首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The signaling mechanisms leading to phorbol ester myristate (PMA)-induced differentiation of HL-60 cells to the macrophagelike phenotype were investigated by using different protein kinase inhibitors. The protein kinase C inhibitor Ro 31-8220 specifically blocks PMA-induced differentiation, activation of the p42/44ERK- and p38RK-MAP kinase cascades and Hsp27-phosphorylation in HL-60 cells. Because Ro 31-8220 does not inhibit activation of the MAP kinase cascades by protein kinase C (PKC)-independent signals such as epidermal growth factor (EGF), heat shock, or anisomycin in these cells, only PMA-induced activation of the MAP kinases can be downstream of PKC. The MEK1 inhibitor PD 098059 and the p38RK inhibitor SB 203580 also were used to analyze whether the PMA-induced PKC-dependent activation of MAP kinases is involved in the differentiation process. Under certain conditions, PD 098059 can completely block the PMA-induced activation of the p42ERK as monitored by imunoprecipitation kinase assay by using the substrate myelin basic protein. SB 203580 specifically inhibits activation of p38RK as judged by MAPKAP kinase 2 activity against the substrate Hsp27 and also blocks Hsp27 phosphorylation in the cells. In contrast, neither PD 098059 nor SB 203580 nor both inhibitors together prevent PMA-induced differentiation of the HL-60 cells to the macrophagelike phenotype. The results suggest the existence of a diversification of PMA-induced signaling in HL-60 cells downstream of PKC, leading to activation of MAP kinases that are not essential for differentiation and to phosphorylation of other, so far unidentified, targets responsible for differentiation. J. Cell. Physiol. 173:310–318, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

3.
The role of IL-1R-associated kinase (IRAK)1 and its interaction with protein kinase C (PKC)δ in monocytes to regulate IL-1β production has not been reported so far. The present study thus investigates such mechanisms in the THP1 cell line and human monocytes. PMA treatment to THP1 cells induced CD11b, TLR2, TLR4, CD36, IRAK1, IRAK3, and IRAK4 expression, IRAK1 kinase activity, PKCδ and JNK phosphorylation, AP-1 and NF-κB activation, and secretory IL-1β production. Moreover, PMA-induced IL-1β production was significantly reduced in the presence of TLR2, TLR4, and CD11b Abs. Rottlerin, a PKCδ-specific inhibitor, significantly reduced PMA-induced IL-1β production as well as CD11b, TLR2 expression, and IRAK1-JNK activation. In PKCδ wild-type overexpressing THP1 cells, IRAK1 kinase activity and IL-1β production were significantly augmented, whereas recombinant inactive PKCδ and PKCδ small interfering RNA significantly inhibited basal and PMA-induced IRAK1 activation and IL-1β production. Endogenous PKCδ-IRAK1 interaction was observed in quiescent cells, and this interaction was regulated by PMA. IRAK1/4 inhibitors, their small interfering RNAs, and JNK inhibitor also attenuated PMA-induced IL-1β production. NF-κB activation inhibitor and SN50 peptide inhibitor, however, failed to affect PMA-induced IL-1β production. A similar role of IRAK1 in IL-1β production and its regulation by PKCδ was evident in the primary human monocytes, thus signifying the importance of our finding. To our knowledge, the results obtained demonstrate for the first time that IRAK1 and PKCδ functionally interact to regulate IL-1β production in monocytic cells. A novel mechanism of IL-1β production that involves TLR2, CD11b, and the PKCδ/IRAK1/JNK/AP-1 axis is thus being proposed.  相似文献   

4.
Receptor activator of nuclear factor-kappaB (RANK) plays a central role in the regulation of osteoclast differentiation and activation, but the mechanisms underlying its expression remain to be elucidated. In the present study we showed that expression of RANK was strongly induced by phorbol-12-myristate-13-acetate (PMA) during monocyte differentiation of U937 cells, and was enhanced by concomitant treatment with vitamin D3. Induction was dramatically inhibited by protein kinase C (PKC) inhibitors such as rottlerin and G?6983, but not by G?6976. Interestingly, rottlerin, a selective inhibitor of PKCdelta, reduced PMA-induced RANK expression while having no effect on CD11b expression. However overexpression of wild type PKCdelta, or a kinase-inactive mutant, did not affect PMA-induction of RANK, suggesting that rottlerin inhibits PMA-induced expression of RANK via a PKCdelta-independent mechanism. Rottlerin also inhibited PMA-induced phosphorylation of p38 mitogen-activated protein kinase (p38MAPK), and the p38 MAPK inhibitor SB203580 inhibited induction of RANK. Rottlerin and SB203580 also substantially reduced RANK mRNA expression in mouse BMM cells stimulated with macrophage colony stimulating factor (M-CSF). Together, these results demonstrate that expression of RANK is dependent upon a rottlerin-sensitive and p38MAPK-dependent pathway during monocyte differentiation.  相似文献   

