首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elevated LPS and elevated cytochrome P-450 2E1 (CYP2E1) in liver are two major independent risk factors in alcoholic liver disease. We investigated possible synergistic effects of the two risk factors in causing oxidative stress and liver injury. Sprague-Dawley rats were injected intraperitoneally with pyrazole (inducer of CYP2E1) for 2 days, and then LPS was injected via tail vein. Other rats were treated with pyrazole alone or LPS alone or saline. Eight hours later, blood was collected and livers were excised. Pathological evaluation showed severe inflammatory responses and necroses only in liver sections from rats in the pyrazole plus LPS group; blood transaminase levels were significantly elevated only in the combination group. Activities of caspase-3 and -9 and positive terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling staining were highest in the LPS alone and the LPS plus pyrazole group, with no significant difference between the two groups. Lipid peroxidation and protein carbonyls in liver homogenate as well as in situ superoxide production were maximally elevated in the LPS plus pyrazole group. Levels of nitrite plus nitrate and inducible nitric oxide (NO) synthase (iNOS) content were comparably elevated in LPS alone and the LPS plus pyrazole group; however, 3-nitrotyrosine adducts were elevated in the combined group but not the LPS group. It is likely that LPS induction of iNOS, which produces NO, coupled to pyrazole induction of CYP2E1 which produces superoxide, sets up conditions for maximal peroxynitrite formation and production of 3-nitrotyrosine adducts. CYP2E1 activity and content were elevated in the pyrazole and the LPS plus pyrazole groups. Immunohistochemical staining indicated that distribution of CYP2E1 was in agreement with that of necrosis and production of superoxide. These results show that pyrazole treatment enhanced LPS-induced necrosis, not apoptosis. The enhanced liver necrosis appears to involve an increase in oxidative and nitrosative stress generated by the combination of LPS plus elevated CYP2E1 levels.  相似文献   

2.
Argininosuccinate synthase (ASS) is the rate-limiting enzyme in the urea cycle. Along with nitric oxide synthase (NOS)-2, ASS endows cells with the L-citrulline/nitric oxide (NO·) salvage pathway to continually supply L-arginine from L-citrulline for sustained NO· generation. Because of the relevant role of NOS in liver injury, we hypothesized that downregulation of ASS could decrease the availability of intracellular substrate for NO· synthesis by NOS-2 and, hence, decrease liver damage. Previous work demonstrated that pyrazole plus LPS caused significant liver injury involving NO· generation and formation of 3-nitrotyrosine protein adducts; thus, wild-type (WT) and Ass+/- mice (Ass+/+ mice are lethal) were treated with pyrazole plus LPS, and markers of nitrosative stress, as well as liver injury, were analyzed. Partial ablation of Ass protected from pyrazole plus LPS-induced liver injury by decreasing nitrosative stress and hepatic and circulating TNFα. Moreover, apoptosis was prevented, since pyrazole plus LPS-treated Ass+/- mice showed decreased phosphorylation of JNK; increased MAPK phosphatase-1, which is known to deactivate JNK signaling; and lower cleaved caspase-3 than treated WT mice, and this was accompanied by less TdT-mediated dUTP nick end labeling-positive staining. Lastly, hepatic neutrophil accumulation was almost absent in pyrazole plus LPS-treated Ass+/- compared with WT mice. Partial Ass ablation prevents pyrazole plus LPS-mediated liver injury by reducing nitrosative stress, TNFα, apoptosis, and neutrophil infiltration.  相似文献   

