首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Plant evolution is characterized by frequent genome duplication events. Expansion of habitat resulted in the origin of many novel genes and genome duplication events which in turn resulted in the expansion of many regulatory gene families. The plant-specific FCS-Like Zinc finger (FLZ) gene family is characterized by the presence of a FCS-Like Zinc finger (FLZ) domain which mediates the protein-protein interaction. In this study, we identified that the expansion of FLZ gene family size in different species is correlated with ancestral and lineage-specific whole genome duplication events. The subsequent gene loss found to have a greater role in determining the size of this gene family in many species. However, genomic block duplications played the significant role in the expansion of FLZ gene family in some species. Comparison of Arabidopsis thaliana and Oryza sativa FLZ gene family revealed monocot and dicot specific evolutionary trends. The FLZ genes were found to be under high purifying selection. The spatiotemporal expression analyses of Arabidopsis thaliana FLZ gene family revealed that majority of the members are highly expressed in reproductive organs. FLZ genes were also found to be highly expressed during vegetative-to-reproductive phase transition which is correlated with the proposed role of this gene family in sugar signaling. The comparison of sequence, structural and expression features of duplicated genes identified lineage-specific redundancy and divergence. This extensive evolutionary analysis and expression analysis of Arabidopsis thaliana FLZ genes will pave the way for further functional analysis of FLZ genes.  相似文献   

4.

Background

Vitis vinifera (grape) is one of the most economically significant fruit crops in the world. The availability of the recently released grape genome sequence offers an opportunity to identify and analyze some important gene families in this species. Subtilases are a group of subtilisin-like serine proteases that are involved in many biological processes in plants. However, no comprehensive study incorporating phylogeny, chromosomal location and gene duplication, gene organization, functional divergence, selective pressure and expression profiling has been reported so far for the grape.

Results

In the present study, a comprehensive analysis of the subtilase gene family in V. vinifera was performed. Eighty subtilase genes were identified. Phylogenetic analyses indicated that these subtilase genes comprised eight groups. The gene organization is considerably conserved among the groups. Distribution of the subtilase genes is non-random across the chromosomes. A high proportion of these genes are preferentially clustered, indicating that tandem duplications may have contributed significantly to the expansion of the subtilase gene family. Analyses of divergence and adaptive evolution show that while purifying selection may have been the main force driving the evolution of grape subtilases, some of the critical sites responsible for the divergence may have been under positive selection. Further analyses of real-time PCR data suggested that many subtilase genes might be important in the stress response and functional development of plants.

Conclusions

Tandem duplications as well as purifying and positive selections have contributed to the functional divergence of subtilase genes in V. vinifera. The data may contribute to a better understanding of the grape subtilase gene family.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1116) contains supplementary material, which is available to authorized users.  相似文献   

5.
Phenotypic variation among individuals in a population can be due to DNA sequence variation in protein coding regions or in regulatory elements. Recently, many studies have indicated that mutations in regulatory elements may be the major cause of phenotypic evolution. However, the mechanisms for evolutionary changes in gene expression are still not well understood. Here, we studied the relative roles of cis and trans regulatory changes in Saccharomyces cerevisiae cells to cope with heat stress. It has been found that the expression level of ~ 300 genes was induced at least two fold and that of ~ 500 genes was repressed at least two fold in response to heat shock. From the former set of genes, we randomly selected 65 genes that showed polymorphism(s) between the BY and RM strains for pyrosequencing analysis to explore the relative contributions of cis and trans regulatory variations to the expression divergence between BY and RM. Our data indicated that the expression divergence between BY and RM was mainly due to trans regulatory variations under either the normal condition or the heat stress condition. However, the relative contribution of trans regulatory variation was decreased from 76.9% to 61.5% after the heat shock stress. These results indicated that the cis regulatory variation may play an important role in the adaption to heat stress. In our data, 43.1% (28 genes) of the 65 genes showed the same trend of cis or trans variation effect after the heat shock stress, 35.4% (23 genes) showed an increased cis variation effect and 21.5% (14 genes) showed an increased trans variation effect after the heat shock stress. Thus, our data give insights into the relative roles of cis and trans variations in response to heat shock in yeast.  相似文献   

6.
Sm proteins are a group of ubiquitous ring-shaped oligomers that function in multiple aspects of RNA metabolism. However, until this study, no comprehensive study incorporating phylogeny, chromosomal location, gene organization, adaptive evolution, expression profiling and functional networks has been reported for rice and maize. In this study, twenty-five and thirty-three Sm genes have been identified in rice and maize, respectively. Phylogenetic analyses identified eighteen gene groups. Results by gene locations indicated that segmental duplication contributes to the expansion of this gene family in rice and maize. Gene organization and motif compositions of the Sm members are highly conserved in each group, indicative of their functional conservation. Expression profiles have provided insights into the possible functional divergence among members of the Sm gene family. Adaptive evolution analyses suggested that purifying selection was the main force driving Sm evolution, but some critical sites might be responsible for functional divergence. In addition, four hundred and seventy-nine interactions were identified by functional network analyses, and most of which were associated with binding, cellular macromolecule biosynthesis, pre-mRNA processing and transferase activity. Overall, the data contribute to a better understanding of the complexity of Sm gene family in rice and maize and will provide a solid foundation for future functional studies.  相似文献   

