首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calpain inhibitors show the potential to serve as non-surgical alternatives in treating diabetic cataract and other types of these disorders. Here, we have tested the recently developed calpain inhibitor, SJA6017, for its ability to inhibit cataractogenesis in porcine lenses. These lenses were incubated in increasing levels of extralenticular calcium (Ca2+; 5–30 mM). Atomic absorption spectroscopy was used to determine total internal lens Ca2+ and a correlation between porcine lens Ca2+ uptake and levels of lens opacification were found with a total internal lens Ca2+ level of 5.8 M Ca2+ g–1 wet lens weight corresponding to the onset of catarctogenesis. A total internal lens Ca2+ level of 8.0 M Ca2+ g–1 wet lens weight corresponded to cataract occupying approximately 70% of the lens cell volume. This degree of cataract was reduced by approximately 40%, when SJA6017 (final concentration 0.8 M) was included in the extralenticular medium, suggesting that the Ca2+-mediated activation of calpains may be involved in the observed opacification. Supporting this suggestion atomic absorption spectroscopy showed that the effect of SJA6017 (final concentration 0.8 M) on lens opacification was not due to the compound restricting porcine lens Ca2+ uptake. The results indicate that calpain-induced cataractogenesis is dependent on extracellular Ca2+ and the calpain inhibitor SJA6017 (0.8 M) had no significant effect on Ca2+ uptake by lens. Its inhibitory effect on lens opacification may be due to a direct action on the activity of calpain. (Mol Cell Biochem 261: 169–173, 2004)  相似文献   

2.
Posterior capsular opacification (PCO) is the major complication arising after cataract treatment. PCO occurs when the lens epithelial cells remaining following surgery (LCs) undergo a wound healing response producing a mixture of α‐smooth muscle actin (α‐SMA)‐expressing myofibroblasts and lens fibre cells, which impair vision. Prior investigations have proposed that integrins play a central role in PCO and we found that, in a mouse fibre cell removal model of cataract surgery, expression of αV integrin and its interacting β‐subunits β1, β5, β6, β8 are up‐regulated concomitant with α‐SMA in LCs following surgery. To test the hypothesis that αV integrins are functionally important in PCO pathogenesis, we created mice lacking the αV integrin subunit in all lens cells. Adult lenses lacking αV integrins are transparent and show no apparent morphological abnormalities when compared with control lenses. However, following surgical fibre cell removal, the LCs in control eyes increased cell proliferation, and up‐regulated the expression of α‐SMA, β1‐integrin, fibronectin, tenascin‐C and transforming growth factor beta (TGF‐β)–induced protein within 48 hrs, while LCs lacking αV integrins exhibited much less cell proliferation and little to no up‐regulation of any of the fibrotic markers tested. This effect appears to result from the known roles of αV integrins in latent TGF‐β activation as αV integrin null lenses do not exhibit detectable SMAD‐3 phosphorylation after surgery, while this occurs robustly in control lenses, consistent with the known roles for TGF‐β in fibrotic PCO. These data suggest that therapeutics antagonizing αV integrin function could be used to prevent fibrotic PCO following cataract surgery.  相似文献   

3.

Background

Lens cataract is associated with protein oxidation and aggregation. Two proteins that cause cataract when deleted from the lens are methionine sulfoxide reductase A (MsrA) that repairs protein methionine sulfoxide (PMSO) oxidized proteins and α-crystallin which is a two-subunit (αA and αB) chaperone. Here, we tested whether PMSO formation damages α-crystallin chaperone function and whether MsrA could repair PMSO-α-crystallin.

Methods

Total α-crystallin was oxidized to PMSO and evaluated by CNBr-cleavage and mass spectrometry. Chaperone activity was measured by light scattering using lysozyme as target. PMSO-α-crystallin was treated with MsrA, and repair was assessed by CNBr cleavage, mass spectrometry and recovery of chaperone function. The levels of α-crystallin-PMSO in the lenses of MsrA-knockout relative to wild-type mice were determined.

Results

PMSO oxidation of total α-crystallin (met 138 of αA and met 68 of αB) resulted in loss of α-crystallin chaperone activity. MsrA treatment of PMSO-α-crystallin repaired its chaperone activity through reduction of PMSO. Deletion of MsrA in mice resulted in increased levels of PMSO-α-crystallin.