3.
Induction of CYP2E1 by pyrazole (PY) potentiated the hepatotoxicity induced by TNFα in mice. We evaluated the role of nitrosative and oxidative stress and the NF-κB activation pathway in this liver injury. The iNOS inhibitor N-(3-aminomethyl)benzylacetamindine (1400W) or the antioxidant N-acetyl-l-cysteine (NAC) prevented this liver injury. TNFα plus PY treatment triggered radical stress in the liver with increased lipid peroxidation and decreased glutathione and caused mitochondrial damage as reflected by elevated membrane swelling and cytochrome c release. The radical stress and mitochondrial damage were prevented by 1400W and NAC. TNFα plus PY treatment elevated 3-nitrotyrosine adduct formation and induced NOS2 in the liver; 1400W and NAC blocked these changes. A lower extent of liver injury and oxidative stress was found in NOS2?/? mice treated with TNFα plus PY compared with wild-type controls. Neither 1400W nor NAC modified CYP2E1 activity or protein. Activation of JNK and p38MAPK was weaker in TNFα plus PY-treated NOS2?/? mice and 1400W and NAC blocked the activation of JNK and p38MAPK in wild-type mice. IKKα/β protein levels were decreased by TNFα plus PY treatment, whereas IκBα and IκBβ protein levels were elevated compared with saline, PY, or TNFα alone. NF-κB DNA binding activity was increased by TNFα alone but lowered by TNFα plus PY. All these changes were blocked by 1400W and NAC. NF-κB activation products such as Bcl-2, Bcl-XL, cFLIPS, cFLIPL, and Mn-SOD were reduced by TNFα plus PY and restored by 1400W or NAC. We conclude that TNFα plus CYP2E1 induces oxidative/nitrosative stress, which plays a role in the activation of JNK or p38MAPK and mitochondrial damage. These effects combine with the blunting of the NF-κB activation pathways and the synthesis of protective factors to cause liver injury.  相似文献   

4.
The current study was designed to investigate the effect and potential mechanism of exogenous administration of S-adenosyl-l-methionine (SAM) on the enhanced hepatotoxicity induced by the Fas agonistic Jo2 antibody plus acute ethanol pretreatment in C57BL/6 mice. Acute ethanol plus Jo2 treatment produces liver toxicity under conditions in which ethanol alone or Jo2 alone do not. SAM significantly attenuated this elevated hepatotoxicity in mice as manifested by a decrease of serum aminotransferases and morphological amelioration. Levels of SAM and activity of methionine adenosyltransferase were lowered by the ethanol plus Jo2 treatment but restored by administration of SAM. The ethanol plus Jo2 treatment increased activity and content of CYP2E1, iNOS content and TNF-α levels; these increases were blunted by SAM. SAM also protected against the elevated oxidative and nitrosative stress found after ethanol plus Jo2, likely due to the decreases in CYP2E1, iNOS and TNF-α. Calcium-induced swelling of mitochondria was enhanced by the ethanol plus Jo2 treatment and this was prevented by SAM. JNK and P38 MAPK were activated by the ethanol plus Jo2 treatment; JNK activation was partially prevented by SAM. It is suggested that SAM protects against the ethanol plus Jo2 toxicity by restoring hepatic SAM levels, preventing the increase in iNOS, CYP2E1 and TNF-α and there by lowering the elevated oxidative/nitrosative stress and activation of the JNK signal pathway, ultimately preventing mitochondrial damage.  相似文献   

5.
Pyrazole treatment to induce cytochrome P-450 2E1 (CYP2E1) was recently shown to cause liver injury in ob/ob mice but not in lean mice. The present study investigated the effects of S-adenosyl-l-methionine (SAM) on the CYP2E1-dependent liver injury in ob/ob mice. Pyrazole treatment of ob/ob mice for 2 days caused necrosis, steatosis, and elevated serum transaminase and triglyceride levels compared with saline ob/ob mice. Administration of SAM (50 mg/kg body wt ip every 12 h for 3 days) prevented the observed pathological changes as well as the increase of apoptotic hepatocytes, caspase 3 activity, and serum TNF-alpha levels. SAM administration inhibited CYP2E1 activity but not CYP2E1 content. The pyrazole treatment increased lipid peroxidation, 4-hydroxynonenal and 3-nitrotyrosine protein adducts, and protein carbonyls. These increases in oxidative and nitrosative stress were prevented by SAM. Treatment of ob/ob mice with pyrazole lowered the endogenous SAM levels, and these were elevated after SAM administration. Mitochondrial GSH levels were very low after pyrazole treatment of the ob/ob mice; this was associated with elevated levels of malondialdehyde and 4-hydroxynonenal and 3-nitrotyrosine protein adducts in the mitochondria. All these changes were prevented with SAM administration. SAM protected against pyrazole-induced increase in serum transaminases, necrosis, triglyceride levels, caspase-3 activity, and lipid peroxidation even when administered 1 day after pyrazole treatment. In the absence of pyrazole, SAM lowered the slightly elevated serum transaminases, triglyceride levels, caspase-3 activity, and lipid peroxidation in obese mice. In conclusion, SAM protects against and can also reverse or correct CYP2E1-induced liver damage in ob/ob mice.  相似文献   

