首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leishmania chagasi and Leishmania amazonensis are the etiologic agents of different clinical forms of human leishmaniasis in South America. In an attempt to select candidate antigens for a vaccine protecting against different Leishmania species, the efficacy of vaccination using Leishmania ribosomal proteins and saponin as adjuvant was examined in BALB/c mice against challenge infection with both parasite species. Mice vaccinated with parasite ribosomal proteins purified from Leishmania infantum plus saponin showed a specific production of IFN-γ, IL-12 and GM-CSF after in vitro stimulation with L. infantum ribosomal proteins. Vaccinated mice showed a reduction in the liver and spleen parasite burdens after L. chagasi infection. After L. amazonensis challenge, vaccinated mice showed a decrease of the dermal pathology and a reduction in the parasite loads in the footpad and spleen. In both models, protection was correlated to an IL-12-dependent production of IFN-γ by CD4+ and CD8+ T cells that activate macrophages for the synthesis of NO. In the protected mice a decrease in the parasite-mediated IL-4 and IL-10 responses was also observed. In mice challenged with L. amazonensis, lower levels of anti-parasite-specific antibodies were detected. Thus, Leishmania ribosomal proteins plus saponin fits the requirements to compose a pan-Leishmania vaccine.  相似文献   

2.
Recently, we described the existence of the ubiquitin fold modifier 1 (Ufm1) and its conjugation pathway in Leishmania donovani. We demonstrated the conjugation of Ufm1 to proteins such as mitochondrial trifunctional protein (MTP) that catalyses β‐oxidation of fatty acids in L. donovani. To elucidate the biological roles of the Ufm1‐mediated modifications, we made an L. donovani Ufm1 null mutant (Ufm1?/?). Loss of Ufm1 and consequently absence of Ufm1 conjugation with MTP resulted in diminished acetyl‐CoA, the end‐product of the β‐oxidation in the Ufm1?/? amastigote stage. The Ufm1?/? mutants showed reduced survival in the amastigote stage in vitro and ex vivo in human macrophages. This survival was restored by re‐expression of wild‐type Ufm1 with concomitant induction of acetyl‐CoA but not by re‐expressing the non‐conjugatable Ufm1, indicating the essential nature of Ufm1 conjugation and β‐oxidation. Both cell cycle analysis and ultrastructural studies of Ufm1?/? parasites confirmed the role of Ufm1 in amastigote growth. The defect in vitro growth of amastigotes in human macrophages was further substantiated by reduced survival. Therefore, these studies suggest the importance of Ufm1 in Leishmania pathogenesis with larger impact on other organisms and further provide an opportunity to test Ufm1?/? parasites as drug and vaccine targets.  相似文献   

3.
4.
Cyclopropane fatty acid synthase (CFAS) catalyzes the transfer of a methylene group from S-adenosyl methionine to an unsaturated fatty acid, generating a cyclopropane fatty acid (CFA). The gene encoding CFAS is present in many bacteria and several Leishmania spp. including Leishmania mexicana, Leishmania infantum and Leishmania braziliensis. In this study, we characterised the CFAS-null and -overexpression mutants in L. mexicana, the causative agent for cutaneous leishmaniasis in Mexico and central America. Our data indicate that L. mexicana CFAS modifies the fatty acid chain of plasmenylethanolamine (PME), the dominant class of ethanolamine glycerophospholipids in Leishmania, generating CFA-PME. While the endogenous level of CFA-PME is extremely low in wild type L. mexicana, overexpression of CFAS results in a significant increase. CFAS-null mutants (cfas?) exhibit altered cell shape, increased sensitivity to acidic pH, and aberrant growth in serum-free media. In addition, the CFAS protein is preferentially expressed during the proliferative stage of L. mexicana and is required for the cell membrane targeting of lipophosphoglycan. Finally, the maturation and localization of CFAS protein are dependent upon the downstream sequence of the CFAS coding region. Without the downstream sequence, the mis-localised CFAS protein cannot fully rescue the defects of cfas?. Our data suggest that CFA modification of phospholipids can significantly affect the parasite’s response to certain adverse conditions. These findings are distinct from the roles of CFAS in L. infantum, highlighting the functional divergence in lipid modification among Leishmania spp.  相似文献   