Conclusions

Methionine oxidation damages α-crystallin chaperone function and MsrA can repair PMSO-α-crystallin restoring its chaperone function. MsrA is required for maintaining the reduced state of α-crystallin methionines in the lens.

Significance

Methionine oxidation of α-crystallin in combination with loss of MsrA repair causes loss of α-crystallin chaperone function. Since increased PMSO levels and loss of α-crystallin function are hallmarks of cataract, these results provide insight into the mechanisms of cataract development and likely those of other age-related diseases.  相似文献   

4.
The aim of this study was to investigate whether curcumin and aminoguanidine (AG) prevent selenium-induced cataractogenesis in vitro. On postpartum day 8, transparent isolated lens were incubated in 24 well plates containing Dulbecco's Modified Eagle Medium (DMEM). Isolated lens of group I were incubated with DMEM medium alone. Group II: lenses incubated in DMEM containing 100 μM sodium selenite; group III: lenses incubated in DMEM containing 100 μM sodium selenite and 100 μM curcumin; group IV: lenses incubated in DMEM containing 100 μM sodium selenite and 200 μM curcumin; group V: lenses incubated in DMEM containing 100 μM sodium selenite and 100 μM AG; group V: lenses incubated in DMEM containing 100 μM sodium selenite and 200 μM AG. On day 12, cataract development was graded using an inverted microscope and the lenses were analyzed for enzymic as well as non-enzymic antioxidants, lipid peroxidation (LPO), nitric oxide (NO), superoxide anion (O2) and hydroxyl radical generation (OH) and inducible nitric oxide synthase (iNOS) activity by Western blotting and RT-PCR. All control lenses in group I were clear (0). In groups II and III, all isolated lenses developed cataract with variation in levels (+++ or ++), whereas isolated lenses from groups IV, V and VI were clear (0). In agreement to this, a decrease in antioxidants and increased free radical generation and also iNOS expression were observed in selenium exposed lenses when compared to other groups. AG (100 μM) was found to be more effective in anti-cataractogenic effect than curcumin (200 μM). Curcumin and AG suppressed selenium-induced oxidative stress and cataract formation in isolated lens from Wistar rat pups, possibly by inhibiting depletion of enzymic as well as non-enzymic antioxidants, and preventing uncontrolled generation of free radicals and also by inhibiting iNOS expression. Our results implicate a major role for curcumin and AG in preventing cataractogenesis in selenite-exposed lenses, wherein AG was found to be more potent.  相似文献   

5.
The Shumiya cataract rat (SCR) is a hereditary cataract model in which lens opacity appears spontaneously in the nuclear and perinuclear portions at 11-12 weeks of age. We found incidentally that the oral administration of aminoguanidine (AG), an inhibitor of inducible nitric oxide synthase (iNOS), strongly inhibits the development of lens opacification in SCR. Since our previous results strongly suggested that calpain-mediated proteolysis contributes to lens opacification during cataract formation in SCR, we examined the calpain-mediated proteolysis in AG-treated SCR lenses in detail. The results show that the calpain-mediated limited proteolysis of crystallins is also inhibited by AG-treatment. However, the administration of AG has no effect on the substrate susceptibility to calpain. On the other hand, the autolytic activation of calpain in AG-treated lenses is strongly inhibited, although AG itself does not inhibit calpain activity in vitro. Then, we analyzed the effect of AG-treatment on calcium concentrations in lens, and found that the elevation in calcium concentration that should occur prior to cataractogenesis in lenses is strongly suppressed by AG-treatment. These results strengthen our previous conclusion that calpain-mediated proteolysis plays a critical role in the development of lens opacification in SCR. Moreover, our results indicate that the inhibition of calpain-mediated proteolysis by AG-treatment is due to the suppression of calcium ion influx into the lens cells.  相似文献   