6.
We studied the effects of cyclosporin A (CsA) administration 1) on the properties of the permeability transition pore (PTP) in mitochondria isolated from the liver and 2) on the susceptibility to hepatotoxicity induced by lipopolysaccharide of Escherichia coli (LPS) plus D-galactosamine (D-GalN) in rats. CsA exerted a marked PTP inhibition ex vivo, with an effect that peaked between 2 and 9 h of drug treatment and decayed with an apparent half-time of about 13 h. Administration of LPS plus D-GalN to naive rats caused the expected increased serum levels of tumor necrosis factor (TNF)-alpha, liver inflammation with BID cleavage, activation of caspase 3, appearance of terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling-positive nuclei, and release of alanine aminotransferase and aspartate aminotransferase into the bloodstream. Treatment with CsA before or within 5 h of the administration of LPS plus D-GalN protected rats from hepatotoxicity despite the normal increase of serum TNF-alpha and BID cleavage. These results indicate that CsA prevents the hepatotoxic effects of TNF-alpha by blocking the mitochondrial proapoptotic pathway through inhibition of the PTP and provides a viable strategy for the treatment of liver diseases that depend on increased production and/or liver sensitization to TNF-alpha.  相似文献   

7.
The hepatoprotective effects and molecular mechanisms of baicalein on acute liver failure induced by d-galactosamine (d-GalN)/lipopolysaccharides (LPS) were investigated in vivo. Mice were administered with different doses of baicalein (50, 100 or 150 mg/kg, p.o.) 1 h before injection of d-GalN (700 mg/kg)/LPS (10 μg/kg) and then sacrificed 6 h after treatment with d-GalN/LPS. Pretreatment with baicalein prevented d-GalN/LPS-induced liver damage by preventing associated increases of serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) and by reducing serum tumor necrosis factor α (TNF-α), nitric oxide (NO) or inducible nitric oxide synthase (iNOS) expressions. The molecular mechanisms involved in baicalein-induced inhibition of d-GalN/LPS-caused apoptosis were associated with the protection of mitochondria, increasing the Bcl-2/Bax ratio, blocking the release of cytochrome c, and suppressing the phosphorylation of IκBα, ERK and JNK. Moreover, baicalein activated c-FLIPL, XIAP and cIAP2 proteins, potentially blocking the recruitment of NF-κB signaling molecules. The results support the investigation of baicalein as a therapeutic candidate for acute liver apoptosis or injury and indicate that baicalein might inhibit liver apoptosis by mediating one or more of these pathways.  相似文献   

8.
This study assesses the controversial role of the mitochondrial permeability transition (MPT) in apoptosis. In primary rat hepatocytes expressing an IκB superrepressor, tumor necrosis factor alpha (TNFα) induced apoptosis as shown by nuclear morphology, DNA ladder formation, and caspase 3 activation. Confocal microscopy showed that TNFα induced onset of the MPT and mitochondrial depolarization beginning 9 h after TNFα treatment. Initially, depolarization and the MPT occurred in only a subset of mitochondria; however, by 12 h after TNFα treatment, virtually all mitochondria were affected. Cyclosporin A (CsA), an inhibitor of the MPT, blocked TNFα-mediated apoptosis and cytochrome c release. Caspase 3 activation, cytochrome c release, and apoptotic nuclear morphological changes were induced after onset of the MPT and were prevented by CsA. Depolarization and onset of the MPT were blocked in hepatocytes expressing ΔFADD, a dominant negative mutant of Fas-associated protein with death domain (FADD), or crmA, a natural serpin inhibitor of caspases. In contrast, Asp-Glu-Val-Asp-cho, an inhibitor of caspase 3, did not block depolarization or onset of the MPT induced by TNFα, although it inhibited cell death completely. In conclusion, the MPT is an essential component in the signaling pathway for TNFα-induced apoptosis in hepatocytes which is required for both cytochrome c release and cell death and functions downstream of FADD and crmA but upstream of caspase 3.  相似文献   