7.
8.
Identifying how genes and their functions evolve after duplication is central to understanding gene family radiation. In this study, we systematically examined the functional diversification of the glutathione S-transferase (GST) gene family in Populus trichocarpa by integrating phylogeny, expression, substrate specificity, and enzyme kinetic data. GSTs are ubiquitous proteins in plants that play important roles in stress tolerance and detoxification metabolism. Genome annotation identified 81 GST genes in Populus that were divided into eight classes with distinct divergence in their evolutionary rate, gene structure, expression responses to abiotic stressors, and enzymatic properties of encoded proteins. In addition, when all the functional parameters were examined, clear divergence was observed within tandem clusters and between paralogous gene pairs, suggesting that subfunctionalization has taken place among duplicate genes. The two domains of GST proteins appear to have evolved under differential selective pressures. The C-terminal domain seems to have been subject to more relaxed functional constraints or divergent directional selection, which may have allowed rapid changes in substrate specificity, affinity, and activity, while maintaining the primary function of the enzyme. Our findings shed light on mechanisms that facilitate the retention of duplicate genes, which can result in a large gene family with a broad substrate spectrum and a wide range of reactivity toward different substrates.  相似文献   

9.
Resistin (encoded by Retn) was previously identified in rodents as a hormone associated with diabetes; however human resistin is instead linked to inflammation. Resistin is a member of a small gene family that includes the resistin-like peptides (encoded by Retnl genes) in mammals. Genomic searches of available genome sequences of diverse vertebrates and phylogenetic analyses were conducted to determine the size and origin of the resistin-like gene family. Genes encoding peptides similar to resistin were found in Mammalia, Sauria, Amphibia, and Actinistia (coelacanth, a lobe-finned fish), but not in Aves or fish from Actinopterygii, Chondrichthyes, or Agnatha. Retnl originated by duplication and transposition from Retn on the early mammalian lineage after divergence of the platypus, but before the placental and marsupial mammal divergence. The resistin-like gene family illustrates an instance where the locus of origin of duplicated genes can be identified, with Retn continuing to reside at this location. Mammalian species typically have a single copy Retn gene, but are much more variable in their numbers of Retnl genes, ranging from 0 to 9. Since Retn is located at the locus of origin, thus likely retained the ancestral expression pattern, largely maintained its copy number, and did not display accelerated evolution, we suggest that it is more likely to have maintained an ancestral function, while Retnl, which transposed to a new location, displays accelerated evolution, and shows greater variability in gene number, including gene loss, likely evolved new, but potentially lineage-specific, functions.  相似文献   

10.
11.
12.
13.
The functional diversification of the vertebrate globin gene superfamily provides an especially vivid illustration of the role of gene duplication and whole-genome duplication in promoting evolutionary innovation. For example, key globin proteins that evolved specialized functions in various aspects of oxidative metabolism and oxygen signaling pathways (hemoglobin [Hb], myoglobin [Mb], and cytoglobin [Cygb]) trace their origins to two whole-genome duplication events in the stem lineage of vertebrates. The retention of the proto-Hb and Mb genes in the ancestor of jawed vertebrates permitted a physiological division of labor between the oxygen-carrier function of Hb and the oxygen-storage function of Mb. In the Hb gene lineage, a subsequent tandem gene duplication gave rise to the proto α- and β-globin genes, which permitted the formation of multimeric Hbs composed of unlike subunits (α2β2). The evolution of this heteromeric quaternary structure was central to the emergence of Hb as a specialized oxygen-transport protein because it provided a mechanism for cooperative oxygen-binding and allosteric regulatory control. Subsequent rounds of duplication and divergence have produced diverse repertoires of α- and β-like globin genes that are ontogenetically regulated such that functionally distinct Hb isoforms are expressed during different stages of prenatal development and postnatal life. In the ancestor of jawless fishes, the proto Mb and Hb genes appear to have been secondarily lost, and the Cygb homolog evolved a specialized respiratory function in blood-oxygen transport. Phylogenetic and comparative genomic analyses of the vertebrate globin gene superfamily have revealed numerous instances in which paralogous globins have convergently evolved similar expression patterns and/or similar functional specializations in different organismal lineages.  相似文献   

14.
15.
In this study, we identified two novel members of prolactin gene family in rat by blast searches against the published genomic database. A further analysis showed that gene duplications leading to PRL gene family in rodents occurred after rodents diverged from other mammals. Major reorganization of the gene loci in rodents was largely completed before the split of rat and mouse. But PL-I and PL-II genes are the exceptions, which have clustered in a species-specific manner in the phylogenetic tree. By combining results from gene conversion testing, relative chromosomal location comparison and estimated time for gene duplication, we believe that rodent PL-I and PL-II genes are species-specific and are the results of serial duplications which occurred after the divergence of mouse and rat. Our analysis also reveals that continual gene duplication and divergence occurred during the evolution of rodent PRL gene family.  相似文献   

