首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Acute kidney injury (AKI) contributes to the high morbidity and mortality of multi-system organ failure in sepsis. However, recovery of renal function after sepsis-induced AKI suggests active repair of energy-producing pathways. Here, we tested the hypothesis in mice that Staphyloccocus aureus sepsis damages mitochondrial DNA (mtDNA) in the kidney and activates mtDNA repair and mitochondrial biogenesis. Sepsis was induced in wild-type C57Bl/6J and Cox-8 Gfp-tagged mitochondrial-reporter mice via intraperitoneal fibrin clots embedded with S. aureus. Kidneys from surviving mice were harvested at time zero (control), 24, or 48 hours after infection and evaluated for renal inflammation, oxidative stress markers, mtDNA content, and mitochondrial biogenesis markers, and OGG1 and UDG mitochondrial DNA repair enzymes. We examined the kidneys of the mitochondrial reporter mice for changes in staining density and distribution. S. aureus sepsis induced sharp amplification of renal Tnf, Il-10, and Ngal mRNAs with decreased renal mtDNA content and increased tubular and glomerular cell death and accumulation of protein carbonyls and 8-OHdG. Subsequently, mtDNA repair and mitochondrial biogenesis was evidenced by elevated OGG1 levels and significant increases in NRF-1, NRF-2, and mtTFA expression. Overall, renal mitochondrial mass, tracked by citrate synthase mRNA and protein, increased in parallel with changes in mitochondrial GFP-fluorescence especially in proximal tubules in the renal cortex and medulla. Sub-lethal S. aureus sepsis thus induces widespread renal mitochondrial damage that triggers the induction of the renal mtDNA repair protein, OGG1, and mitochondrial biogenesis as a conspicuous resolution mechanism after systemic bacterial infection.  相似文献   

5.
Reactive oxygen species (ROS) are formed as natural byproducts during aerobic metabolism and readily induce premutagenic base lesions in the DNA. The 8-oxoguanine DNA glycosylase (OGG1) and MutY homolog 1 (MYH) synergistically prevent mutagenesis and cancer formation in mice. Their localization in the mitochondria as well as in the nucleus suggests that mutations in mitochondrial DNA (mtDNA) contribute to the carcinogenesis in the myh?/?/ogg1?/? double knockout mouse.In order to test this hypothesis, we analyzed mtDNA mutagenesis and mitochondrial function in young (1 month) and adult (6 months) wt and myh?/?/ogg1?/? mice. To our surprise, the absence of OGG1 and MYH had no impact on mtDNA mutation rates in these mice, even at the onset of cancer. This indicates that mtDNA mutagenesis is not responsible for the carcinogenesis of myh?/?/ogg1?/? mice. In line with these results, mitochondrial function was unaffected in the cancerous tissues liver and lung, whereas a significant reduction in respiration capacity was observed in brain mitochondria from the adult myh?/?/ogg1?/? mouse. The reduced respiration capacity correlated with a specific reduction (?25%) in complex I biochemical activity in brain mitochondria.Our results demonstrate that mtDNA mutations are not associated with cancer development in myh?/?/ogg1?/? mice, and that impairment of mitochondrial function in brain could be linked to nuclear DNA mutations in this strain. OGG1 and MYH appear to be dispensable for antimutator function in mitochondria.  相似文献   

6.
p21WAF1/CIP1 is a critical regulator of cell cycle progression. However, the role of p21 in mitochondrial function remains poorly understood. In this study, we examined the effect of p21 deficiency on mitochondrial function in HCT116 human colon cancer cells. We found that there was a significant increase in the mitochondrial mass of p21?/? HCT116 cells, as measured by 10-N-nonyl-acridine orange staining, as well as an increase in the mitochondrial DNA content. In contrast, p53?/? cells had a mitochondrial mass comparable to that of wild-type HCT116 cells. In addition, the expression levels of the mitochondrial biogenesis regulators PGC-1α and TFAM and AMPK activity were also elevated in p21?/? cells, indicating that p21 deficiency induces the rate of mitochondrial biogenesis through the AMPK-PGC-1α axis. However, the increase in mitochondrial biogenesis in p21?/? cells did not accompany an increase in the cellular steady-state level of ATP. Furthermore, p21?/? cells exhibited significant proliferation impairment in galactose medium, suggesting that p21 deficiency induces a defect in the mitochondrial respiratory chain in HCT116 cells. Taken together, our results suggest that the loss of p21 results in an aberrant increase in the mitochondrial mass and in mitochondrial dysfunction in HCT116 cells, indicating that p21 is required to maintain proper mitochondrial mass and respiratory function.  相似文献   