9.
The aim of this study was to investigate the inhibitory effect of penehyclidine hydrochloride (PHC) on lipopolysaccharide (LPS)-induced nitric oxide (NO) and inducible nitric oxide synthase (iNOS) production in human endothelial cell. Cultured endothelial cells were pretreated with PHC, followed by LPS treatment. NO activity were determined. iNOS expression and p38 mitogen-activated protein kinase (p38 MAPK) protein expression were measured by Western blot analysis. LPS treatment significantly induced p38 MAPK activation, iNOS expression, and NO production, which could be attenuated by 2 μg/ml PHC pretreatment. Furthermore, our study showed LPS-induced NO production and iNOS expression were suppressed by p38 MAPK inhibitor SB203580 pretreatment. We concluded that PHC attenuates NO production and iNOS expression by suppressing the activation of p38 MAPK pathway, thereby implicating a mechanism by which PHC may exert its protective effects against LPS-induced endothelial cell injury.  相似文献   

10.
Indirubin-3′-oxime is an indirubin analogue that shows favorable inhibitory activity targeting glycogen synthase kinase 3β (GSK-3β). In this study, we evaluated if acute treatment with indirubin-3′-oxime (Ind) prevents hepatic ischemia/reperfusion (I/R) damage. Wistar rats were subjected to 150 min of 70% warm ischemia and 16 h of reperfusion. In the treated group 1 μM indirubin-3′-oxime was administered in the hepatic artery 30 min before ischemia. Acute treatment with Ind decreased serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) levels, comparatively to I/R livers. Bax translocation to the mitochondria and cytochrome c release were higher in I/R livers. Ind treatment significantly attenuated Bax translocation and preserved mitochondrial cytochrome c content. Ind also protected mitochondria from calcium-induced mitochondrial permeability transition (MPT), as well as the decrease in state 3 mitochondrial respiration, the delay in the repolarization after a phosphorylative cycle and the decrease in ATP content caused by I/R. By addressing GSK-3β activity and phosphorylated GSK-3β at Ser9 content in liver homogenates and isolated mitochondria, data suggests that inhibition of GSK-3β by indirubin-3′-oxime prevents the increase in mitochondrial phosphorylated GSK-3β at Ser9 induced by I/R, thus correlating with MPT inhibition and preservation of cytochrome c content. Pre-treatment with indirubin-3′-oxime in conditions of hepatic I/R, protects the liver by maintaining mitochondrial function and hepatic energetic balance.  相似文献   

11.
The endotoxin-mediated production of pro-inflammatory cytokines plays an important role in the pathogenesis of liver disorders. Heat shock protein (Hsp70) overexpression has established functions in lipopolysaccharide (LPS)-mediated inflammatory response. However, little is known about the role of Hsp70 activity in LPS signaling. We hypothesized that inhibition of Hsp70 substrate binding activity can ameliorate LPS-induced liver injury by decreasing induction of pro-inflammatory factors. In this study, C57/BL6 mice were injected intraperitoneally with LPS and 2-phenylethynesulfonamide (PES), an inhibitor of Hsp70 substrate binding activity. We found that i. PES prevented LPS-induced increase in serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activity, infiltration of inflammatory cells, and liver cell apoptosis; ii. PES reduced inducible nitric oxide synthase (iNOS) protein expression as well as serum nitric oxide (NO), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) content in LPS-stimulated mice; iii. PES reduced the mRNA level of iNOS, TNF-α, and IL-6 in LPS-stimulated liver. iiii. PES attenuated the degradation of inhibitor of κB-α (IκB-α) as well as the phosphorylation and nuclear translocation of nuclear factor-κB (NF-κB) in LPS-stimulated liver. Similar changes in the protein expression of inflammatory markers, IκB-α degradation, and NF-κB phosphorylation and nuclear translocation were observed in RAW 264.7 cells. Further mechanistic studies revealed that PES remarkably reduced the elevation of [Ca2+]i and intracellular pH value (pHi) in LPS-stimulated RAW 264.7 cells. Furthermore, PES significantly reduced the increase in Na+/H+ exchanger 1 (NHE1) association to Hsp70 in LPS-stimulated macrophages and liver, suggesting that NHE1-Hsp70 interaction is required for the involvement of NHE1 in the inflammation response. In conclusion, inhibition of Hsp70 substrate binding activity in vivo reduces the induction of pro-inflammatory factors and prevents LPS-induced liver injury likely by disrupting NHE1-Hsp70 interaction which consequently reduces the activation of IκB-α-NF-κB pathway in liver.  相似文献   