6.
The hydrophobic, potentially SH cross-linking reagent, phenylarsine oxide (PhAsO), was found to induce K+ and Ca2+ effluxes from mitochondria and to accelerate the respiration rate in state 4. The hydrophobic monofunctional electrophilic agent,N-ethylmaleimide, does not exhibit this effect but prevents the action of PhAsO. The polar potentially SH cross-linking reagents (arsenite, diamide) induce ion fluxes only in the presence of Pi. Ion fluxes induced by the SH reagents are inhibited by butylhydroxytoluene (an inhibitor of free radical reactions), andN,N-dicyclohexylcarbodiimide, not by oligomycin. It is inferred that the induction of ion fluxes in mitochondria caused by cross-linking of two juxtaposed SH groups is related to the development of free radical reactions.Abbreviations PhAsO phenylarsine oxide - NEM N-ethylmaleimide - HEPES N-2-hydroxyethylpiperazine-N-ethanesulfonic acid - RR ruthenium red - CCCP carbonyl cyanide-m-chlorophenylhydrazone - BHT butylhydroxytoluene - DCCD N,N-dicyclohexylcarbodiimide - DTNB 5,5-dithio-bis-2-nitrobenzoic acid - diamide diazenedicarboxylic acid-bis-dimethyl-amide - mersalyl O-[3-hydroxymercuri)-2-methoxypropyl) carbamoylphenoxyacetic acid - DTE dithioerythritol  相似文献   

7.
The scope of this investigation was to understand the role of aquaporin 5 (AQP5) for maintaining lens transparency and homeostasis. Studies were conducted using lenses of wild-type (WT) and AQP5 knockout (AQP5-KO) mice. Immunofluorescent staining verified AQP5 expression in WT lens sections and lack of expression in the knockout. In vivo and ex vivo, AQP5-KO lenses resembled WT lenses in morphology and transparency. Therefore, we subjected the lenses ex vivo under normal (5.6 mM glucose) and hyperglycemic (55.6 mM glucose) conditions to test for cataract formation. Twenty-four hours after incubation in hyperglycemic culture medium, AQP5-KO lenses showed mild opacification which was accelerated several fold at 48 h; in contrast, WT lenses remained clear even after 48 h of hyperglycemic treatment. AQP5-KO lenses displayed osmotic swelling due to increase in water content. Cellular contents began to leak into the culture medium after 48 h. We reason that water influx through glucose transporters and glucose cotransporters into the cells could mainly be responsible for creating hyperglycemic osmotic swelling; absence of AQP5 in fiber cells appears to cause lack of required water efflux, challenging cell volume regulation and adding to osmotic swelling. This study reveals that AQP5 could play a critical role in lens microcirculation for maintaining transparency and homeostasis, especially by providing protection under stressful conditions. To the best of our knowledge, this is the first report providing evidence that AQP5 facilitates maintenance of lens transparency and homeostasis by regulating osmotic swelling caused by glucose transporters and cotransporters under hyperglycemic stressful conditions.  相似文献   

8.
Specimens of the anterior lens capsule with an attached monolayer of lens epithelial cells (LECs) were obtained from patients (n?=?52) undergoing cataract surgery. Specimens were divided into three groups based on the type of cataract: nuclear cataract, cortical cataract and posterior subcapsular cataract (PSC). Clear lenses (n?=?11) obtained from donor eyes were used as controls. Expression was studied by immunofluorescence, real-time PCR and Western blot. Statistical analysis was done using the student’s t-test. Immunofluorescence results showed punctate localization of Cx43 at the cell boundaries in controls, nuclear cataract and PSC groups. In the cortical cataract group, cytoplasmic pools of Cx43 without any localization at the cell boundaries were observed. Real-time PCR results showed significant up-regulation of Cx43 in nuclear and cortical cataract groups. Western blot results revealed significant increase in protein levels of Cx43 and significant decrease of ZO-1 in all three cataract groups. Protein levels of alpha-catenin were decreased significantly in nuclear and cortical cataract group. There was no significant change in expression of beta-catenin in the cataractous groups. Our findings suggest that ZO-1 and alpha-catenin are important for gap junctions containing Cx43 in the LECs. Alterations in cell junction proteins may play a role during formation of different types of cataract.  相似文献   

