首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
2.
Luo  Liang  Gong  Yuan Qi  Qi  XieFei  Lai  WenYan  Lan  Haibing  Luo  Yaling 《Molecular and cellular biochemistry》2013,373(1-2):1-9
Tumor necrosis factor-alpha (TNFα) plays a crucial role in inflammatory diseases such as rheumatoid arthritis and postmenopausal osteoporosis. Recently, it has been demonstrated that hydrogen gas, known as a novel antioxidant, can exert therapeutic anti-inflammatory effect in many diseases. In this study, we investigated the effect of treatment with hydrogen molecule (H2) on TNFα-induced cell injury in osteoblast. The osteoblasts isolated from neonatal rat calvariae were cultured. It was found that TNFα suppressed cell viability, induced cell apoptosis, suppressed Runx2 mRNA expression, and inhibited alkaline phosphatase activity, which was reversed by co-incubation with H2. Incubation with TNFα-enhanced intracellular reactive oxygen species (ROS) formation and malondialdehyde production increased NADPH oxidase activity, impaired mitochondrial function marked by increased mitochondrial ROS formation and decreased mitochondrial membrane potential and ATP synthesis, and suppressed activities of antioxidant enzymes including SOD and catalase, which were restored by co-incubation with H2. Treatment with H2 inhibited TNFα-induced activation of NFκB pathway. In addition, treatment with H2 inhibited TNFα-induced nitric oxide (NO) formation through inhibiting iNOS activity. Treatment with H2 inhibited TNFα-induced IL-6 and ICAM-1 mRNA expression. In conclusion, treatment with H2 alleviates TNFα-induced cell injury in osteoblast through abating oxidative stress, preserving mitochondrial function, suppressing inflammation, and enhancing NO bioavailability.  相似文献   

3.
4.
5.
《Cellular signalling》2014,26(7):1576-1588
The sphingosine-1-phosphate (S1P) type 1 receptor (S1P1R) is a novel therapeutic target in lymphocyte-mediated autoimmune diseases. S1P1 receptor desensitization caused by synthetic S1P1 receptor agonists prevents T-lymphocyte egress from secondary lymphoid organs into the circulation. The selective S1P1 receptor agonist ponesimod, which is in development for the treatment of autoimmune diseases, efficiently reduces peripheral lymphocyte counts and displays efficacy in animal models of autoimmune disease. Using ponesimod and the natural ligand S1P, we investigated the molecular mechanisms leading to different signaling, desensitization and trafficking behavior of S1P1 receptors. In recombinant S1P1 receptor-expressing cells, ponesimod and S1P triggered Gαi protein-mediated signaling and β-arrestin recruitment with comparable potency and efficiency, but only ponesimod efficiently induced intracellular receptor accumulation. In human umbilical vein endothelial cells (HUVEC), ponesimod and S1P triggered translocation of the endogenous S1P1 receptor to the Golgi compartment. However, only ponesimod treatment caused efficient surface receptor depletion, receptor accumulation in the Golgi and degradation. Impedance measurements in HUVEC showed that ponesimod induced only short-lived Gαi protein-mediated signaling followed by resistance to further stimulation, whereas S1P induced sustained Gαi protein-mediated signaling without desensitization. Inhibition of S1P lyase activity in HUVEC rendered S1P an efficient S1P1 receptor internalizing compound and abrogated S1P-mediated sustained signaling. This suggests that S1P lyase – by facilitating S1P1 receptor recycling – is essential for S1P-mediated sustained signaling, and that synthetic agonists are functional antagonists because they are not S1P lyase substrates.  相似文献   

6.
Pea seedlings (Pisum sativum L.) were used as materials to test the timings and compartments of hydrogen peroxide (H2O2) triggered by wounding and exogenous jasmonic acid (JA). The results showed that H2O2 could be systemically induced by wounding and exogenous JA. H2O2 increased within 1 h and reached the peak 3–5 h after wounding in either the wounded leaves or the unwounded leaves adjacent to the wounded ones and the inferior leaves far from the wounded ones. After this, H2O2 decreased and recovered to the control level 12 h after wounding. The activities of antioxidant enzymes, however, were rapidly increased by wounding. Diphenylene iodonium (DPI), an inhibitor of NADPH oxidase, could significantly inhibit H2O2 burst that was mediated by wounding and exogenous JA. Assay of H2O2 subcellular location showed that H2O2 in response to wounding and exogenous JA was predominantly accumulated in plasma membrane, cell wall and apoplasmic space. Numerous JA (gold particles) was found via immunogold electron microscopy to be located in cell wall and phloem zones of mesophyll cell after wounding.  相似文献   

