhibitor, NAC significantly reduces adenosine-induced ROS production; it also shows the same degree of blocking adenosine-induced loss of mitochondrial membrane potential (MMP) and apoptosis. Our study first observed that adenosine increases ROS production in tumor cells and identified the positive feedback loop for ROS-mediated mitochondrial membrane dysfunction which amplifies the death signals in the cells. Our findings indicated ROS production and mitochondrial dysfunction play a key role in adenosine-induced apoptosis of 7404 cells.  相似文献   

2.
Diabetic retinopathy (DR) and age‐related macular degeneration (AMD) are two important leading causes of acquired blindness in developed countries. As accumulation of advanced glycation end products (AGEs) in retinal pigment epithelial (RPE) cells plays an important role in both DR and AMD, and the methylglyoxal (MGO) within the AGEs exerts irreversible effects on protein structure and function, it is crucial to understand the underlying mechanism of MGO‐induced RPE cell death. Using ARPE‐19 as the cell model, this study revealed that MGO induces RPE cell death through a caspase‐independent manner, which relying on reactive oxygen species (ROS) formation, mitochondrial membrane potential (MMP) loss, intracellular calcium elevation and endoplasmic reticulum (ER) stress response. Suppression of ROS generation can reverse the MGO‐induced ROS production, MMP loss, intracellular calcium increase and cell death. Moreover, store‐operated calcium channel inhibitors MRS1845 and YM‐58483, but not the inositol 1,4,5‐trisphosphate (IP3) receptor inhibitor xestospongin C, can block MGO‐induced ROS production, MMP loss and sustained intracellular calcium increase in ARPE‐19 cells. Lastly, inhibition of ER stress by salubrinal and 4‐PBA can reduce the MGO‐induced intracellular events and cell death. Therefore, our data indicate that MGO can decrease RPE cell viability, resulting from the ER stress‐dependent intracellular ROS production, MMP loss and increased intracellular calcium increase. As MGO is one of the components of drusen in AMD and is the AGEs adduct in DR, this study could provide a valuable insight into the molecular pathogenesis and therapeutic intervention of AMD and DR.  相似文献   

3.
Paraquat is a highly toxic quaternary nitrogen herbicide capable of increasing superoxide anion production. The aim of this research was to evaluate various behavioral changes and study cortical, hippocampal, and striatal mitochondrial function in an experimental model of paraquat toxicity in rats. Paraquat (10 mg/kg ip) was administered weekly for a month. Anxiety-like behavior was evidenced in the paraquat-treated group as shown by a diminished time spent in, and fewer entries into, the open arms of an elevated-plus maze. Also, paraquat treatment induced a deficit in the sense of smell. In biochemical assays, NADH-cytochrome c reductase activity was significantly inhibited by 25 and 34% in cortical and striatal submitochondrial membranes, respectively. Striatal cytochrome oxidase activity was decreased by 24% after paraquat treatment. Also, cortical and striatal mitochondria showed 55 and 74% increased State 4 respiratory rates, respectively. Paraquat treatment decreased striatal State 3 oxygen consumption by 33%. Respiratory controls were markedly decreased in cortical and striatal mitochondria, indicating mitochondrial dysfunction after paraquat treatment, together with mitochondrial depolarization and increased hydrogen peroxide production rates. We demonstrate that paraquat induced alterations in nonmotor symptoms and cortical and striatal mitochondrial dysfunction.  相似文献   

4.
Outside the nervous system, members of the mitochondrial uncoupling protein (UCP) family have been proposed to contribute to control of body temperature and energy metabolism, and regulation of mitochondrial production of reactive oxygen species (ROS). However, the function of brain mitochondrial carrier protein 1 (BMCP1), which is highly expressed in brain, remains to be determined. To study BMCP1 expression and function in the nervous system, a high-affinity antibody to BMCP1 was generated and used to analyze tissue expression of BMCP1 protein in mouse. BMCP1 protein was highly expressed in heart and kidney, but not liver or lung. In the nervous system, BMCP1 was present in cortex, basal ganglia, substantia nigra, cerebellum, and spinal cord. Both BMCP1 mRNA and protein expression was almost exclusively neuronal. To study the effect of BMCP1 expression on mitochondrial function, neuronal (GT1-1) cell lines with stable overexpression of BMCP1 were generated. Transfected cells had higher State 4 respiration and lower mitochondrial membrane potential (psi(m)), consistent with greater mitochondrial uncoupling. BMCP1 expression also decreased mitochondrial production of ROS. These data suggest that BMCP1 can modify mitochondrial respiratory efficiency and mitochondrial oxidant production, and raise the possibility that BMCP1 might alter the vulnerability of brain to both acute injury and to neurodegenerative conditions.  相似文献   