9.
Cataract is the world's leading cause of blindness and a disease for which no efficacious medical therapy is available. To screen potential anti-cataract agents, a lens organ culture model system was used. Opacification of lenses maintained in culture was induced by specific insults including H(2)O(2) or the cataractogenic sugar xylose. Potential anti-cataract agents were added to the culture medium and their ability to inhibit opacification and certain biochemical changes associated with the opacification were assessed. Among the compounds tested, Tempol-H, the hydroxylamine of the nitroxide Tempol, gave the most promising results. It significantly inhibited opacification of rat lenses in an H(2)O(2)-induced cataract system as well as opacification of rhesus monkey lenses induced by xylose. Tempol-H inhibited the loss of glutathione, the leakage of protein, and decreases in the ability of cultured lenses to accumulate (3)H-choline from the medium, all of which were associated with the development of lens opacification. The antioxidative activity of Tempol-H and its ability to re-dox cycle make it an attractive candidate as a therapeutic agent for the prevention of aging-related cataract.  相似文献   

10.
We compared the progression of lens opacification with the time course of oxidation of lens proteins under conditions of streptozotocin-induced experimental diabetes in rats. By the end of the 17th week, approx. 50% of the diabetic animals developed mature cataracts. During the following month, 95% of the eyes in the diabetic group became cataractous. In the course of lens opacification we observed a time-dependent increase in the content of protein carbonyls and decrease in the concentration of protein sulfhydryls in the lenses of diabetic animals. Significantly higher protein carbonyl (p<0.01) and lower protein sulfhydryl (p<0.001) content was found in lenses with the advanced stage of cataract when compared with the diabetic lenses still transparent. We showed that the values of protein carbonyls exceeding 1.2 nmol/mg protein and of sulfhydryls falling below 60 nmol/mg protein corresponded to an approximately 50% incidence of mature cataract development. At the end of the 34th week, when all lenses of diabetic rats became cataractous, the corresponding values of protein carbonyls and sulfhydryls were 2.5 nmol/mg protein and 27 nmol/mg protein, respectively. The main finding of this study is the disclosure of quantitative relationship between the degree of protein oxidation and the rate of advanced cataract development in the widely used model of streptozotocin-induced experimental diabetes in rats.  相似文献   

11.
The generation of free radicals has been implicated in the causation of cataract, and compounds that can scavenge free radicals ameliorate the disease process. This study investigated the possible free radical scavenging potential of curcumin at a dose of 75 mg/kg body wt on selenium-induced cataract in rat pups. Intraperitoneal injection of sodium selenite (15 μmol/kg body wt) into 8- to 10-day-old rat pups led to severe oxidative stress in the eye lens as evidenced by increased nitric oxide, superoxide anion, and hydroxyl radical generation and inducible nitric oxide synthase expression that probably led to cataract formation. Selenium exposure also caused an increase in total calcium in the eye lens and significantly inhibited the activity of Ca2+ ATPase but not Na+/K+ ATPase or Mg2+ ATPase. On the other hand, pretreatment with curcumin, but not simultaneous or posttreatment, led to a decrease in oxidative stress and also rescued the selenium-mediated increase in lens Ca2+ and inhibition of Ca2+ ATPase activity in the eye lens. The results of this study demonstrate that an increase in free radical generation triggered by selenium could cause inactivation of lens Ca2+ ATPase leading to Ca2+ accumulation. This enhanced Ca2+ can cause activation of calpain-mediated proteolysis in the lens, resulting in lens opacification. Curcumin in this study was able to prevent selenium-induced oxidative stress leading to activation of Ca2+ ATPase and inhibition of lens opacification. Thus, curcumin has the potential to function as an anticataractogenic agent, possibly by preventing free radical-mediated accumulation of Ca2+ in the eye lens.  相似文献   