5.
6.
The protein-tyrosine phosphatase CD45 is expressed on all monocytic cells, but its function in these cells is not well defined. Here we report that CD45 negatively regulates monocyte differentiation by inhibiting phorbol 12-myristate 13-acetate (PMA)-dependent activation of protein kinase C (PKC) delta. We found that antisense reduction of CD45 in U937 monocytic cells (CD45as cells) increased by 100% the ability of PMA to enlarge cell size, increase cell cytoplasmic process width and length, and induce surface expression of CD11b. In addition, reduction in CD45 expression caused the duration of peak PMA-induced MEK and extracellular signal-regulated kinase (ERK) 1/2 activity to increase from 5 min to 30 min while leading to a 4-fold increase in PMA-dependent PKCdelta activation. Importantly, PMA-dependent tyrosine phosphorylation of PKCdelta was also increased 4-fold in CD45as cells. Finally, inhibitors of MEK (PD98059) and PKCdelta (rottlerin) completely blocked PMA-induced monocytic cell differentiation. Taken together, these data indicate that CD45 inhibits PMA-dependent PKCdelta activation by impeding PMA-dependent PKCdelta tyrosine phosphorylation. Furthermore, this blunting of PKCdelta activation leads to an inhibition of PKCdelta-dependent activation of ERK1/2 and ERK1/2-dependent monocyte differentiation. These findings suggest that CD45 is a critical regulator of monocytic cell development.  相似文献   

7.
8.
9.
Tumor necrosis factor-alpha (TNFalpha) critically regulates several cellular functions during monocyte/macrophage differentiation. We therefore investigated during the phorbol ester (phorbol 12-myristate 13-acetate (PMA))-induced monocyte/macrophage differentiation of the human HL-60 leukemia cells, if TNFalpha contributed to plasminogen activator inhibitor type-1 (PAI-1) synthesis that is initiated by a protein kinase Cbeta-extracellular signal-regulated kinase 2-dependent pathway (Lopez, S., Peiretti, F., Morange, P., Laouar, A., Fossat, C., Bonardo, B., Huberman, E., Juhan-Vague, I., and Nalbone, G. (1999) Thromb. Haemostasis 81, 415-422). Following PMA treatment, the level of TNFalpha mRNA strongly increased and appeared earlier than PAI-1 mRNA. An anti-TNFalpha antibody significantly inhibited the PMA-induced PAI-1 mRNA and protein levels. The recombinant human TNFalpha, which is inactive on native HL-60 cells in terms of PAI-1 synthesis, optimally potentiates it once HL-60 cells are committed into the differentiation process. The use of 1) the HL-525 cell line, a clone issued from HL-60 cells rendered resistant to PMA-induced differentiation, and 2) the transforming growth factorbeta-1/vitamin D3 differentiative mixture confirmed the relationships between the induction of differentiation and the potency of TNFalpha to up-regulate PAI-1 synthesis. In conclusion, we showed that during the induction of monocyte/macrophage differentiation, TNFalpha and PAI-1 gene expressions are activated and that synthesized TNFalpha up-regulates and prolongs, in an autocrine manner, the synthesis of PAI-1.  相似文献   

10.
11.
To study the signaling pathway involved in the regulation of galectin-3 expression we used phorbol ester to stimulate macrophage differentiation of THP-1 cells. Treatment with phorbol 12-myristate 13-acetate (PMA) increased significantly the level of expression of galectin-3 in THP-1 cells. PMA-induced galectin-3 overexpression was blocked by: protein kinase C inhibitors staurosporine, calphostin C, and apigenin; tyrosine-specific protein kinase inhibitors genistein and tyrphostin A25; PD 98059, a selective inhibitor of mitogen-activated protein kinase (MAPK) kinase 1 (MEK1 or MKK1); and SB 203580, a specific inhibitor of p38 MAPK. Galectin-3 up-regulation was not affected by exposure to two inhibitors of cAMP-dependent protein kinase (PKA), H-89 and KT5720. Co-transfection of pPG3.5, a plasmid vector containing the rabbit galectin-3 promoter and the constructs pMCL-MKK1 N3 or pRC-RSV-MKK3Glu that constitutively express MKK1 and MKK3, raised the activity of galectin-3 promoter by 185% and 110%, respectively. Co-transfection with a Ha-Ras expression vector stimulated galectin-3 promoter activity approximately 10-fold. Expression of c-Jun or v-Jun raised the level of galectin-3 promoter activity more the three- and fourfold, respectively. Co-transfection of c-Jun and pPG3.5 5'-upstream deletion mutants resulted in a reduction of the galectin-3 promoter activity by 50% to 80%. Transfection of c-Jun, v-Jun or Ha-Ras increased significantly galectin-3 protein in THP-1 cells. These findings indicated that Ras/MEKK1/MKK1-dependent/AP-1 signal transduction pathway plays an important role in the expression of galectin-3 in PMA-stimulated macrophages. We further investigated the effect of modified lipoproteins on galectin-3 expression in macrophages. Murine resident peritoneal macrophages loaded with acetylated low-density lipoprotein (AcLDL) or oxidized LDL (OxLDL) showed increased galectin-3 protein and mRNA. These results showed that treatment of macrophages with PMA or modified lipoproteins results in galectin-3 overexpression. These findings may explain the enhanced expression of galectin-3 in atherosclerotic foam cells and suggest that Ras/MAPK signal transduction pathway is involved in controlling this gene.  相似文献   