7.
NOS isoform activation is related to liver failure during sepsis, but the mechanisms driving mitochondrial impairment remain unclear. We induced sepsis by LPS administration to inducible nitric oxide synthase (iNOS?/?) and neuronal nitric oxide synthase (nNOS?/?) mice and their respective wild-type controls to examine the contribution of iNOS to mitochondrial failure in the absence of nNOS. To achieve this goal, the determination of messenger RNA (mRNA) expression and protein content of iNOS in cytosol and mitochondria, the mitochondrial respiratory complex content, and the levels of nitrosative and oxidative stress (by measuring 3-nitrotyrosine residues and carbonyl groups, respectively) were examined in the liver of control and septic mice. We detected strongly elevated iNOS mRNA expression and protein levels in liver cytosol and mitochondria of septic mice, which were related to enhanced oxidative and nitrosative stress, and with fewer changes in respiratory complexes. The absence of the iNOS, but not nNOS, gene absolutely prevented mitochondrial impairment during sepsis. Moreover, the nNOS gene did not modify the expression and the effects of iNOS here shown. Melatonin administration counteracted iNOS activation and mitochondrial damage and enhanced the expression of the respiratory complexes above the control values. These effects were unrelated to the presence or absence of nNOS. iNOS is a main target to prevent liver mitochondrial impairment during sepsis, and melatonin represents an efficient antagonist of these iNOS-dependent effects whereas it may boost mitochondrial respiration to enhance liver survival.  相似文献   

8.
We examined the roles of indoleamine-2, 3-dioxygenase 1 (IDO1) in controlling cerebral Toxoplasma gondii infection in both genetically resistant and susceptible strains of mice. In susceptible C57BL/6 mice, IDO expression was immunohistochemically detected only in a minority (22.5%) of tachyzoite-infected cells in their brains during the later stage of infection. When C57BL-6-background IDO1-deficient (IDO1?/?) mice were infected, their cerebral tachyzoite burden was equivalent to those of wild-type (WT) animals. In contrast, in resistant BALB/c mice, IDO expression was detected in a majority (84.0%) of tachyzoite-infected cerebral cells. However, tachyzoite burden in BALB/c-background IDO1?/? mice remained as low as that of WT mice, which was 78 times less than those of C57BL/6 mice. Of interest, IDO1?/? mice of only resistant BALB/c-background had markedly greater cerebral expressions of two other IFN-γ-mediated effector molecules, guanylate binding protein 1 (Gbp1) and nitric oxide synthase 2 (NOS2), than their WT mice. Therefore, it would be possible that IDO1 deficiency was effectively compensated by the upregulated expression of Gbp1 and NOS2 to control cerebral tachyzoite growth in genetically resistant BALB/c mice, whereas IDO1 did not significantly contribute to controlling cerebral tachyzoite growth in genetically susceptible C57BL/6 mice because of its suppressed expression in infected cells.  相似文献   