12.
Calpain inhibitors show the potential to serve as non-surgical alternatives in treating diabetic cataract and other types of these disorders. Here, we have tested the recently developed calpain inhibitor, SJA6017, for its ability to inhibit cataractogenesis in porcine lenses. These lenses were incubated in increasing levels of extralenticular calcium (Ca2+; 5-30 mM). Atomic absorption spectroscopy was used to determine total internal lens Ca2+ and a correlation between porcine lens Ca2+ uptake and levels of lens opacification were found with a total internal lens Ca2+ level of 5.8 microM Ca2+ g(-1) wet lens weight corresponding to the onset of catarctogenesis. A total internal lens Ca2+ level of 8.0 microM Ca2+ g(-1) wet lens weight corresponded to cataract occupying approximately 70% of the lens cell volume. This degree of cataract was reduced by approximately 40%, when SJA6017 (final concentration 0.8 microM) was included in the extralenticular medium, suggesting that the Ca2+-mediated activation of calpains may be involved in the observed opacification. Supporting this suggestion atomic absorption spectroscopy showed that the effect of SJA6017 (final concentration 0.8 microM) on lens opacification was not due to the compound restricting porcine lens Ca2+ uptake. The results indicate that calpain-induced cataractogenesis is dependent on extracellular Ca2+ and the calpain inhibitor SJA6017 (0.8 microM) had no significant effect on Ca2+ uptake by lens. Its inhibitory effect on lens opacification may be due to a direct action on the activity of calpain.  相似文献   

13.
Low glutathione levels are associated with crystallin oxidation in age-related nuclear cataract. To understand the role of cysteine residue oxidation, we used the novel approach of comparing human cataracts with glutathione-depleted LEGSKO mouse lenses for intra- versus intermolecular disulfide crosslinks using 2D-PAGE and proteomics, and then systematically identified in vivo and in vitro all disulfide forming sites using ICAT labeling method coupled with proteomics. Crystallins rich in intramolecular disulfides were abundant at young age in human and WT mouse lens but shifted to multimeric intermolecular disulfides at older age. The shift was ∼4x accelerated in LEGSKO lens. Most cysteine disulfides in β-crystallins (except βA4 in human) were highly conserved in mouse and human and could be generated by oxidation with H2O2, whereas γ-crystallin oxidation selectively affected γC23/42/79/80/154, γD42/33, and γS83/115/130 in human cataracts, and γB79/80/110, γD19/109, γF19/79, γE19, γS83/130, and γN26/128 in mouse. Analysis based on available crystal structure suggests that conformational changes are needed to expose Cys42, Cys79/80, Cys154 in γC; Cys42, Cys33 in γD, and Cys83, Cys115, and Cys130 in γS. In conclusion, the β-crystallin disulfidome is highly conserved in age-related nuclear cataract and LEGSKO mouse, and reproducible by in vitro oxidation, whereas some of the disulfide formation sites in γ-crystallins necessitate prior conformational changes. Overall, the LEGSKO mouse model is closely reminiscent of age-related nuclear cataract.Aging lens crystallins accumulate post-synthetic modifications that can be broadly classified into three categories, namely (1) protein backbone changes, such as racemization and truncation (13), (2) conversion of one amino acid into another, such as deamidation of asparagine into aspartate or deguanidination of arginine into ornithine, deamination of lysine into allysine and 2-aminoadipic acid (46), and (3) amino acid residue damage from reactive carbonyls and reactive oxygen species (7,8). Carbonyl damage results from the Maillard Reaction by glucose, methylglyoxal, or oxidation products of ascorbate, tryptophan or lipids which form adducts and crosslinks with nucleophilic group of lysine, arginine and cysteine. Examples include carboxymethyl-lysine, pentosidine, methylglyoxal hydroimidazolones, HNE-cysteine adducts and kynurenine (7,912). Oxidative damage results from reactive oxygen species that directly damage amino acid residues, e.g. oxidizing tryptophan into N-formyl kynurenine and kynurenine, methionine into its sulfoxide, and cysteine into cysteine disulfides or cysteic acid (1315).Because of their relevance to age-related cataract, the impact of each of these modifications on crystallin structure and stability is the subject of intense investigation. Importantly, Benedek proposed that high molecular weight (HMW)1 crystallin aggregates the size of 50 million daltons are needed in order for lens opacification to be visible(16,17). Crystallin aggregation conceivably occurs by one of several mechanisms that include conformational changes as a consequence amino acid mutations (18) or physical-chemical protein modifications. Of the latter, one mechanism that is dominant in several types of cataract involves oxidation of cysteines into protein disulfides (18) and formation of HMW aggregates that scatter light (19).In order to mimic the oxidative process and formation of protein disulfides linked to low concentrations of glutathione (GSH) in the nucleus of the human lens, we recently created the LEGSKO mouse in which lenticular GSH was lowered by knocking out the γ-glutamyl cysteine ligase subunit Gclc (20). These mice develop full-blown nuclear cataract by about 9 months and represent an important model for the development of drugs that might block or reverse the oxidation of crystallin sulfhydryls and presumably protein aggregation. However, this assumption in part depends on whether the sites of disulfide bond formation are similar in mouse and human age-related cataract. To test this hypothesis we performed the first comparative analysis of the cataract prone LEGSKO mouse and human aging and cataractous lens crystallin disulfidome, and compared the results with the disulfidome from mouse lens homogenate oxidized in vitro with H2O2 as a model of crystallin aggregation and opacification.  相似文献   

14.