5.
Metabolic manipulation of host cells by intracellular pathogens is currently recognized to play an important role in the pathology of infection. Nevertheless, little information is available regarding mitochondrial energy metabolism in Leishmania infected macrophages. Here, we demonstrate that during L. infantum infection, macrophages switch from an early glycolytic metabolism to an oxidative phosphorylation, and this metabolic deviation requires SIRT1 and LKB1/AMPK. SIRT1 or LBK1 deficient macrophages infected with L. infantum failed to activate AMPK and up-regulate its targets such as Slc2a4 and Ppargc1a, which are essential for parasite growth. As a result, impairment of metabolic switch caused by SIRT1 or AMPK deficiency reduces parasite load in vitro and in vivo. Overall, our work demonstrates the importance of SIRT1 and AMPK energetic sensors for parasite intracellular survival and proliferation, highlighting the modulation of these proteins as potential therapeutic targets for the treatment of leishmaniasis.  相似文献   

6.
Our understanding of folate metabolism in Leishmania has greatly benefited from studies of resistance to the inhibitor methotrexate (MTX). Folates are reduced in Leishmania by the bifunctional dihydrofolate reductase thymidylate synthase (DHFR-TS) and by pteridine reductase (PTR1). To further our understanding of folate metabolism in Leishmania, a Cos-seq genome-wide gain of function screen was performed against MTX and against the two thymidylate synthase (TS) inhibitors 5-fluorouracil and pemetrexed. The screen revealed DHFR-TS and PTR1 but also the nucleoside transporter NT1 and one hypothetical gene derived from chromosome 31. For MTX, the concentration of folate in the culture medium affected the enrichment pattern for genes retrieved by Cos-seq. We generated a L. infantum DHFR-TS null mutant that was thymidine auxotroph, a phenotype that could be rescued by the addition of thymidine or by transfection of the flavin dependent bacterial TS gene ThyX. In these DHFR-TS null mutants it was impossible to obtain a chromosomal null mutant of PTR1 except if DHFR-TS or PTR1 were provided episomally. The transfection of ThyX however did not allow the elimination of PTR1 in a DHFR-TS null mutant. Leishmania can survive without copies of either DHFR-TS or PTR1 but not without both. Provided that our results observed with the insect stage parasites are also replicated with intracellular parasites, it would suggest that antifolate therapy in Leishmania would only work if both DHFR-TS and PTR1 would be targeted simultaneously.  相似文献   

7.
Protozoan parasites of the genus Leishmania escape from the immune response by interfering with signal transduction pathways of its host cell, the macrophage, thereby establishing permissive conditions for intracellular survival. Inhibition of macrophage activation after Leishmania infection has been suggested to require activation of the host cell phosphatase SHP-1. However, by utilizing infections of SHP-1 deficient (mev) and CD45 null mutant mice or macrophages, we provide evidence that intracellular survival of Leishmania major is not generally dependent on these cellular phosphatases.  相似文献   

8.

Background

Peroxidase represents a heterogeneous group of distinct enzyme family that plays extremely diverse biological functions. Ascorbate peroxidase from Leishmania major (LmAPX) has been shown to be central to the redox defense system of Leishmania. To investigate further its exact physiological role in Leishmania, we attempted to create LmAPX -knockout mutants by gene replacement in L. major strains.