5.
Lifelong caloric restriction (CR) reduces the rate of mitochondrial oxidant production and the accumulation of oxidized proteins and prevents some of the age-associated decline in 20S proteasome activity. However, few studies have investigated how rapidly the beneficial effects of CR take place. We investigated whether 2 mo of CR in 6-mo-old rats would be of sufficient duration to elicit these beneficial changes. Mitochondrial oxidant production was significantly diminished in the CR rats compared with the ad libitum-fed animals. Short-term CR also caused a significant decrease in mitochondrial superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities, but there were no differences in cytosolic SOD and GPX activities, whereas mitochondrial and cytosolic catalase (CAT) activity was increased with CR. However, protein carbonyl content was significantly elevated in both the mitochondrial and cytosolic fractions from CR rats. Of the three major 20S proteasome activities (chymotrypsin-like, trypsin-like, and peptidylglutamyl-peptide hydrolase), the peptidylglutamyl-peptide hydrolase activity was significantly elevated in the CR animals, possibly because of the fact that there were more oxidized proteins to be degraded. Although fewer oxidants were produced in the CR animals, it is possible that the ability to scavenge oxidants was transiently suppressed because of the reduction in mitochondrial antioxidant enzyme activities, which may explain the observed increases in carbonyl content.  相似文献   

6.
7.
Matrix metalloproteinases (MMPs) are central to the development and progression of dysfunctional ventricular remodeling after tissue injury. We studied 6 month old heterozygous mice with cardiac-specific transgenic expression of active MMP-2 (MMP-2 Tg). MMP-2 Tg hearts showed no substantial gross alteration of cardiac phenotype compared to age-matched wild-type littermates. However, buffer perfused MMP-2 Tg hearts subjected to 30 min of global ischemia followed by 30 min of reperfusion had a larger infarct size and greater depression in contractile performance compared to wild-type hearts. Importantly, cardioprotection mediated by ischemic preconditioning (IPC) was completely abolished in MMP-2 Tg hearts, as shown by abnormalities in mitochondrial ultrastructure and impaired respiration, increased lipid peroxidation, cell necrosis and persistently reduced recovery of contractile performance during post-ischemic reperfusion. We conclude that MMP-2 functions not only as a proteolytic enzyme but also as a previously unrecognized active negative regulator of mitochondrial function during superimposed oxidative stress.  相似文献   

8.
Exposure of mammalian cells to oxidant stress causes early (iron catalysed) lysosomal rupture followed by apoptosis or necrosis. Enhanced intracellular production of reactive oxygen species (ROS), presumably of mitochondrial origin, is also observed when cells are exposed to nonoxidant pro-apoptotic agonists of cell death. We hypothesized that ROS generation in this latter case might promote the apoptotic cascade and could arise from effects of released lysosomal materials on mitochondria. Indeed, in intact cells (J774 macrophages, HeLa cells and AG1518 fibroblasts) the lysosomotropic detergent O-methyl-serine dodecylamide hydrochloride (MSDH) causes lysosomal rupture, enhanced intracellular ROS production, and apoptosis. Furthermore, in mixtures of rat liver lysosomes and mitochondria, selective rupture of lysosomes by MSDH promotes mitochondrial ROS production and cytochrome c release, whereas MSDH has no direct effect on ROS generation by purifed mitochondria. Intracellular lysosomal rupture is associated with the release of (among other constituents) cathepsins and activation of phospholipase A2 (PLA2). We find that addition of purified cathepsins B or D, or of PLA2, causes substantial increases in ROS generation by purified mitochondria. Furthermore, PLA2 - but not cathepsins B or D - causes rupture of semipurified lysosomes, suggesting an amplification mechanism. Thus, initiation of the apoptotic cascade by nonoxidant agonists may involve early release of lysosomal constituents (such as cathepsins B and D) and activation of PLA2, leading to enhanced mitochondrial oxidant production, further lysosomal rupture and, finally, mitochondrial cytochrome c release. Nonoxidant agonists of apoptosis may, thus, act through oxidant mechanisms.  相似文献   