9.
Mouse mast cell protease-4 (mMCP4) is a chymase that has been implicated in cardiovascular diseases, including myocardial infarction (MI). This study tested a direct role of mMCP4 in mouse post-MI cardiac dysfunction and myocardial remodeling. Immunoblot and immunofluorescent double staining demonstrated mMCP4 expression in cardiomyocytes from the infarct zone from mouse heart at 28 day post-MI. At this time point, mMCP4-deficient Mcpt4?/? mice showed no difference in survival from wild-type (WT) control mice, yet demonstrated smaller infarct size, improved cardiac functions, reduced macrophage content but increased T-cell accumulation in the infarct region compared with those of WT littermates. mMCP4-deficiency also reduced cardiomyocyte apoptosis and expression of TGF-β1, p-Smad2, and p-Smad3 in the infarct region, but did not affect collagen deposition or α-smooth muscle actin expression in the same area. Gelatin gel zymography and immunoblot analysis revealed reduced activities of matrix metalloproteinases and expression of cysteinyl cathepsins in the myocardium, macrophages, and T cells from Mcpt4?/? mice. Immunoblot analysis also found reduced p-Smad2 and p-Smad3 in the myocardium from Mcpt4?/? mice, yet fibroblasts from Mcpt4?/? mice showed comparable levels of p-Smad2 and p-Smad3 to those of WT fibroblasts. Flow cytometry, immunoblot analysis, and immunofluorescent staining demonstrated that mMCP4-deficiency reduced the expression of proapoptotic cathepsins in cardiomyocytes and protected cardiomyocytes from H2O2-induced apoptosis. This study established a role of mMCP4 in mouse post-MI dysfunction by regulating myocardial protease expression and cardiomyocyte death without significant impact on myocardial fibrosis or survival post-MI in mice.  相似文献   

10.
Significantly larger numbers of Toxoplasma gondii cysts were detected in the brains of RAG1?/?NOS2?/? than RAG1?/? mice following infection. In contrast, the cyst numbers markedly decreased in a same manner in both strains of mice after receiving CD8+ immune T cells. Thus, NOS2-mediated innate immunity is important for inhibiting formation of cysts in the brain but not required for the T cell-initiated cyst removal, which is associated with phagocyte accumulation. Treatment with chloroquine, an inhibitor of endolysosomal acidification, partially but significantly inhibited the T cell-mediated cyst removal, suggesting that phagosome–lysosome fusion could be involved in the T. gondii cyst elimination.  相似文献   

11.
Induction of CYP2E1 by pyrazole (PY) potentiated the hepatotoxicity induced by TNFα in mice. We evaluated the role of nitrosative and oxidative stress and the NF-κB activation pathway in this liver injury. The iNOS inhibitor N-(3-aminomethyl)benzylacetamindine (1400W) or the antioxidant N-acetyl-l-cysteine (NAC) prevented this liver injury. TNFα plus PY treatment triggered radical stress in the liver with increased lipid peroxidation and decreased glutathione and caused mitochondrial damage as reflected by elevated membrane swelling and cytochrome c release. The radical stress and mitochondrial damage were prevented by 1400W and NAC. TNFα plus PY treatment elevated 3-nitrotyrosine adduct formation and induced NOS2 in the liver; 1400W and NAC blocked these changes. A lower extent of liver injury and oxidative stress was found in NOS2?/? mice treated with TNFα plus PY compared with wild-type controls. Neither 1400W nor NAC modified CYP2E1 activity or protein. Activation of JNK and p38MAPK was weaker in TNFα plus PY-treated NOS2?/? mice and 1400W and NAC blocked the activation of JNK and p38MAPK in wild-type mice. IKKα/β protein levels were decreased by TNFα plus PY treatment, whereas IκBα and IκBβ protein levels were elevated compared with saline, PY, or TNFα alone. NF-κB DNA binding activity was increased by TNFα alone but lowered by TNFα plus PY. All these changes were blocked by 1400W and NAC. NF-κB activation products such as Bcl-2, Bcl-XL, cFLIPS, cFLIPL, and Mn-SOD were reduced by TNFα plus PY and restored by 1400W or NAC. We conclude that TNFα plus CYP2E1 induces oxidative/nitrosative stress, which plays a role in the activation of JNK or p38MAPK and mitochondrial damage. These effects combine with the blunting of the NF-κB activation pathways and the synthesis of protective factors to cause liver injury.  相似文献   