Methodology/Principal Findings

The null mutant cell culture contains a higher percentage of metacyclic and apoptotic cells compared to both wild type and LmAPX overexpressing cells. Flowcytometric analysis reveals the presence of a higher concentration of intracellular H2O2, indicative of increased oxidative stress in parasites lacking LmAPX. IC50 value for exogenously added H2O2 shows that deletion of LmAPX in L. major renders the cell more susceptible to H2O2. Real time PCR studies demonstrate an elevated mRNA level of non-selenium glutathione peroxidase in LmAPX null mutant cell line, suggesting that these enzymes were induced to compensate the LmAPX enzyme. The null mutant cells exhibit hypervirulence after infection with macrophages as well as inoculation into BALB/c mice; in contrast, overexpressing cells show avirulence.

Conclusions/Significance

Collectively, these data provide strong evidence that LmAPX is an important factor for controlling parasite differentiation and survival within macrophages.  相似文献   

9.
Induction of CYP2E1 by pyrazole (PY) potentiated the hepatotoxicity induced by TNFα in mice. We evaluated the role of nitrosative and oxidative stress and the NF-κB activation pathway in this liver injury. The iNOS inhibitor N-(3-aminomethyl)benzylacetamindine (1400W) or the antioxidant N-acetyl-l-cysteine (NAC) prevented this liver injury. TNFα plus PY treatment triggered radical stress in the liver with increased lipid peroxidation and decreased glutathione and caused mitochondrial damage as reflected by elevated membrane swelling and cytochrome c release. The radical stress and mitochondrial damage were prevented by 1400W and NAC. TNFα plus PY treatment elevated 3-nitrotyrosine adduct formation and induced NOS2 in the liver; 1400W and NAC blocked these changes. A lower extent of liver injury and oxidative stress was found in NOS2?/? mice treated with TNFα plus PY compared with wild-type controls. Neither 1400W nor NAC modified CYP2E1 activity or protein. Activation of JNK and p38MAPK was weaker in TNFα plus PY-treated NOS2?/? mice and 1400W and NAC blocked the activation of JNK and p38MAPK in wild-type mice. IKKα/β protein levels were decreased by TNFα plus PY treatment, whereas IκBα and IκBβ protein levels were elevated compared with saline, PY, or TNFα alone. NF-κB DNA binding activity was increased by TNFα alone but lowered by TNFα plus PY. All these changes were blocked by 1400W and NAC. NF-κB activation products such as Bcl-2, Bcl-XL, cFLIPS, cFLIPL, and Mn-SOD were reduced by TNFα plus PY and restored by 1400W or NAC. We conclude that TNFα plus CYP2E1 induces oxidative/nitrosative stress, which plays a role in the activation of JNK or p38MAPK and mitochondrial damage. These effects combine with the blunting of the NF-κB activation pathways and the synthesis of protective factors to cause liver injury.  相似文献   

10.
Pteridine reductase 1 (PTR1, EC 1.5.1.33) is a NADPH dependent short-chain reductase (SDR) responsible for the salvage of pterins in the protozoan parasite Leishmania. This enzyme acts as a metabolic bypass for drugs targeting dihydrofolate reductase, therefore, for successful antifolate chemotherapy to be developed against Leishmania, it must target both enzyme activities. Based on homology model drawn on recombinant pteridine reductase isolated from a clinical isolate of L. donovani, we carried out molecular modeling and docking studies with two compounds of dihydrofolate reductase specificity showing promising antileishmanial activity in vitro. Both the inhibitors appeared to fit well in the active pocket revealing the tight binding of the carboxylic acid ethyl ester group of pyridine moiety to pteridine reductase and identify the important interactions necessary to assist the structure based development of novel pteridine reductase inhibitors.  相似文献   