9.
Acrylamide (ACR), a potent neurotoxin, can be produced during food processing at high temperature. This study examined the redox-dependent apoptotic and inflammatory responses of ACR in an immortalized mouse microglia cell line BV2. The exposure of BV2 cells to ACR reduced cell viability and induced apoptosis in a concentration-dependent manner. ACR impaired cell energy metabolism by decreasing mitochondrial respiration, anaerobic glycolysis, and lowering expression of the complex I, III, and IV subunits. Mitochondrial dysfunction was associated with a decrease of the mitochondrial membrane potential and the Bcl-2/Bax ratio, thus resulting in activation of the mitochondrion-driven apoptotic signaling. This was accompanied by (a) the modulation of redox-sensitive signaling, suppressed Akt activation and increased JNK and p38 activation, and (b) increased expression of NFκB and downstream inducible nitric oxide synthase (iNOS) and nitric oxide generation, thus supporting indirectly a proinflammatory effect of ACR. Nrf2 expression was also increased but not its translocation to the nucleus. Expectedly, the electrophilic attack of ACR on GSH resulted in substantial loss of GSH with a minor GSSG formation. These changes in the cell׳s redox status elicited by ACR resulted in increased H2O2 formation. The changes in mitochondrial functionality and complex subunit expression caused by ACR were reversed by N-acetyl-L-cysteine (NAC). Likewise, NAC restored the cell׳s redox status by increasing GSH levels with concomitant attenuation of H2O2 generation; these effects resulted in decreased apoptotic cell death and inflammatory responses. ACR-mediated mitochondrial dysfunction along with a more oxidized redox status seems to be critical events leading to activation of the intrinsic apoptotic pathway and inflammatory responses.  相似文献   

10.
Evidence suggests that chronic inflammation, mitochondrial dysfunction, and oxidative stress play significant and perhaps synergistic roles in Parkinson's disease (PD), where the primary pathology is significant loss of the dopaminergic neurons in the substantia nigra. The use of anti-inflammatory drugs for PD treatment has been proposed, and inhibition of cyclo-oxygenase-2 (COX-2) or activation of peroxisome proliferator-activated receptor gamma (PPAR-gamma) yields neuroprotection in MPTP-induced PD. Lipopolysaccharide (LPS) induces inflammation-driven dopaminergic neurodegeneration. We tested the hypothesis that celecoxib (Celebrex, COX-2 inhibitor) or pioglitazone (Actos, PPAR-gamma agonist) will reduce the LPS-induced inflammatory response, spare mitochondrial bioenergetics, and improve nigral dopaminergic neuronal survival. Rats were treated with vehicle, celecoxib, or pioglitazone and were intrastriatally injected with LPS. Inflammation, mitochondrial dysfunction, oxidative stress, decreased dopamine, and nigral dopaminergic neuronal loss were observed post-LPS. Celecoxib and pioglitazone provided neuroprotective properties by decreasing inflammation and restoring mitochondrial function. Pioglitazone also attenuated oxidative stress and partially restored striatal dopamine as well as demonstrated dopaminergic neuroprotection and reduced nigral microglial activation. In summary, intrastriatal LPS served as a model for inflammation-induced dopaminergic neurodegeneration, anti-inflammatory drugs provided protective properties, and pioglitazone or celecoxib may have therapeutic potential for the treatment of neuro-inflammation and PD.  相似文献   