16.
Detailed studies of individual genes have shown that gene expression divergence often results from adaptive evolution of regulatory sequence. Genome-wide analyses, however, have yet to unite patterns of gene expression with polymorphism and divergence to infer population genetic mechanisms underlying expression evolution. Here, we combined genomic expression data—analyzed in a phylogenetic context—with whole genome light-shotgun sequence data from six Drosophila simulans lines and reference sequences from D. melanogaster and D. yakuba. These data allowed us to use molecular population genetics to test for neutral versus adaptive gene expression divergence on a genomic scale. We identified recent and recurrent adaptive evolution along the D. simulans lineage by contrasting sequence polymorphism within D. simulans to divergence from D. melanogaster and D. yakuba. Genes that evolved higher levels of expression in D. simulans have experienced adaptive evolution of the associated 3′ flanking and amino acid sequence. Concomitantly, these genes are also decelerating in their rates of protein evolution, which is in agreement with the finding that highly expressed genes evolve slowly. Interestingly, adaptive evolution in 5′ cis-regulatory regions did not correspond strongly with expression evolution. Our results provide a genomic view of the intimate link between selection acting on a phenotype and associated genic evolution.  相似文献   

17.
Genes involved in spermatogenesis tend to evolve rapidly, but we lack a clear understanding of how protein sequences and patterns of gene expression evolve across this complex developmental process. We used fluorescence-activated cell sorting (FACS) to generate expression data for early (meiotic) and late (postmeiotic) cell types across 13 inbred strains of mice (Mus) spanning ∼7 My of evolution. We used these comparative developmental data to investigate the evolution of lineage-specific expression, protein-coding sequences, and expression levels. We found increased lineage specificity and more rapid protein-coding and expression divergence during late spermatogenesis, suggesting that signatures of rapid testis molecular evolution are punctuated across sperm development. Despite strong overall developmental parallels in these components of molecular evolution, protein and expression divergences were only weakly correlated across genes. We detected more rapid protein evolution on the X chromosome relative to the autosomes, whereas X-linked gene expression tended to be relatively more conserved likely reflecting chromosome-specific regulatory constraints. Using allele-specific FACS expression data from crosses between four strains, we found that the relative contributions of different regulatory mechanisms also differed between cell types. Genes showing cis-regulatory changes were more common late in spermatogenesis, and tended to be associated with larger differences in expression levels and greater expression divergence between species. In contrast, genes with trans-acting changes were more common early and tended to be more conserved across species. Our findings advance understanding of gene evolution across spermatogenesis and underscore the fundamental importance of developmental context in molecular evolutionary studies.  相似文献   

18.
Summary In the 50 million years since the polyploidization event that gave rise to the catostomid family of fishes the duplicate genes encoding isozymes have undergone different fates. Ample opportunity has been available for regulatory evolution of these duplicate genes. Approximately half the duplicate genes have lost their expressions during this time. Of the duplicate genes remaining, the majority have diverged to different extents in their expression within and among adult tissues. The pattern of divergence of duplicate gene expression is consistent with the accumulation of mutations at regulatory genes. The absence of a correlation of extent of divergence of gene expression with the level of genetic variability for isozymes at these loci is consistent with the view that the rates of regulatory gene and structural gene evolution are uncoupled. The magnitude of divergence of duplicate gene expressions varies among tissues, enzymes, and species. Little correlation was found with the extent of divergence of duplicate gene expression within a species and its degree of morphological conservatism, although species pairs which are increasingly taxonomically distant are less likely to share specific patterns of differential gene expression. Probable phylogenetic times of origin of several patterns of differential gene expression have been proposed. Some patterns of differential gene expression have evolved in recent evolutionary times and are specific to one or a few species, whereas at least one pattern of differential gene expression is present in nearly all species and probably arose soon after the polyploidization event. Multilocus isozymes, formed by polyploidization, provide a useful model system for studying the forces responsible for the maintenance of duplicate genes and the evolution of these once identical genes to new spatially and temporally specific patterns of regulation.  相似文献   

19.
Dawn Anne Thompson 《FEBS letters》2009,583(24):3959-16698
Regulatory divergence is likely a major driving force in evolution. Comparative genomics is being increasingly used to infer the evolution of gene regulation. Ascomycota fungi are uniquely suited among eukaryotes for regulatory evolution studies, due to broad phylogenetic scope, many sequenced genomes, and tractability of genomic analysis. Here we review recent advances in the identification of the contribution of cis- and trans-factors to expression divergence. Whereas current strategies have led to the discovery of surprising signatures and mechanisms, we still understand very little about the adaptive role of regulatory evolution. Empirical studies including experimental evolution, comparative functional genomics and hybrid and engineered strains are showing early promise toward deciphering the contribution of regulatory divergence to adaptation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号