7.
NEMO is an essential regulatory component of the IκB kinase (IKK) complex, which controls activation of the NF-κB signaling pathway. Herein, we show that NEMO exists as a disulfide-bonded dimer when isolated from several cell types and analyzed by SDS-polyacrylamide gel electrophoresis under non-reducing conditions. Treatment of cells with hydrogen peroxide (H2O2) induces further formation of NEMO dimers. Disulfide bond-mediated formation of NEMO dimers requires Cys54 and Cys347. The ability of these residues to form disulfide bonds is consistent with their location in a NEMO dimer structure that we generated by molecular modeling. We also show that pretreatment with H2O2 decreases TNFα-induced IKK activity in NEMO-reconstituted cells, and that TNFα has a diminished ability to activate NF-κB DNA binding in cells reconstituted with NEMO mutant C54/347A. This study implicates NEMO as a target of redox regulation and presents the first structural model for the NEMO protein.  相似文献   

8.
A series of new bromophenols and chlorophenols were prepared by a practical route. The in vitro antioxidative activity of the halophenols was evaluated by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging assay, and their cytoprotective activity was also tested on hydrogen peroxide (H2O2)-induced injury in human umbilical vein endothelial cells (HUVEC). All halophenols tested displayed moderate to good DPPH radical-scavenging activity, and two bromophenols, 2,3′-dibromo-4,5,6′-trihydroxydiphenylmethanone (16c) and 2,3-dibromo-4,5-dihydroxydiphenylmethanone (17c) exhibited high protective activity against H2O2-induced injury in HUVEC with EC50 values of 0.4 and 0.8 μM, respectively. The preliminary structure–activity relationships of these compounds were also investigated in order to determine the essential structures required for their bioactivities.  相似文献   

9.
The aim of our research was to study the influence of hydrogen peroxide on the exocytosis of von Willebrand factor (vWF) in human umbilical vein endothelial cells (HUVEC). We have found that H2O2 at a non-toxic concentration (100 μM) increases the amount of vWF secreted by HUVEC by 43 ± 14% over control (p < 0.03) and elevates total exposition of vWF on cell surface by 89 ± 5% (p < 0.01). Analysis of immunofluorescent images of HUVEC with CellProfiler program revealed that the average number of antigen positive structures on the single cell surface increases from 11.4 ± 0.16 in control up to 17.5 ± 0.21 after incubation with H2O2 (p < 0.01). vWF is exposed on the cell surface as dots with the average sizes around 1–3 μm. H2O2 causes an increase in the number of these dots and the appearence of the strings of vWF which are absent in control HUVEC. It is suggested that H2O2 may serve as a messenger which stimulates vWF exocytosis.  相似文献   

10.
H2S is the third endogenous gaseous mediator, after nitric oxide and carbon monoxide, possessing pleiotropic effects, including cytoprotection and anti‐inflammatory action. We analyzed, in an in vitro model entailing monocyte adhesion to an endothelial monolayer, the changes induced by H2S on various potential targets, including cytokines, chemokines, and proteases, playing a crucial role in inflammation and cell adhesion. Results show that H2S prevents the increase in monocyte adhesion induced by tumor necrosis factor‐α (TNF‐α). Under these conditions, downregulation of monocyte chemoattractant protein‐1 (MCP‐1), chemokine C‐C motif receptor 2, and increase of cluster of differentiation 36 could be detected in monocytes. In endothelial cells, H2S treatment reduces the increase in MCP‐1, inter‐cellular adhesion molecule‐1, vascular cell adhesion molecule‐1, and of a disintegrin and metalloproteinase metallopeptidase domain 17 (ADAM17), both at the gene expression and protein levels. Cystathionine γ‐lyase and 3‐mercaptopyruvate sulfurtransferase, the major H2S forming enzymes, are downregulated in endothelial cells. In addition, H2S significantly reduces activation of ADAM17 by PMA in endothelial cells, with consequent reduction of both ADAM17‐dependent TNF‐α ectodomain shedding and MCP‐1 release. In conclusion, H2S is able to prevent endothelial activation by hampering endothelial activation, triggered by TNF‐α. The mechanism of this protective effect is mainly mediated by down‐modulation of ADAM17‐dependent TNF‐converting enzyme (TACE) activity with consequent inhibition of soluble TNF‐α shedding and its relevant MCP‐1 release in the medium. These results are discussed in the light of the potential protective role of H2S in pro‐inflammatory and pro‐atherogenic processes, such as chronic renal failure. J. Cell. Biochem. 114: 1536–1548, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

11.