12.
Lymphomas adapt to their environment by undergoing a complex series of biochemical changes that are currently not well understood. To better define these changes, we examined the gene expression and gene ontology profiles of thymic lymphomas from a commonly used model of carcinogenesis, the p53?/? mouse. These tumors show a highly significant upregulation of mitochondrial biogenesis, mitochondrial protein translation, mtDNA copy number, reactive oxygen species, antioxidant defenses, proton transport, ATP synthesis, hypoxia response, and glycolysis, indicating a fundamental change in the bioenergetic profile of the transformed T cell. Our results suggest that T cell tumorigenesis involves a simultaneous upregulation of mitochondrial biogenesis, mitochondrial respiration, and glycolytic activity. These processes would allow cells to adapt to the stressful tumor environment by facilitating energy production and thereby promote tumor growth. Understanding these adaptations is likely to result in improved therapeutic strategies for this tumor type.  相似文献   

13.
Mitochondrial fission is critically involved in cardiomyocyte apoptosis, which has been considered as one of the leading causes of ischaemia/reperfusion (I/R)‐induced myocardial injury. In our previous works, we demonstrate that aldehyde dehydrogenase‐2 (ALDH2) deficiency aggravates cardiomyocyte apoptosis and cardiac dysfunction. The aim of this study was to elucidate whether ALDH2 deficiency promotes mitochondrial injury and cardiomyocyte death in response to I/R stress and the underlying mechanism. I/R injury was induced by aortic cross‐clamping for 45 min. followed by unclamping for 24 hrs in ALDH2 knockout (ALDH2?/?) and wild‐type (WT) mice. Then myocardial infarct size, cell apoptosis and cardiac function were examined. The protein kinase C (PKC) isoform expressions and their mitochondrial translocation, the activity of dynamin‐related protein 1 (Drp1), caspase9 and caspase3 were determined by Western blot. The effects of N‐acetylcysteine (NAC) or PKC‐δ shRNA treatment on glycogen synthase kinase‐3β (GSK‐3β) activity and mitochondrial permeability transition pore (mPTP) opening were also detected. The results showed that ALDH2?/? mice exhibited increased myocardial infarct size and cardiomyocyte apoptosis, enhanced levels of cleaved caspase9, caspase3 and phosphorylated Drp1. Mitochondrial PKC‐ε translocation was lower in ALDH2?/? mice than in WT mice, and PKC‐δ was the opposite. Further data showed that mitochondrial PKC isoform ratio was regulated by cellular reactive oxygen species (ROS) level, which could be reversed by NAC pre‐treatment under I/R injury. In addition, PKC‐ε inhibition caused activation of caspase9, caspase3 and Drp1Ser616 in response to I/R stress. Importantly, expression of phosphorylated GSK‐3β (inactive form) was lower in ALDH2?/? mice than in WT mice, and both were increased by NAC pre‐treatment. I/R‐induced mitochondrial translocation of GSK‐3β was inhibited by PKC‐δ shRNA or NAC pre‐treatment. In addition, mitochondrial membrane potential (?Ψm) was reduced in ALDH2?/? mice after I/R, which was partly reversed by the GSK‐3β inhibitor (SB216763) or PKC‐δ shRNA. Collectively, our data provide the evidence that abnormal PKC‐ε/PKC‐δ ratio promotes the activation of Drp1 signalling, caspase cascades and GSK‐3β‐dependent mPTP opening, which results in mitochondrial injury‐triggered cardiomyocyte apoptosis and myocardial dysfuction in ALDH2?/? mice following I/R stress.  相似文献   