12.
We investigated the effects of iron on the production of nitric oxide (NO), inducible NO synthase (iNOS), and plasma cytokines induced by lipopolysaccharide (LPS) in vivo. Male Wistar rats were preloaded with a single intravenous injection of saccharated colloidal iron (Fesin, 70 mg iron/kg body weight) or normal saline as a control, and then given an intraperitoneal injection of LPS (5.0 mg/kg body weight). Rats, preloaded with iron, had evidence of both iron deposition and strong iNOS induction in liver Kupffer cells upon injection of LPS; phagocytic cells in the spleen and lung had similar findings. LPS-induced NO production in iron-preloaded rats was significantly higher than control rats as accessed by NO-hemoglobin levels measured by ESR (electron spin resonance) and NOx (nitrate plus nitrite) levels. Western blot analysis showed that iron preloading significantly enhanced LPS-induced iNOS induction in the liver, but not in the spleen or lung. LPS-induced plasma levels of IL-6, IL-1beta, and TNF-alpha were also significantly higher in iron-preloaded rats as shown by ELISA, but IFN-gamma levels were unchanged. We conclude that colloidal-iron phagocytosed by liver Kupffer cells enhanced LPS-induced NO production in vivo, iNOS induction in the liver, and release of IL-6, IL-1beta, and TNF-alpha.  相似文献   

13.
In this study, we administered aminoguanidine, a relatively selective inducible nitric oxide synthase (iNOS) inhibitor, to study the role of nitric oxide (NO) in LPS-induced decrease in IGF-I and IGFBP-3. Adult male Wistar rats were injected intraperitoneally with LPS (100 microg/kg), aminoguanidine (100 mg/kg), LPS plus aminoguanidine, or saline. Rats were injected at 1730 and 0830 the next day and killed 4 h after the last injection. LPS administration induced an increase in serum concentrations of nitrite/nitrate (P < 0.01) and a decrease in serum concentrations of growth hormone (GH; P < 0.05) and IGF-I (P < 0.01) as well as in liver IGF-I mRNA levels (P < 0.05). The LPS-induced decrease in serum concentrations of IGF-I and liver IGF-I gene expression seems to be secondary to iNOS activation, since aminoguanidine administration prevented the effect of LPS on circulating IGF-I and its gene expression in the liver. In contrast, LPS-induced decrease in serum GH was not prevented by aminoguanidine administration. LPS injection decreased IGFBP-3 circulating levels (P < 0.05) and its hepatic gene expression (P < 0.01), but endotoxin did not modify the serum IGFBP-3 proteolysis rate. Aminoguanidine administration blocked the inhibitory effect of LPS on both IGFBP-3 serum levels and its hepatic mRNA levels. When aminoguanidine was administered alone, IGFBP-3 serum levels were increased (P < 0.05), whereas its hepatic mRNA levels were decreased. This contrast can be explained by the decrease (P < 0.05) in serum proteolysis of this binding protein caused by aminoguanidine. These data suggest that iNOS plays an important role in LPS-induced decrease in circulating IGF-I and IGFBP-3 by reducing IGF-I and IGFBP-3 gene expression in the liver.  相似文献   

14.
Isolated mitochondria may undergo uncoupling, and in presence of Ca(2+) at different conditions, a mitochondrial permeability transition (MPT) linked to protein thiol oxidation, and demonstrated by CsA-sensitive mitochondrial swelling; these processes may cause cell death either by necrosis or by apoptosis. Isocoumarins isolated from the Brazilian plant Paepalanthus bromelioides (Eriocaulaceae) paepalantine (9,10-dihydroxy-5,7-dimethoxy-1H-naptho(2,3c)pyran-1-one), 8,8'-paepalantine dimer, and vioxanthin were assayed at 1-50 microM on isolated rat liver mitochondria, for respiration, MPT, protein thiol oxidation, and interaction with the mitochondrial membrane using 1,6-diphenyl-1,3,5-hexatriene (DPH). The isocoumarins did not significantly affect state 3 respiration of succinate-energized mitochondria; they did however, stimulate 4 respiration, indicating mitochondrial uncoupling. Induction of MPT and protein thiol oxidation were assessed in succinate-energized mitochondria exposed to 10 microM Ca(2+); inhibition of these processes was assessed in non-energized organelles in the presence of 300 microM t-butyl hydroperoxide plus 500 microM Ca(2+). Only paepalantine was an effective MPT/protein thiol oxidation inducer, also releasing cytochrome c from mitochondria; the protein thiol oxidation, unlike mitochondrial swelling, was neither inhibited by CsA nor dependent on the presence of Ca(2+). Vioxanthin was an effective inhibitor of MPT/protein thiol oxidation. All isocoumarins inserted deeply into the mitochondrial membrane, but only paepalantine dimer and vioxantin decreased the membrane's fluidity. A direct reaction with mitochondrial membrane protein thiols, involving an oxidation of these groups, is proposed to account for MPT induction by paepalantine, while a restriction of oxidation of these same thiol groups imposed by the decrease of membrane fluidity, is proposed to account for MPT inhibition by vioxanthin.  相似文献   