Purposes

We have previously reported that Ginsenoside Rb1 may effectively prevent HUVECs from senescence, however, the detailed mechanism has not demonstrated up to now. Recent studies have shown that sirtuin-1 (Sirt1) plays an important role in the development of endothelial senescence. The purpose of this study was to explore whether Sirt1 is involved in the action of Ginsenoside Rb1 regarding protection against H2O2-induced HUVEC Senescence.

Methods and Results

Senescence induced by hydrogen peroxide (H2O2) in human umbilical vein endothelial cells (HUVECs) was examined by analyzing plasminogen activator inhibitor-1 (PAI-1) expression, cell morphology, and senescence-associated beta-galactosidase (SA-β-gal) activity. The results revealed that 42% of control-treated HUVECs were SA-β-gal positive after treatment by 60 µmol/L H2O2, however, this particular effect of H2O2 was decreased more than 2-fold (19%) in the HUVECs when pretreated with Rb1 (20 µmol/L) for 30 min. Additionally, Rb1 decreased eNOS acetylation, as well as promoted more NO production that was accompanied by an increase in Sirt1 expression. Furthermore, upon knocking down Sirt1, the effect of Rb1 on HUVEC senescence was blunted.

Conclusions

The present study indicated that Ginsenoside Rb1 acts through stimulating Sirt1 in order to protect against endothelial senescence and dysfunction. As such, Sirt1 appears to be of particular importance in maintaining endothelial functions and delaying vascular aging.  相似文献   

12.
Vascular endothelial cells are highly sensitive to oxidative stress, and this is one of the mechanisms by which widespread endothelial dysfunction is induced in most cardiovascular diseases and disorders. However, how these cells can survive in oxidative stress environments remains unclear. Salidroside, a traditional Chinese medicine, has been shown to confer vascular protective effects. We aimed to understand the role of autophagy and its regulatory mechanisms by treating human umbilical vein endothelial cells (HUVECs) with salidroside under oxidative stress. HUVECs were treated with salidroside and exposed to hydrogen peroxide (H2O2). The results indicated that salidroside exerted cytoprotective effects in an H2O2-induced HUVEC injury model and suppressed H2O2-induced apoptosis of HUVECs. Pretreatment with 3-methyladenine (3-MA), an autophagy inhibitor, increased oxidative stress-induced HUVEC apoptosis, while the autophagy activator rapamycin induced anti-apoptosis effects in HUVECs. Salidroside increased autophagy and decreased apoptosis of HUVECs in a dose-dependent manner under oxidative stress. Moreover, 3-MA attenuated salidroside-induced HUVEC autophagy and promoted apoptosis, whereas rapamycin had no additional effects compared with salidroside alone. Salidroside upregulated AMPK phosphorylation but downregulated mTOR phosphorylation under oxidative stress; however, administration of compound C, an AMPK inhibitor, abrogated AMPK phosphorylation and increased mTOR phosphorylation and apoptosis compared with salidroside alone. These results suggest that autophagy is a protective mechanism in HUVECs under oxidative stress and that salidroside might promote autophagy through activation of the AMPK pathway and downregulation of mTOR pathway.  相似文献   