11.
Leishmania infantum infection in humans and dogs can evolve with a wide range of clinical presentations, varying from asymptomatic infections to visceral leishmaniasis. We hypothesized that the immune response elicited by L. infantum infection could modulate whether the host will remain asymptomatic or progress to disease. A total of 44 dogs naturally infected with L. infantum were studied. Leishmania burden was estimated in the blood and spleen by qPCR. The expression of IFN-γ, TNF-α, IL-10 and Iron Regulatory Protein 2 (IRP2) were determined in the spleen by quantitative PCR. Sera cytokines were evaluated by ELISA. Dogs were grouped in quartiles according parasite burden. Increased expression of IFN-γ and TNF-α was associated with reduced Leishmania burden, whereas increased IL-10 and IRP2 expressions were associated with higher Leishmania load. Increased plasma albumin and IFN-γ expression explained 22.8% of the decrease in parasite burden in the spleen. These data confirm that lower IFN-γ response and higher IL-10 correlated with increased parasite load and severity of the visceral leishmaniasis in dogs. The balance between the branches of immune response and the intracellular iron availability could determine, in part, the course of Leishmania infection.  相似文献   

12.
This in silico and in vitro comparative study was designed to evaluate the effectiveness of some biurets (K1 to K8) and glucantime against Leishmania major and Leishmania infantum promastigotes. Overall, eight experimental ligands and glucantime were docked using AutoDock 4.3 program into the active sites of Leishmania major and Leishmania infantum pteridine reductase 1, which were modeled using homology modeling programs. The colorimetric MTT assay was used to find L. major and L. infantum promastigotes viability at different concentrations of biuret derivatives in a concentration and time-dependent manner and the obtained results were expressed as 50% and 90% of inhibitory concentration (IC50 and IC90). In silico method showed that out of eight experimental ligands, four compounds were more active on pteridine reductase 1. K3 was the most active against L. major promastigotes with an IC50 of 6.8 μM and an IC90 of 40.2 μM, whereas for L. infantum promastigotes was K8 with IC50 of 7.8 μM. The phenylethyl derivative (K7) showed less toxicity (IC50s > 60 μM) in both Leishmania strains. Glucantime displayed less growth inhibition in concentration of about 20 μM. In silico and especially docking results in a recent study were in accordance with the in vitro activity of these compounds in presented study and compound K3, K2 and K8 showed reasonable levels of selectivity for the Leishmania pteridine reductase 1.  相似文献   

13.
Oxidative stress activates macroautophagy/autophagy and contributes to atherogenesis via lipophagic flux, a form of lipid removal by autophagy. However, it is not known exactly how endogenous antioxidant enzymes are involved in lipophagic flux. Here, we demonstrate that the antioxidant PRDX1 (peroxiredoxin 1) has a crucial role in the maintenance of lipophagic flux in macrophages. PRDX1 is more highly expressed than other antioxidant enzymes in monocytes and macrophages. We determined that Prdx1 deficiency induced excessive oxidative stress and impaired maintenance of autophagic flux in macrophages. Prdx1-deficient macrophages had higher intracellular cholesterol mass and lower cholesterol efflux compared with wild type. This perturbation in cholesterol homeostasis was due to impaired lipophagic cholesterol hydrolysis caused by excessive oxidative stress, resulting in the inhibition of free cholesterol formation and the reduction of NR1H3 (nuclear receptor subfamily 1, group H, member 3) activity. Notably, impairment of both lipophagic flux and cholesterol efflux was restored by the 2-Cys PRDX-mimics ebselen and gliotoxin. Consistent with this observation, apoe ?/? mice transplanted with bone marrow from prdx1?/?apoe?/? mice had increased plaque formation compared with apoe?/? BM-transplanted recipients. This study reveals that PRDX1 is crucial to regulating lipophagic flux and maintaining macrophage cholesterol homeostasis against oxidative stress. We suggest that PRDX1-dependent control of oxidative stress may provide a strategy for treating atherosclerosis and autophagy-related human diseases.  相似文献   