15.
AimEthanol metabolism leads to the formation of acetaldehyde and malondialdehyde. Acetaldehyde and malondialdehyde can together form malondialdehyde–acetaldehyde (MAA) adducts. The role of alcohol dehydrogenase (ADH) and cytochrome P4502E1 (CYP2E1) in the formation of MAA-adducts in liver cells has been investigated.Main methodsChronic ethanol treated VL-17A cells over-expressing ADH and CYP2E1 were pretreated with the specific CYP2E1 inhibitor — diallyl sulfide or ADH inhibitor — pyrazole or ADH and CYP2E1 inhibitor — 4-methyl pyrazole. Malondialdehyde, acetaldehyde or MAA-adduct formation was measured along with assays for viability, oxidative stress and apoptosis.Key findingsInhibition of CYP2E1 with 10 μM diallyl sulfide or ADH with 2 mM pyrazole or ADH and CYP2E1 with 5 mM 4-methyl pyrazole led to decreased oxidative stress and toxicity in chronic ethanol (100 mM) treated VL-17A cells. In vitro incubation of VL-17A cell lysates with acetaldehyde and malondialdehyde generated through ethanol led to increased acetaldehyde (AA)-, malondialdehyde (MDA)-, and MAA-adduct formation. Specific inhibition of CYP2E1 or ADH and the combined inhibition of ADH and CYP2E1 greatly decreased the formation of the protein aldehyde adducts. Specific inhibition of CYP2E1 led to the greatest decrease in oxidative stress, toxicity and protein aldehyde adduct formation, implicating that CYP2E1 accelerates the formation of protein aldehyde adducts which can be an important mechanism for alcohol mediated liver injury.SignificanceCYP2E1-mediated metabolism of ethanol leads to increased AA-, MDA-, and MAA-adduct formation in liver cells which may aggravate liver injury.  相似文献   

16.
AimsWe investigated the effects of globin digest (GD) and its active ingredient Trp-Thr-Gln-Arg (WTQR) on galactosamine/lipopolysaccharide (GalN/LPS)-induced liver injury in imprinting control region (ICR) mice.Main methodsThe effects of WTQR and GD on the liver injury were examined by measuring the survival rate, serum aminotransferase activities, hepatic components, antioxidant enzyme activities, histopathological analysis, serum levels and hepatic gene expression of tumor necrosis factor-alpha (TNF-α), macrophage inflammatory protein-2 (MIP-2), and nitric oxide (NO) or inducible nitric oxide synthase (iNOS), and nuclear factor-kappa B (NF-κB) p65 content in GalN/LPS-treated ICR mice. RAW264 mouse macrophages were used to confirm the anti-inflammatory effects of WTQR and GD on the macrophages.Key findingsWTQR and GD increased the survival rate, suppressed the serum aminotransferase activities, serum levels and hepatic gene expression of TNF-α, MIP-2, and NO or iNOS, and nuclear NF-κB p65 content in GalN/LPS-treated mice; decreased the oxidized glutathione content, increased the superoxide dismutase activity, and decreased the histopathological grade values of the hepatocyte necrosis and lobular inflammation in GalN/LPS-injured liver; and suppressed the release levels and gene expression of TNF-α, MIP-2, and NO or iNOS, and nuclear NF-κB p65 content in LPS-stimulated RAW264 macrophages. WTQR and GD may improve the antioxidant defense system and inflammatory status in GalN/LPS-injured liver.SignificanceThese findings indicate that WTQR and GD have hepatoprotective effects on GalN/LPS-induced liver injury in ICR mice.  相似文献   