13.
Amifostine is a broad-spectrum cytoprotective agent, selective for normal tissues. It is a pro-drug metabolised to the free thiol WR-1065 that may act as a scavenger of free radicals, generated in tissues exposed to chemotherapeutic agents or radiation. WR-1065 can be further oxidized to its symmetric disulfide WR-33278 or degraded to hydrogen peroxide (H2O2). Both WR-1065 and WR-33278 resemble endogenous polyamines. Although amifostine is used in some cases in the clinic, there are only few studies concerning its actions at the cellular level. We have previously shown that amifostine inhibits angiogenesis in vivo, affecting the expression of several angiogenic genes. In the present work, we studied the effect of amifostine on human umbilical vein endothelial cell (HUVEC) functions in vitro, in order to further clarify its mechanism(s) of action. Amifostine increased HUVEC proliferation, an effect that was reversed by the intracellular H2O2 scavenger sodium pyruvate, agents that increase intracellular cAMP levels and L-valine. On the other hand, amifostine decreased HUVEC migration, an effect that was reversed by L-valine or L-arginine but not sodium pyrouvate. The decrease in migration was in line with decreased tube formation on matrigel and decreased amounts of metalloproteinase-2 released into the culture medium of HUVEC. Finally, amifostine reduced tyrosine nitration of the cytoskeletal proteins actin and α-tubulin in a time dependent manner. This last action could be due to the reduced production of nitric oxide (NO) or to other not yet identified mechanisms. Collectively, our results suggest that amifostine acts on endothelial cells through pathways that affect the redox status of the cells, either by producing H2O2 or by modulating NO production.  相似文献   

14.
15.
Previous studies have demonstrated that Notch signaling pathway plays a regulatory role in cellular oxidative stress injury (OSI). In this study, our aim was to explore the role of the Notch signaling pathway in hydrogen peroxide (H2O2)-induced OSI and the protective effect of curcumin during (H2O2)-induced injury in human umbilical vein endothelial cells (HUVECs). DAPT, a specific inhibitor of the Notch signaling pathway, and Notch1 siRNA were used to study Notch activity. Further, HUVECs were exposed to H2O2 in the absence or presence of curcumin. DAPT and Notch1 siRNA significantly inhibited OSI and the expression of Notch1 and Hes1. Curcumin conferred a protective effect on the HUVECs against H2O2, which was evidenced by improved cell viability, adhesive ability and migratory ability and a decreased apoptotic index, decreased production of reactive oxygen species (ROS) and a reduction in several biochemical parameters. Immunofluorescence and Western blotting analyses demonstrated that H2O2 treatment upregulated the expression of Notch1, Hes1, Caspase3, Bax and cytochrome c downregulated the expression of Bcl2, and treatment with curcumin reversed these effects. We demonstrated for the first time that the inhibition of Notch signaling pathway imparts a protective effect against endothelial OSI. The protective effects of curcumin against OSI are at least in part dependent on Notch1 inhibition.  相似文献   

16.
Silent information regulator 1 (SIRT1), a class III histone deacetylase, retards aging and plays roles in cellular oxidative stress injury (OSI). However, the biological context in which SIRT1 promotes oxidative injury is not fully understood. Here, we show that SIRT1 essentially mediates hydrogen peroxide (H2O2)-induced cytotoxicity in human umbilical vein endothelial cell (HUVEC). In HUVECs, SIRT1 protein expression was significantly increased in a dose-dependent manner after H2O2 treatment, whereas the acetylation levels of the NF-κB p65 subunit and p53 were decreased. EX527 (a specific SIRT1 inhibitor) conferred protection to the HUVECs against H2O2, as indicated by an improved cell viability, adhesion, an enhanced migratory ability, a decreased apoptotic index, decreased reactive oxygen species (ROS) production and reductions in several biochemical parameters. Immunofluorescence and Western blot analyses demonstrated that H2O2 treatment up-regulated SIRT1, phosphorylated-JNK (p-JNK), p-p38MAPK, and p-ERK expression. EX527 pretreatment reversed these effects on SIRT1, p-JNK, and p-p38MAPK but further increased the p-ERK levels. Similar results were confirmed in SIRT1 siRNA experiments. In summary, SIRT1 signaling pathway inhibition imparts protection against acute endothelial OSI, and modulation of MAPKs (JNK, p38MAPK, and ERK) may be involved in the protective effect of SIRT1 inhibition.  相似文献   