14.
Cutaneous leishmaniasis treatment remains challenging due to the absence of a satisfactory treatment. The screening of natural compounds is a valuable strategy in the search of new drugs against leishmaniasis. The sesquiterpene (?)-α-bisabolol is effective in vivo against visceral leishmaniasis due to Leishmania infantum, but its mechanism of action remains elusive. The aim of this study is to validate this promising compound against the causative species of Old World cutaneous leishmaniasis and to get an insight into its antileishmanial mode of action. The compound was evaluated on L. tropica promastigotes and intracellular amastigotes using bone marrow-derived macrophages and its cytotoxicity was evaluated on L929 fibroblasts. The reactive oxygen species generation was evaluated using a sensitive probe. Mitochondrial depolarization was assessed evaluating the fluorescence due to rhodamine 123 in a flow cytometer. Apoptosis was investigated by measuring the fluorescence due to annexin V and propidium iodide in a flow cytometer. The ultrastructure of treated promastigotes and intracellular amastigotes was analysed through transmission electron microscopy. (?)-α-Bisabolol was active against L. tropica intracellular amastigotes displaying an inhibitory concentration 50 % of 25.2 µM and showing low cytotoxicity. This compound induced time and dose-dependent oxidative stress, mitochondrial depolarization and phosphatidilserine externalization (a marker of apoptosis). These effects were noticed at a low concentration and short exposure time. In the ultrastructural analyses, the treated parasites showed mitochondrial disruption, presence of electron-dense structures and chromatin condensation. These results suggest that this natural compound induces oxidative stress and mitochondrial-dependent apoptosis on Leishmania without disturbing the plasma membrane.  相似文献   

15.
NAD(P)H cytochrome b5 oxidoreductase (Ncb5or), comprising cytochrome b5 and cytochrome b5 reductase domains, is widely distributed in eukaryotic organisms. Although Ncb5or plays a crucial role in lipid metabolism of mice, so far no Ncb5or gene has been reported in the unicellular parasitic protozoa Leishmania species. We have cloned, expressed, and characterized Ncb5or gene from Leishmania major. Steady state catalysis and spectral studies show that NADH can quickly reduce the ferric state of the enzyme to the ferrous state and is able to donate an electron(s) to external acceptors. To elucidate its exact physiological role in Leishmania, we attempted to create NAD(P)H cytochrome b5 oxidoreductase from L. major (LmNcb5or) knock-out mutants by targeted gene replacement technique. A free fatty acid profile in knock-out (KO) cells reveals marked deficiency in linoleate and linolenate when compared with wild type (WT) or overexpressing cells. KO culture has a higher percentage of dead cells compared with both WT and overexpressing cells. Increased O2 uptake, uncoupling and ATP synthesis, and loss of mitochondrial membrane potential are evident in KO cells. Flow cytometric analysis reveals the presence of a higher concentration of intracellular H2O2, indicative of increased oxidative stress in parasites lacking LmNcb5or. Cell death is significantly reduced when the KO cells are pretreated with BSA bound linoleate. Real time PCR studies demonstrate a higher Δ12 desaturase, superoxide dismutase, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) mRNA with a concomitant fall in Δ9 desaturase mRNA expression in LmNcb5or null cell line. Together these findings suggest that decreased linoleate synthesis, and increased oxidative stress and apoptosis are the major consequences of LmNcb5or deficiency in Leishmania.  相似文献   

16.
Using fluorescence in situ hybridization, we determined the ploidy of four species of Leishmania: Leishmania infantum, Leishmania donovani, Leishmania tropica and Leishmania amazonensis. We found that each cell in a strain possesses a combination of mono-, di- and trisomies for all chromosomes; ploidy patterns were different among all strains/species. These results extend those we previously described in Leishmania major, demonstrating that mosaic aneuploidy is a genetic feature widespread to the Leishmania genus. In addition to the genetic consequences induced by this mosaicism, the apparent absence of alternation between haploid/diploid stages questions the modality of genetic exchange in Leishmania sp.  相似文献   