11.
Cortical function has been suggested to be highly compromised by repeated heroin self-administration. We have previously shown that street heroin induces apoptosis in neuronal-like PC12 cells. Thus, we analysed the apoptotic pathways involved in street heroin neurotoxicity using primary cultures of rat cortical neurons. Our street heroin sample was shown to be mainly composed by heroin, 6-monoacetylmorphine and morphine. Exposure of cortical neurons to street heroin induced a slight decrease in metabolic viability, without loss of neuronal integrity. Early activation of caspases involved in the mitochondrial apoptotic pathway was observed, culminating in caspase 3 activation, Poly-ADP Ribose Polymerase (PARP) cleavage and DNA fragmentation. Apoptotic morphology was completely prevented by the non-selective caspase inhibitor z-VAD-fmk, indicating an important role for caspases in neurodegeneration induced by street heroin. Ionotropic glutamate receptors, opioid receptors and oxidative stress were not involved in caspase 3 activation. Interestingly, street heroin cytotoxicity was shown to be independent of a functional mitochondrial respiratory chain, as determined using NT-2 rho(0) cells. Nonetheless, in street heroin-treated cortical neurons, cytochrome c was released, accompanied by a decrease in mitochondrial potential and Bcl-2/Bax. Pure heroin hydrochloride similarly decreased metabolic viability but only slightly activated caspase 3. Altogether, our data suggest an important role for mitochondria in mediating street heroin neurotoxic effects.  相似文献   

12.
Lipid peroxidation produces a large number of reactive aldehydes as secondary products. We have previously shown that the reaction of cytochrome c with trans,trans-2,4-decadienal (DDE), an aldehyde generated as a product of lipid peroxidation in cell membranes, results in the formation of adducts. Mass spectrometry analysis indicated that His-33, Lys-39, Lys-72 and Lys-100 in cytochrome c were modified by DDE. In the present work, we investigated the effect of DDE on isolated rat liver mitochondria. DDE (162 μM) treatment increases the rate of mitochondrial oxygen consumption. Extensive mitochondrial swelling upon treatment with DDE (900 nM–162 μM) was observed by light scattering and transmission electron microscopy experiments. DDE-induced loss of inner mitochondrial membrane potentials, monitored by safranin O fluorescence, was also observed. Furthermore, DDE-treated mitochondria showed an increase in lipid peroxidation, as monitored by MDA formation. These results suggest that reactive aldehydes promote mitochondrial dysfunction.  相似文献   

13.
Oxidant stress plays an important role in the etiology of vascular diseases by increasing rates of endothelial cell apoptosis, but few data exist on the mechanisms involved. Using a unique model of oxidative stress based on selenium deficiency (-Se), the effects of altered eicosanoid production on bovine aortic endothelial cells (BAEC) apoptosis was evaluated. Oxidant stress significantly increased the immediate oxygenation product of arachidonic acid metabolized by the 15-lipoxygenase pathway, 15-hydroxyperoxyeicosatetraenoic acid (15-HPETE). Treatment of -Se BAEC with TNFalpha/cyclohexamide (CHX) exhibited elevated levels of apoptosis, which was significantly reduced by the addition of a specific 15-lipoxygenase inhibitor PD146176. Furthermore, the addition of 15-HPETE to PD146176-treated BAEC, partially restored TNF/CHX-induced apoptosis. Increased exposure to 15-HPETE induced apoptosis, as determined by internucleosomal DNA fragmentation, chromatin condensation, caspase-3 activation, and caspase-9 activation, which suggests mitochondrial dysfunction. The expression of Bcl-2 protein also was decreased in -Se BAEC. Addition of a caspase-9 inhibitor (LEHD-fmk) completely blocked 15-HPETE-induced chromatin condensation in -Se BAEC, suggesting that 15-HPETE-induced apoptosis is caspase-9 dependent. Increased apoptosis of BAEC as a result of oxidant stress and subsequent production of 15-HPETE may play a critical role in a variety of inflammatory based diseases.  相似文献   

14.
Cereblon (CRBN) is a multi-functional protein that acts as a sub-strate receptor of the E3 ligase complex and a molecular chaperone. While CRBN is proposed to function in mitochondria, its specific roles are yet to be established. Here, we showed that knockdown of CRBN triggers oxidative stress and calcium overload in mitochondria, leading to disruption of mitochondrial membrane potential. Notably, long-term CRBN depletion using PROteolysis TArgeting Chimera (PROTAC) induced irreversible mitochondrial dysfunction, resulting in cell death. Our collective findings indicate that CRBN is required for mitochondrial homeostasis in cells.  相似文献   