17.
18.
Micromolar concentrations of arachidonic acid cause in Ca2+ loaded heart mitochondria matrix swelling and Ca2+ release. These effects appear to be unrelated to the classical membrane permeability transition (MPT), as they are CsA insensitive, membrane potential independent and can also be activated by Sr2+. Atractyloside potentiated and ATP inhibited the arachidonic acid induced swelling. These observations suggest that the ATP/ADP translocator (ANT) may be involved in the AA induced, CsA insensitive membrane permeability increase. Under the same experimental conditions used for heart mitochondria, arachidonic acid induced the classical CsA sensitive, ADP inhibitable MPT in liver mitochondria.  相似文献   

19.
CypD (cyclophilin D) has been established as a critical regulator of the MPT (mitochondrial permeability transition) pore, and pharmacological or genetic inhibition of CypD attenuates MPT in numerous systems. However, it has recently been suggested that the inhibitory effects of CypD inhibition only manifest when P(i) (inorganic phosphate) is present, and that inhibition is lost when P(i) is replaced by As(i) (inorganic arsenate) or V(i) (inorganic vanadate). To test this, liver mitochondria were isolated from wild-type and CypD-deficient (Ppif-/-) mice and then incubated in buffer containing P(i), As(i) or V(i). MPT was induced under both energized and de-energized conditions by the addition of Ca2+, and the resultant mitochondrial swelling was measured spectrophotometrically. For pharmacological inhibition of CypD, wild-type mitochondria were pre-incubated with CsA (cyclosporin A) before the addition of Ca2+. In energized and de-energized mitochondria, Ca2+ induced MPT regardless of the anion present, although the magnitude differed between P(i), As(i) and V(i). However, in all cases, pre-treatment with CsA significantly inhibited MPT. Moreover, these effects were independent of mouse strain, organ type and rodent species. Similarly, attenuation of Ca2+-induced MPT in the Ppif-/- mitochondria was still observed irrespective of whether P(i), As(i) or V(i) was present. We conclude that the pharmacological and genetic inhibition of CypD is still able to attenuate MPT even in the absence of P(i).  相似文献   

20.
Lipopolysaccharide (LPS) has essential role in the pathogenesis of D-galactosamine-sensitized animal models and alcoholic liver diseases of humans, by stimulating release of pro-inflammatory mediators that cause hepatic damage and intestinal barrier impairment. Oral pretreatment of probiotics has been shown to attenuate LPS-induced hepatic injury, but it is unclear whether the effect is direct or due to improvement in the intestinal barrier. The present study tested the hypothesis that pretreatment with probiotics enables the liver to withstand directly LPS-induced hepatic injury and inflammation. In a mouse model of LPS-induced hepatic injury, the levels of hepatic tumor necrosis factor-alpha (TNF-α) and serum alanine aminotransferase (ALT) of mice with depleted intestinal commensal bacteria were not significantly different from that of the control models. Pre-feeding mice for 10 days with Lactobacillus fermentum ZYL0401 (LF41), significantly alleviated LPS-induced hepatic TNF-α expression and liver damage. After LF41 pretreatment, mice had dramatically more L.fermentum-specific DNA in the ileum, significantly higher levels of ileal cyclooxygenase (COX)-2 and interleukin 10 (IL-10) and hepatic prostaglandin E2 (PGE2). However, hepatic COX-1, COX-2, and IL-10 protein levels were not changed after the pretreatment. There were also higher hepatic IL-10 protein levels after LPS challenge in LF41-pretreaed mice than in the control mice. Attenuation of hepatic TNF-α was mediated via the PGE2/E prostanoid 4 (EP4) pathway, and serum ALT levels were attenuated in an IL-10-dependent manner. A COX-2 blockade abolished the increase in hepatic PGE2 and IL-10 associated with LF41. In LF41-pretreated mice, a blockade of IL-10 caused COX-2-dependent promotion of hepatic PGE2, without affecting hepatic COX-2levels. In LF41-pretreated mice, COX2 prevented enhancing TNF-α expression in both hepatic mononuclear cells and the ileum, and averted TNF-α-mediated increase in intestinal permeability. Together, we demonstrated that LF41 pre-feeding enabled the liver to alleviate LPS-induced hepatic TNF-α expression and injury via a PGE2-EP4- and IL-10-dependent mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号