Background

The cortex and nucleus of eye lenses are differentiated by both crystallin protein concentration and relative distribution of three major crystallins (α, β, and γ). Here, we explore the effects of composition and concentration of crystallins on the microstructure of the intact bovine lens (37 °C) along with several lenses from Antarctic fish (− 2 °C) and subtropical bigeye tuna (18 °C).

Methods

Our studies are based on small-angle X-ray scattering (SAXS) investigations of the intact lens slices where we study the effect of crystallin composition and concentration on microstructure.

Results

We are able to distinguish the nuclear and cortical regions by the development of a characteristic peak in the intensity of scattered X-rays. For both the bovine and fish lenses, the peak corresponds to that expected for dense suspensions of α-crystallins.

Conclusions

The absence of the scattering peak in the nucleus indicates that there is no characteristic wavelength for density fluctuations in the nucleus although there is liquid-like order in the packing of the different crystallins. The loss in peak is due to increased polydispersity in the sizes of the crystallins and due to the packing of the smaller γ-crystallins in the void space of α-crystallins.

General significance

Our results provide an understanding for the low turbidity of the eye lens that is a mixture of different proteins. This will inform design of optically transparent suspensions that can be used in a number of applications (e.g., artificial liquid lenses) or to better understand human diseases pathologies such as cataract.  相似文献   

15.
Oxidative stress is implicated in the initiation of maturity onset cataract. Quercetin, a major flavonol in the diet, inhibits lens opacification in a lens organ culture oxidative model of cataract. The aim of this research was to investigate the metabolism of quercetin in the lens and show how its metabolism affects the ability to prevent oxidation-induced opacity. The LOCH model (Free Radical Biology & Medicine 26:639; 1999) was employed, using rat lenses to investigate the effects of quercetin and metabolites on hydrogen peroxide-induced opacification. High-performance liquid chromatography analysis showed that the intact rat lens is capable of converting quercetin aglycone to 3'-O-methyl quercetin (isorhamnetin). Over a 6 h culture period no further metabolism of the 3'-O-methyl quercetin occurred. Loss of quercetin in the lens was accounted for by the increase in 3'-O-methyl quercetin. Incubation with 3,5-dinitrocatechol (10 microM), a catechol-O-methyltransferase (COMT) inhibitor, prevented the conversion of quercetin to 3'-O-methyl quercetin. The presence of both membrane-bound and soluble COMT was confirmed by immunoblotting. The results demonstrate that in the rat lens COMT methylates quercetin and that the product accumulates within the lens. Quercetin (10 microM) and 3'-O-methyl quercetin (10 microM) both inhibited hydrogen peroxide- (500 microM) induced sodium and calcium influx and lens opacification. Incubation of lenses with quercetin in the presence of COMT inhibitor revealed that the efficacy of quercetin is not dependent on its metabolism to 3'-O-methyl quercetin. The results indicate dietary quercetin and metabolites are active in inhibiting oxidative damage in the lens and thus could play a role in prevention of cataract formation.  相似文献   

16.
New bis benzimidazole diamide ligands, N,N′-bis(benzimidazolyl-2-methyl)-2,2′-thiadiethanamide (GBTAA), and N,N′-bis(benzimidazolyl-2-methyl)-3,3′-thiadipropanamide (GBTPA) have been synthesised and utilised to prepare copper(II) complexes with inner sphere ligands like Cl and . One of the ligands, GBTAA, has been structurally characterised, while the other GBTPA is characterised via an unusual tetrabenzoate bridged dicopper polymeric structure wherein the ligand GBTPA bridges the two dicopper benzoate units. The coordination environment about each copper is five coordinate, while τ value is found to be 0.32 indicating a distorted square pyramidal geometry. The copper(II) complexes catalyse the quenching of superoxide radical generated electrochemically.  相似文献   