12.
Das D  Pintucci G  Stern A 《FEBS letters》2000,472(1):50-52
Treatment of HL60 cells with phorbol 12-myristate 13-acetate (PMA) results in growth arrest and differentiation towards the macrophage lineage. PMA-induced changes are easily monitored by morphological changes while cells in suspension start adhering onto substrate. PMA induces rapid activation of the extracellular signal-regulated kinases (ERKs). Activation of the ERK pathway is essential to PMA-induced differentiation of HL60 cells. PMA also induces the expression of the cyclin-dependent kinase inhibitors p21(WAF) and p27(kip1), which is modulated by the use of an inhibitor of the ERK cascade. This implies that a link exists between ERK activation and p21(WAF) and p27(kip1) induction in the process of terminal differentiation.  相似文献   

13.
BackgroundIsomeric ursolic acid (UA) and oleanolic acid (OA) compounds have recently garnered great attention due to their biological effects. Previously, it had been shown that UA and OA can exert important pharmacological action via the protein kinase C (PKC) and nuclear factor-κB (NF-κB) signaling, and that they can induce the expression of UDP-glucuronosyltransferase 1A1 (UGT1A1) in HepG2 cells. This study aims to investigate the role of PKC/NF-κB signaling in regulating the expression of UGT1A1 and examine how UA and OA induce UGT1A1 based on this signaling pathway.MethodsHepG2 cells, hp65-overexpressed HepG2 cell and lentivirus-hp65-shRNA silenced HepG2 cells were stimulated with PKC/NF-κB specific agonists and inhibitors for 24 h in the presence or absence of UA and OA. The expression of UGT1A1, PKC, and NF-κB were determined by qRT-PCR, western blot, and dual-luciferase reporter gene assays.ResultsPKC/NF-κB activation downregulates UGT1A1 expression. This effect is countered by UA and OA treatment. Phorbol 12-myristate 13-acetate (PMA) and lipopolysaccharide (LPS), the agonists of PKC and NF-κB signaling, respectively, significantly inhibit hp65-mediated UGT1A1 luciferase activity. UA, OA, and the PKC/NF-κB inhibitors suppress this effect. PMA and LPS do not affect UGT1A1 activity in p65-silenced HepG2 cells; however, UA and OA mildly influence UGT1A1 expression in these cells.ConclusionThe activation of PKC/NF-κB signaling can significantly downregulate UGT1A1 expression. By inhibiting the PKC/NF-κB signaling pathway, UA and OA promote UGT1A1 expression in HepG2 cells.  相似文献   

14.
The bioactive peptide salusin-β is highly expressed in human atheromas; additionally, infusion of antiserum against salusin-β suppresses the development of atherosclerosis in atherogenic mice. This study examined the roles of salusin-β in vascular inflammation during atherogenesis. Infusion of antiserum against salusin-β attenuated the induction of VCAM-1, monocyte chemoattractant protein (MCP)-1, and IL-1β and as well as nuclear translocation of NF-κB in aortic endothelial cells (ECs) of LDL receptor-deficient mice, which led to the prevention of monocyte adhesion to aortic ECs. In vitro experiments indicated that salusin-β directly enhances the expression levels of proinflammatory molecules, including VCAM-1, MCP-1, IL-1β, and NADPH oxidase 2, as well as THP-1 monocyte adhesion to cultured human umbilical vein ECs (HUVECs). Both salusin-β-induced VCAM-1 induction and monocyte/HUVEC adhesion were suppressed by pharmacological inhibitors of NF-κB, e.g., Bay 11-7682 and curcumin. Furthermore, the VCAM-1 induction was significantly prevented by the phosphatidylinositol 3-kinase (PI3K) inhibitor LY-294002, whereas it was accelerated by the ERK inhibitor, U-0126. Treatment of HUVECs with salusin-β, but not with salusin-α, accelerated oxidative stress and nuclear translocation of NF-κB as well as phosphorylation and degradation of IκB-α, an endogenous inhibitor of NF-κB. Thus, salusin-β enhanced monocyte adhesion to vascular ECs through NF-κB-mediated inflammatory responses in ECs, which can be modified by PI3K or ERK signals. These findings are suggestive of a novel role of salusin-β in atherogenesis.  相似文献   

15.
16.
17.
Ly-1, the murine lymphocyte differentiation antigen CD5, is phosphorylated constitutively in vivo. This phosphorylation is enhanced by phorbol 12-myristate 13-acetate (PMA) treatment, but not by concanavalin A, Ca2+ ionophore or dibutyryl cAMP. Prolonged PMA treatment abolished PMA-induced Ly-1 phosphorylation but not constitutive phosphorylation, suggesting that protein kinase C (PKC) is responsible for this enhanced phosphorylation, but not the basal phosphorylation of Ly-1. Ly-1 is phosphorylated by PKC added to membranes, further supporting a role for protein kinase C in the in vivo phosphorylation of Ly-1.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号