17.
In this study, we examined the impact of 3-day hypoxia of different degrees on the viability, proliferation, and secretory activity of endothelial cells from human umbilical vein (HUVEC). A gas mixture of three components was used (%): 1) 10 O2, 5 CO2, and 85 Ar; 2) 5 O2, 5 CO2, and 80 Ar; and 3) 1 O2, 5 CO2, and 94 Ar. Cells cultivated in a CO2 incubator in atmospheric oxygen (21% O2) served as control. It was found that 3-day HUVEC cultivation at 1% O2 increased NO synthesis; enhanced secretion of endothelin-1, IL-6, IL-8, TNF-alpha, sVCAM-1, sE-cadherin, sE-selectin, VEGF-A, and bFGF; and inhibited proliferation. HUVEC cultivated under 10% O2 and 5% O2 exhibited the lowest level of basal secretion of these substances and increased proliferative activity. These cells cultivated under conditions of atmospheric oxygen for 3 days displayed activated secretion of NO, IL-6, IL-8, and von Willebrand factor; the activation was higher than at 10% O2 and 5% CO2. Thus, the gaseous medium with reduced oxygen content (5%) is a more physiological condition for HUVEC cultivation. An increase in the amount of oxygen up to the atmospheric level causes endotheliocyte activation; the cells exhibit the features of endothelial dysfunction. Oxygen content reduced to 1% induces endothelial dysfunction and reduced proliferative potential.  相似文献   

18.
A series of catechol ring-fluorinated derivatives of caffeic acid phenethyl amide (CAPA) were synthesized and screened for cytoprotective activity against H2O2 induced oxidative stress in human umbilical vein endothelial cells (HUVEC). CAPA and three fluorinated analogs were found to be significantly cytoprotective when compared to control, with no significant difference in cytoprotection between caffeic acid phenethyl ester (CAPE) and CAPA.  相似文献   

19.
We previously reportedthat exposure of endothelial cells to H2O2results in a loss of cell-cell apposition and increased endothelialsolute permeability. The purpose of this study was to determine howtyrosine phosphorylation and tyrosine phosphatases contribute tooxidant-mediated disorganization of endothelial cell junctions. Wefound that H2O2 caused a rapid decrease in total cellular phosphatase activity that facilitates a compensatory increase in cellular phosphotyrosine residues.H2O2 exposure also results in increasedendothelial monolayer permeability, which was attenuated by pp60, aninhibitor of src kinase. Inhibition of protein tyrosinephosphatase activity by phenylarsine oxide (PAO) demonstrated a similarpermeability profile compared with H2O2,suggesting that tyrosine phosphatase activity is important inmaintaining a normal endothelial solute barrier. Immunofluorescence shows that H2O2 exposure caused a loss ofpan-reactive cadherin and -catenin from cell junctions that was notblocked by the src kinase inhibitor PP1.H2O2 also caused -catenin to dissociate fromthe endothelial cytoskeleton, which was not prevented by PP1. Finally,we determined that PP1 did not prevent cadherin internalization. Thesedata suggest that oxidants like H2O2 produce biological effects through protein phosphotyrosine modifications bydecreasing total cellular phosphatase activity combined with increasedsrc kinase activity, resulting in increased endothelial solute permeability.

  相似文献   

20.
Previous studies have shown that the JAK2/STAT3 signaling pathway plays a regulatory role in cellular oxidative stress injury (OSI). In this study, we explored the role of the JAK2/STAT3 signaling pathway in hydrogen peroxide (H2O2)-induced OSI and the protective effect of melatonin against (H2O2)-induced injury in human umbilical vein endothelial cells (HUVECs). AG490 (a specific inhibitor of the JAK2/STAT3 signaling pathway) and JAK2 siRNA were used to manipulate JAK2/STAT3 activity, and the results showed that AG490 and JAK2 siRNA inhibited OSI and the levels of p-JAK2 and p-STAT3. HUVECs were then subjected to H2O2 in the absence or presence of melatonin, the main secretory product of the pineal gland. Melatonin conferred a protective effect against H2O2, which was evidenced by improvements in cell viability, adhesive ability and migratory ability, decreases in the apoptotic index and reactive oxygen species (ROS) production and several biochemical parameters in HUVECs. Immunofluorescence and Western blotting showed that H2O2 treatment increased the levels of p-JAK2, p-STAT3, Cytochrome c, Bax and Caspase3 and decreased the levels of Bcl2, whereas melatonin treatment partially reversed these effects. We, for the first time, demonstrate that the inhibition of the JAK2/STAT3 signaling pathway results in a protective effect against endothelial OSI. The protective effects of melatonin against OSI, at least partially, depend upon JAK2/STAT3 inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号