17.
Comparison of the Leishmania infantum genome with Leishmania braziliensis and Leishmania major genomes has identified 25 L. infantum species‐specific genes that are absent or pseudogenes in L. major and L. braziliensis. To determine whether these L. infantum species‐specific genes are involved in visceral Leishmania infection, we cloned the orthologues of 14 L. infantum species‐specific genes from the genetically closely related Leishmania donovani and introduced them into L. major. Two of these L. donovani species‐specific genes were found to significantly increase L. major survival in visceral organs in BALB/c mice. One (orthologue of LinJ28_V3.0340; Ld2834) of these two genes was further investigated. The L. donovani Ld2834 null mutants displayed dramatically reduced virulence in BALB/c mice and were unable to survive in axenic amastigote culture conditions arguing that Ld2834 plays a crucial role in enabling L. donovani survive at the increased temperature typically associated with visceral organs. Ld2834 encodes a 50 kDa protein that is localized in the cytoplasma and has no significant sequence similarity with other known genes. This study validates the importance of comparative genomics for understanding Leishmania species pathology and argues that Leishmania species‐specific genes play important roles in tissue tropism and virulence.  相似文献   

18.
The vacuolar-type H+-ATPase (V-ATPase) is essential for many cell processes. Our previous study has demonstrated that Tfp1 is a putative subunit of V-ATPase, loss of which causes disorders in calcium homeostasis and decreased resistance to oxidative stress. In this study, we found that further deletion of PMC1, a vacuolar calcium pump, in tfp1?/? mutant led to more severe dysregulation of calcium homeostasis. Besides, the tfp1?/?pmc1?/? mutant was more sensitive to H2O2 and had a higher ROS level. As is known, V-ATPase mutants are sensitive to NaCl, and PMC1 mutant is resistant against NaCl. However, the tfp1?/?pmc1?/? mutant exhibited sensitivity to NaCl. Mechanism study demonstrated that their sensitivity was associated with reduced osmotic resistance caused by relatively low expression of GPD1. In addition, we first found that NaCl addition significantly declined ROS levels in tfp1?/? and tfp1?/?pmc1?/? mutants. In tfp1?/? mutant, decreased ROS levels were relevant to enhanced antioxidant activities. However, in tfp1?/?pmc1?/? mutant, reduced ROS resulted from decreased total calcium content, revealing that NaCl affected ROS levels in the two mutants through different mechanisms. Taken together, our data indicated that loss of both TFP1 and PMC1 further affected calcium homeostasis and other cellular processes in Candida albicans and provides a potential antifungal target.  相似文献   

19.
We have previously described an attenuated line of Leishmania infantum (H-line), selected by culturing promastigotes in vitro in the presence of gentamicin. To elucidate the molecular basis for this attenuation, we undertook a comparative proteomic analysis using multiplex 2-dimensional (2D) difference gel electrophoresis. Eighteen proteins that showed significant and reproducible changes in expression were identified. Many of these were components of the thiol-redox control system in Leishmania and this observation, validated by Western blot, prompted us to investigate the sensitivity of the attenuated line to oxidative stress. The attenuated line was found to be significantly more susceptible to hydrogen peroxide, a change which may explain the loss of virulence. In a direct assay of trypanothione-dependent peroxidase activity, hydrogen peroxide metabolism in the H-line was significantly lower than in wild type. Furthermore, trypanothione reductase activity was significantly lower in the H-line, suggesting that gentamicin selection may result in pleiotropic affects on thiol metabolism in Leishmania. A putative RNA-binding protein was very strongly up-regulated in the attenuated line, suggesting a possible target for gentamicin in Leishmania.  相似文献   

20.
The Leishmania plasma membrane transporter Leishmania Iron Regulator 1 (LIR1) facilitates iron export and is required for parasite virulence. By modulating macrophage iron content, we investigated the host site where LIR1 regulates Leishmania amazonensis infectivity. In bone marrow-derived macrophages, LIR1 null mutants demonstrated a paradoxical increase in virulence during infections in heme-depleted media, while wild-type growth was inhibited under the same conditions. Loading the endocytic pathway of macrophages with cationized ferritin prior to infection reversed the effect of heme depletion on both strains. Thus, LIR1 contributes to Leishmania virulence by protecting the parasites from toxicity resulting from iron accumulation inside parasitophorous vacuoles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号