14.
Mitochondria-targeted human 8-oxoguanine DNA glycosylase (mt-hOgg1) and aconitase-2 (Aco-2) each reduce oxidant-induced alveolar epithelial cell (AEC) apoptosis, but it is unclear whether protection occurs by preventing AEC mitochondrial DNA (mtDNA) damage. Using quantitative PCR-based measurements of mitochondrial and nuclear DNA damage, mtDNA damage was preferentially noted in AEC after exposure to oxidative stress (e.g. amosite asbestos (5–25 μg/cm2) or H2O2 (100–250 μm)) for 24 h. Overexpression of wild-type mt-hOgg1 or mt-long α/β 317–323 hOgg1 mutant incapable of DNA repair (mt-hOgg1-Mut) each blocked A549 cell oxidant-induced mtDNA damage, mitochondrial p53 translocation, and intrinsic apoptosis as assessed by DNA fragmentation and cleaved caspase-9. In contrast, compared with controls, knockdown of Ogg1 (using Ogg1 shRNA in A549 cells or primary alveolar type 2 cells from ogg1−/− mice) augmented mtDNA lesions and intrinsic apoptosis at base line, and these effects were increased further after exposure to oxidative stress. Notably, overexpression of Aco-2 reduced oxidant-induced mtDNA lesions, mitochondrial p53 translocation, and apoptosis, whereas siRNA for Aco-2 (siAco-2) enhanced mtDNA damage, mitochondrial p53 translocation, and apoptosis. Finally, siAco-2 attenuated the protective effects of mt-hOgg1-Mut but not wild-type mt-hOgg1 against oxidant-induced mtDNA damage and apoptosis. Collectively, these data demonstrate a novel role for mt-hOgg1 and Aco-2 in preserving AEC mtDNA integrity, thereby preventing oxidant-induced mitochondrial dysfunction, p53 mitochondrial translocation, and intrinsic apoptosis. Furthermore, mt-hOgg1 chaperoning of Aco-2 in preventing oxidant-mediated mtDNA damage and apoptosis may afford an innovative target for the molecular events underlying oxidant-induced toxicity.  相似文献   

15.
Mitochondrial oxidative stress is a complex phenomenon that is inherently tied to energy provision and is implicated in many metabolic disorders. Exercise training increases mitochondrial oxidative capacity in skeletal muscle yet it remains unclear if oxidative stress plays a role in regulating these adaptations. We demonstrate that the chronic elevation in mitochondrial oxidative stress present in Sod2 +/- mice impairs the functional and biochemical mitochondrial adaptations to exercise. Following exercise training Sod2 +/- mice fail to increase maximal work capacity, mitochondrial enzyme activity and mtDNA copy number, despite a normal augmentation of mitochondrial proteins. Additionally, exercised Sod2 +/- mice cannot compensate for their higher amount of basal mitochondrial oxidative damage and exhibit poor electron transport chain complex assembly that accounts for their compromised adaptation. Overall, these results demonstrate that chronic skeletal muscle mitochondrial oxidative stress does not impact exercise induced mitochondrial biogenesis, but impairs the resulting mitochondrial protein function and can limit metabolic plasticity.  相似文献   

16.
Xenomitochondrial mice, harboring evolutionarily divergent Mus terricolor mitochondrial DNA (mtDNA) on a Mus musculus domesticus nuclear background (B6NTac(129S6)-mtM. terricolor/Capt; line D7), were subjected to molecular and phenotypic analyses. No overt in vivo phenotype was identified in contrast to in vitro xenomitochondrial cybrid studies. Microarray analyses revealed differentially expressed genes in xenomitochondrial mice, though none were directly involved in mitochondrial function. qRT-PCR revealed upregulation of mt-Co2 in xenomitochondrial mice. These results illustrate that cellular compensatory mechanisms for mild mitochondrial dysfunction alter mtDNA gene expression at a proteomic and/or translational level. Understanding these mechanisms will facilitate the development of therapeutics for mitochondrial disorders.  相似文献   