15.
In human atrial trabeculae, we examined the effects of doxorubicin on the isometric force of contraction, mitochondrial respiration, membrane potential and calcium retention capacity. Compared with untreated controls, doxorubicin induced contractile dysfunction and depression of mitochondrial respiration. Mitochondria isolated from doxorubicin-treated human atrial trabeculae displayed reduced transmembrane potential and calcium retention capacity. Cyclosporine A, a mitochondrial membrane transition pore opening blocker, prevented mitochondrial dysfunction and impaired contractile performance induced by doxorubicin. The study suggests that a mitochondrial membrane transition pore opening is involved in the development of doxorubicin cardiotoxicity in human hearts.  相似文献   

16.
Production of nitric oxide (NO) by mitochondrial membranes as methemoglobin formation sensitive to N(G)-methyl-l-arginine inhibition and mitochondrial O(2) consumption in metabolic states 3 and 4 and the respiratory control (state 3/state 4) were measured at early stages of rat thymocyte apoptosis. Programmed cell death was induced by addition of methylprednisolone and etoposide to thymocyte suspensions. Increased NO production by mitochondrial membranes was observed after 30 min of methylprednisolone and etoposide addition and was accompanied by mitochondrial respiratory impairment as an early phenomenon in apoptotic thymocytes. The respiratory control in isolated mitochondria from untreated thymocytes was 4.2 +/- 0.2 and decreased to 3.1 +/- 0.2 and 1.9 +/- 0.3 after 1 h of methylprednisolone and etoposide treatment, respectively. The low mitochondrial respiratory control was accompanied by a marked decrease in GSH and cytochrome c content. Moreover, an inhibitory effect in the amount of apoptosis due to thymocyte pretreatment with N(G)-methyl-l-arginine and N(omega)-nitro-(l)-arginine (l-NNA), indicate that nitric oxide production is closely involved in the signaling of rat thymocyte apoptosis.  相似文献   

17.
Introduction of the constitutively active calcineurin gene into neonatal rat cardiomyocytes by adenovirus resulted in decreased mitochondrial membrane potential (P < 0.05). Infection of H9c2 cells with calcineurin adenovirus resulted in increased superoxide production (P < 0.001). Transgenic mice with cardiac-specific expression of a constitutively active calcineurin cDNA (CalTG mice) exhibit a two- to threefold increase in heart size that progresses to heart failure. We prepared mitochondria enriched for the subsarcolemmal population from the hearts of CalTG mice and transgene negative littermates (control). Intact, well-coupled mitochondria prepared from one to two mouse hearts at a time yielded sufficient material for functional studies. Mitochondrial oxygen consumption was measured with a Clark-type oxygen electrode with substrates for mitochondrial complex II (succinate) and complex IV [tetramethylpentadecane (TMPD)/ascorbate]. CalTG mice exhibited a maximal rate of electron transfer in heart mitochondria that was reduced by approximately 50% (P < 0.002) without a loss of respiratory control. Mitochondrial respiration was unaffected in tropomodulin-overexpressing transgenic mice, another model of cardiomyopathy. Western blotting for mitochondrial electron transfer subunits from mitochondria of CalTG mice revealed a 20-30% reduction in subunit 3 of complex I (ND3) and subunits I and IV of cytochrome oxidase (CO-I, CO-IV) when normalized to total mitochondrial protein or to the adenine nucleotide transporter (ANT) and compared with littermate controls (P < 0.002). Impaired mitochondrial electron transport was associated with high levels of superoxide production in the CalTG mice. Taken together, these data indicate that calcineurin signaling affects mitochondrial energetics and superoxide production. The excessive production of superoxide may contribute to the development of cardiac failure.  相似文献   