17.
An in vitro culture model enabling posterior capsule opacification (PCO) to be investigated was developed and established by using low-melting-point (LMP)-agarose gel to support the capsular bag. After removal of the cornea from rodent and porcine eyeballs, the lens zonules were dissected. Whole lens explants were embedded into 2 % (37 °C) LMP-agarose gel solution. As performed routinely in cataract surgery, capsulotomy and lens fiber removal were carried out in the solidified LMP-agarose gel as sham cataract surgery. The LMP-agarose-gel-supported capsular bag/lens epithelial cell (CB-LEC) complexes were maintained in Dulbecco’s modified Eagle medium supplemented with 10 % fetal bovine serum in an anterior face-down position. The proliferation and migration of LECs into the posterior capsule were observed every 12 h by phase-contrast microscopy. Epithelial cells were observed at the central portion of the CB-LEC complexes after 56.57?±?16.56 h (n?=?7) and 106?±?14.03 h (n?=?6) of culture, for rodent and porcine lenses, respectively. The solidified gel allowed clear microscopic observations and whole-mount immunostaining evaluations of the whole area of the capsular bag. Histological examinations revealed the proliferation, migration, and transdifferentiation of LECs related to posterior capsule opacification. This new in vitro culture model provides experimental benefits by maintaining the natural contour of the capsule without implants inside or outside of the capsule. In addition, this model system allows pharmacological and histological evaluations of the cultured CB-LEC complexes without additional manipulations.  相似文献   

18.
19.
N-beta-Alanyl-5-S-glutathionyl-3,4-dihydroxyphenylalanine (5-S-GAD), an insect-derived antibacterial peptide, generates hydrogen peroxide (H(2)O(2)) that exerts antitumour activity. We have investigated the precise mechanism of H(2)O(2) production from 5-S-GAD by autoxidation aiming to understand its action toward tumour cells. Using the electron spin resonance (ESR) technique, we detected a strong signal due to radical formation from 5-S-GAD. Surprisingly, the ESR signal of the radical derived from 5-S-GAD appeared after incubation for 30 min at 37 degrees C in the buffer at pH 7.4; the signal was persistently detected for 10 h in the absence of catalytic metal ions. The computer simulation of the observed ESR spectrum together with the theoretical calculation of the spin density of the radical species indicates that an o-semiquinone radical anion was formed from 5-S-GAD. We demonstrated that H(2)O(2) is produced via the formation of superoxide anion O2(.-) by the electron-transfer reduction of molecular oxygen by the 5-S-GAD anion, which is in equilibrium with 5-S-GAD in the aqueous solution. The radical formation and the subsequent H(2)O(2) production were inhibited by superoxide dismutase (SOD), when the antitumour activity of 5-S-GAD was inhibited by SOD. Thus, the formation of the o-semiquinone radical anion would be necessary for the antitumour activity of 5-S-GAD as an intermediate in the production of cytotoxic H(2)O(2).  相似文献   

20.
Our previous studies have demonstrated that lens epithelial damage by excessive nitric oxide causes an elevation in lens opacification in UPL rats, and it has been reported that interferon-gamma production in lens epithelial cells is involved in cataract development. In this study, we investigated the involvement of interleukin (IL)-18, which leads to interferon-gamma, in UPL rat lenses. The opacification of UPL rat lenses starts at 39 days of age. The gene expression levels causing IL-18 activation (IL-18, IL-18 receptor and caspase-1) are increased at 32 days of age, and the expression of mature IL-18 protein in the UPL rat lenses also increases with ageing. On the other hand, the interferon-gamma levels in UPL rat lenses are increased, and the increase in interferon-gamma levels in UPL rat lenses reaches a maximum at 39 days of age. Mature IL-18 expression and interferon-gamma production are achieved prior to the onset of lens opacification. In conclusion, the expression levels of IL-18 in the lenses of UPL rats are increased with aging. In addition, interferon-gamma levels in the lenses of UPL rats are also increased. It is possible that interferon-gamma generated by the activated IL-18 may induce cataract development in UPL rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号