17.
18.
R Xu  Q Hu  Q Ma  C Liu  G Wang 《Cell death & disease》2014,5(8):e1373
Loss of the mitochondrial protease activity of Omi causes mitochondrial dysfunction, neurodegeneration with parkinsonian features and premature death in mnd2 (motor neuron degeneration 2) mice. However, the detailed mechanisms underlying this pathology remain largely unknown. Here, we report that Omi participates in the process of mitochondrial biogenesis, which has been linked to several neurodegenerative diseases. The mitochondrial biogenesis is deficit in mnd2 mice, evidenced by severe decreases of mitochondrial components, mitochondrial DNA and mitochondrial density. Omi cleaves glycogen synthase kinase 3β (GSK3β), a kinase promoting PPARγ coactivator-1α (PGC-1α) degradation, to regulate PGC-1α, a factor important for the mitochondrial biogenesis. In mnd2 mice, GSK3β abundance is increased and PGC-1α abundance is decreased significantly. Inhibition of GSK3β by SB216763 or overexpression of PGC-1α can restore mitochondrial biogenesis in mnd2 mice or Omi-knockdown N2a cells. Furthermore, there is a significant improvement of the movement ability of mnd2 mice after SB216763 treatment. Thus, our study identified Omi as a novel regulator of mitochondrial biogenesis, involving in Omi protease-deficient-induced neurodegeneration.Mitochondria have a vital role in neuronal death and survival.1 As critical cellular organelles, mitochondria have highly dynamic properties, including mitochondrial fission, fusion, transport, biogenesis and degradation. The changes of those properties affect mitochondrial functions, leading to the occurrence of diseases.2, 3 Growing lines of evidence suggest that the mitochondrial dysfunction is involved in aging and neurodegenerative diseases, such as Alzheimer''s disease (AD), Huntington''s disease (HD) and Parkinson''s disease (PD).4, 5 Similar to other neurodegenerative diseases, PD is a progressive neurological disorder, which is characterized by the development of cytoplasmic aggregates known as Lewy bodies and degeneration of dopaminergic (DA) neurons in the substantia nigra of midbrain and other brain regions.6 In PD, dysfunction of mitochondria has been documented to be associated with disease pathogenesis in PD brains and both genetic- and toxin-induced PD animal models. In PD brains, mutations in mitochondrial DNA (mtDNA) occur more frequently than those in age-matched control; and mutations in the nuclear-encoded mtDNA polymerase-γ gene, which impair mtDNA replication and result in multiple mtDNA deletions, cause PD-like symptoms.5 Meanwhile, several PD-associated gene products, including α-synuclein, parkin, DJ-1, PINK1 (PTEN-induced putative kinase 1), leucine-rich repeat kinase 2, ubiquitin carboxy-terminal hydrolase L1 and Omi, have been identified to be associated with PD, and lead to mitochondrial dysfunction with changes in mitochondrial morphology, biogenesis and mitophagy in vivo and in vitro.5, 7, 8, 9 Besides, mitochondrial toxins, such as MPTP (1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and rotenone that inhibit complex I of the mitochondrial respiratory chain, cause clinically parkinsonian phenotype.10, 11The serine protease Omi (also known as HtrA2) belongs to the high-temperature requirement factor A (HtrA) family, and was originally identified as a mammalian homolog of the Escherichia coli heat-shock-induced serine protease HtrA/DegP and DegS.12 Omi is mainly localized in mitochondria, although a fraction of it is also found in nucleus.13 Omi is released from the mitochondria into the cytosol to mediate cell death by caspase-dependent or -independent pathways in response to apoptotic stimuli.14, 15 However, the notion that Omi is an apoptosis inducer in the central nervous system was challenged by studies of Omi-overexpressing or -deficient mice. Omi-overexpressing mice show normal development without any sign of apoptotic cell death.16 On the other hand, mnd2 (motor neuron degeneration 2) mice that harbor protease-deficient Omi S276C mutants, and Omi-knockout mice both suffer from progressive neurodegeneration, especially in striatum, and motor abnormalities similar to PD. Both mice fail to gain weight and die before postnatal day 40 due to neurodegeneration with progressive mitochondrial damage.17, 18, 19 Besides, mutations in the Omi gene have also been identified in PD patients.20, 21 Previous studies have shown that Omi has a vital role in the mitochondrial integrity, and the loss of protease activity leads to mitochondrial dysfunction, such as abnormal mitochondrial morphology and increased mtDNA mutation and deletions, increased susceptibility of mitochondrial membrane permeabilization, decreased mitochondrial membrane potential, and reduced mitochondrial density in mnd2 mice and Omi-knockout mice.17, 18, 22 Omi has been found to act downstream of PINK1, but parallel to parkin, in a mitochondrial stress sensing pathway to sense the different stresses, which may be defective in PD.23 These findings suggest that the primary function of Omi is involved in neuroprotection, especially in the maintenance of mitochondrial homeostasis.23, 24In this article, we identified that Omi cleaves glycogen synthase kinase 3β (GSK3β) to regulate PPARγ coactivator-1α (PGC-1α) abundance and to ensure mitochondrial biogenesis.  相似文献   