18.
Jong CJ  Azuma J  Schaffer S 《Amino acids》2012,42(6):2223-2232
An important function of the β-amino acid, taurine, is the regulation of oxidative stress. However, taurine is neither a classical scavenger nor a regulator of the antioxidative defenses, leaving uncertain the mechanism underlying the antioxidant activity of taurine. In the present study, the taurine antagonist and taurine transport inhibitor, β-alanine, was used to examine the mechanism underlying the antioxidant activity of taurine. Exposure of isolated cardiomyocytes to medium containing β-alanine for a period of 48?h led to a 45% decrease in taurine content and an increase in mitochondrial oxidative stress, as evidenced by enhanced superoxide generation, the inactivation of the oxidant sensitive enzyme, aconitase, and the oxidation of glutathione. Associated with the increase in oxidative stress was a decline in electron transport activity, with the activities of respiratory chain complexes I and III declining 50–65% and oxygen consumption falling 30%. A reduction in respiratory chain activity coupled with an increase in oxidative stress is commonly caused by the development of a bottleneck in electron transport that leads to the diversion of electrons from the respiratory chain to the acceptor oxygen forming in the process superoxide. Because β-alanine exposure significantly reduces the levels of respiratory chain complex subunits, ND5 and ND6, the bottleneck in electron transport appears to be caused by impaired synthesis of key subunits of the electron transport chain complexes. Co-administration of taurine with β-alanine largely prevents the mitochondrial effects of β-alanine, but treatment of the cells with 5?mM taurine in the absence of β-alanine has no effect on the mitochondria, likely because taurine treatment has little effect on cellular taurine levels. Thus, taurine serves as a regulator of mitochondrial protein synthesis, thereby enhancing electron transport chain activity and protecting the mitochondria against excessive superoxide generation.  相似文献   

19.
Evidence for increased mitochondrial superoxide production in Down syndrome   总被引:2,自引:0,他引:2  
Respiring mitochondria represent the major source of superoxide production in most cells, and superoxide anions function as direct precursors of hydrogen peroxide formation within mitochondria. We use a lucigenen-derived chemiluminescence (LDCL) assay to test the hypothesis that intramitochondrial superoxide production is altered in young children with DS. We also measured the levels of two serum markers of lipid peroxidation, lipid peroxides (LOOH), and malondialdehyde as thiobarbituric acid reactive substances (TBARS), to determine if superoxide levels correlate with in vivo measures of lipid peroxidation. A three-group, cross-sectional design was utilized which allowed us to compare young children with DS to children with cognitive impairment (CI) of unknown etiology, and typically developing (Nl) children. Data was analyzed using Pearson's zero-order correlations and multivariate analysis of variance (MANOVA) with Bonferroni correction for multiple comparisons. DS subjects had significantly elevated LDCL signal compared to Nl subjects (p = .03), but did not differ significantly from CI subjects. This study provides new evidence regarding an important source of reactive oxygen species in trisomy 21.The role of the mitochondria in superoxide anion production and the mechanisms underlying its generation in DS deserves further study.  相似文献   

20.
These experiments tested the hypothesis that a relatively short duration of controlled mechanical ventilation (MV) will impair diaphragmatic maximal specific force generation (specific P(o)) and that this force deficit will be exacerbated with increased time on the ventilator. To test this postulate, adult Sprague-Dawley rats were randomly divided into one of six experimental groups: 1) control (n = 12); 2) 12 h of MV (n = 4); 3) 18 h of MV (n = 4); 4) 18 h of anesthesia and spontaneous breathing (n = 4); 5) 24 h of MV (n = 7); and 6) 24 h of anesthesia and spontaneous breathing (n = 4). MV animals were anesthetized, tracheostomized, and ventilated with room air. Animals in the control group were acutely anesthetized but were not exposed to MV. Animals in two spontaneous breathing groups were anesthetized and breathed spontaneously for either 18 or 24 h. No differences (P > 0.05) existed in diaphragmatic specific P(o) between control and the two spontaneous breathing groups. In contrast, compared with control, all durations of MV resulted in a reduction (P < 0.05) in diaphragmatic specific tension at stimulation frequencies ranging from 15 to 160 Hz. Furthermore, the MV-induced decrease in diaphragmatic specific P(o) was time dependent, with specific P(o) being approximately 18 and approximately 46% lower (P < 0.05) in animals mechanically ventilated for 12 and 24 h, respectively. These data support the hypothesis that relatively short-term MV impairs diaphragmatic contractile function and that the magnitude of MV-induced force deficit increases with time on the ventilator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号