19.
Insulin resistance leads to myocardial contractile dysfunction and deranged autophagy although the underlying mechanism or targeted therapeutic strategy is still lacking. This study was designed to examine the impact of inhibition of the cytochrome P450 2E1 (CYP2E1) enzyme on myocardial function and mitochondrial autophagy (mitophagy) in an Akt2 knockout model of insulin resistance. Adult wild-type (WT) and Akt2?/? mice were treated with the CYP2E1 inhibitor diallyl sulfide (100?mg/kg/d, i.p.) for 4?weeks. Cardiac geometry and function were assessed using echocardiographic and IonOptix systems. Western blot analysis was used to evaluate autophagy, mitophagy, inducible NOS (iNOS), and the NLRP3 inflammasome, a multi-protein intracellular pattern recognition receptor complex. Akt2 deletion triggered insulin resistance, compromised cardiac contractile and intracellular Ca2+ property, mitochondrial ultrastructural damage, elevated O2 production, as well as suppressed autophagy and mitophagy, accompanied with elevated levels of NLRP3 and iNOS, the effects of which were significantly attenuated or ablated by diallyl sulfide. In vitro studies revealed that the NLRP3 activator nigericin nullified diallyl sulfide-offered benefit against Akt2 knockout on cardiomyocyte mechanical function and mitophagy (using Western blot and colocalization of GFP-LC3 and MitoTracker Red). Moreover, inhibition of iNOS but not mitochondrial ROS production attenuated Akt2 deletion-induced activation of NLRP3, substantiating a role for iNOS-mediated NLRP3 in insulin resistance-induced changes in mitophagy and cardiac dysfunction. In conclusion, these data depict that insulin resistance through CYP2E1 may contribute to the pathogenesis of myopathic changes including myocardial contractile dysfunction, oxidative stress and mitochondrial injury, possibly through activation of iNOS and NLRP3 signaling.  相似文献   

20.
We reported that NAD+-dependent SIRT1, RELB, and SIRT6 nuclear proteins in monocytes regulate a switch from the glycolysis-dependent acute inflammatory response to fatty acid oxidation-dependent sepsis adaptation. We also found that disrupting SIRT1 activity during adaptation restores immunometabolic homeostasis and rescues septic mice from death. Here, we show that nuclear SIRT1 guides RELB to differentially induce SIRT3 expression and also increases mitochondrial biogenesis, which alters bioenergetics during sepsis adaptation. We constructed this concept using TLR4-stimulated THP1 human promonocytes, a model that mimics the initiation and adaptation stages of sepsis. Following increased expression, mitochondrial SIRT3 deacetylase activates the rate-limiting tricarboxylic acid cycle (TCA) isocitrate dehydrogenase 2 and superoxide dismutase 2, concomitant with increases in citrate synthase activity. Mitochondrial oxygen consumption rate increases early and decreases during adaptation, parallel with modifications to membrane depolarization, ATP generation, and production of mitochondrial superoxide and whole cell hydrogen peroxide. Evidence of SIRT1-RELB induction of mitochondrial biogenesis included increases in mitochondrial mass, mitochondrial-to-nuclear DNA ratios, and both nuclear and mitochondrial encoded proteins. We confirmed the SIRT-RELB-SIRT3 adaptation link to mitochondrial bioenergetics in both TLR4-stimulated normal and sepsis-adapted human blood monocytes and mouse splenocytes. We also found that SIRT1 inhibition ex vivo reversed the sepsis-induced changes in bioenergetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号