首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The integrated analysis of genotypic and expression data for association with complex traits could identify novel genetic pathways involved in complex traits. We profiled 19,573 expression probes in Epstein-Barr virus-transformed lymphoblastoid cell lines (LCLs) from 299 twins and correlated these with 44 quantitative traits (QTs). For 939 expressed probes correlating with more than one QT, we investigated the presence of eQTL associations in three datasets of 57 CEU HapMap founders and 86 unrelated twins. Genome-wide association analysis of these probes with 2.2 m SNPs revealed 131 potential eQTLs (1,989 eQTL SNPs) overlapping between the HapMap datasets, five of which were in cis (58 eQTL SNPs). We then tested 535 SNPs tagging the eQTL SNPs, for association with the relevant QT in 2,905 twins. We identified nine potential SNP-QT associations (P<0.01) but none significantly replicated in five large consortia of 1,097-16,129 subjects. We also failed to replicate previous reported eQTL associations with body mass index, plasma low-density lipoprotein cholesterol, high-density lipoprotein cholesterol and triglycerides levels derived from lymphocytes, adipose and liver tissue. Our results and additional power calculations suggest that proponents may have been overoptimistic in the power of LCLs in eQTL approaches to elucidate regulatory genetic effects on complex traits using the small datasets generated to date. Nevertheless, larger tissue-specific expression data sets relevant to specific traits are becoming available, and should enable the adoption of similar integrated analyses in the near future.  相似文献   

2.
《PloS one》2012,7(12)
A large number of genome-wide association studies have been performed during the past five years to identify associations between SNPs and human complex diseases and traits. The assignment of a functional role for the identified disease-associated SNP is not straight-forward. Genome-wide expression quantitative trait locus (eQTL) analysis is frequently used as the initial step to define a function while allele-specific gene expression (ASE) analysis has not yet gained a wide-spread use in disease mapping studies. We compared the power to identify cis-acting regulatory SNPs (cis-rSNPs) by genome-wide allele-specific gene expression (ASE) analysis with that of traditional expression quantitative trait locus (eQTL) mapping. Our study included 395 healthy blood donors for whom global gene expression profiles in circulating monocytes were determined by Illumina BeadArrays. ASE was assessed in a subset of these monocytes from 188 donors by quantitative genotyping of mRNA using a genome-wide panel of SNP markers. The performance of the two methods for detecting cis-rSNPs was evaluated by comparing associations between SNP genotypes and gene expression levels in sample sets of varying size. We found that up to 8-fold more samples are required for eQTL mapping to reach the same statistical power as that obtained by ASE analysis for the same rSNPs. The performance of ASE is insensitive to SNPs with low minor allele frequencies and detects a larger number of significantly associated rSNPs using the same sample size as eQTL mapping. An unequivocal conclusion from our comparison is that ASE analysis is more sensitive for detecting cis-rSNPs than standard eQTL mapping. Our study shows the potential of ASE mapping in tissue samples and primary cells which are difficult to obtain in large numbers.  相似文献   

3.
The observation that variants regulating gene expression (expression quantitative trait loci, eQTL) are at a high frequency among SNPs associated with complex traits has made the genome-wide characterization of gene expression an important tool in genetic mapping studies of such traits. As part of a study to identify genetic loci contributing to bipolar disorder and other quantitative traits in members of 26 pedigrees from Costa Rica and Colombia, we measured gene expression in lymphoblastoid cell lines derived from 786 pedigree members. The study design enabled us to comprehensively reconstruct the genetic regulatory network in these families, provide estimates of heritability, identify eQTL, evaluate missing heritability for the eQTL, and quantify the number of different alleles contributing to any given locus. In the eQTL analysis, we utilize a recently proposed hierarchical multiple testing strategy which controls error rates regarding the discovery of functional variants. Our results elucidate the heritability and regulation of gene expression in this unique Latin American study population and identify a set of regulatory SNPs which may be relevant in future investigations of complex disease in this population. Since our subjects belong to extended families, we are able to compare traditional kinship-based estimates with those from more recent methods that depend only on genotype information.  相似文献   

4.
Most genome-wide association studies consider genes that are located closest to single nucleotide polymorphisms (SNPs) that are highly significant for those studies. However, the significance of the associations between SNPs and candidate genes has not been fully determined. An alternative approach that used SNPs in expression quantitative trait loci (eQTL) was reported previously for Crohn’s disease; it was shown that eQTL-based preselection for follow-up studies was a useful approach for identifying risk loci from the results of moderately sized GWAS. In this study, we propose an approach that uses eQTL SNPs to support the functional relationships between an SNP and a candidate gene in a genome-wide association study. The genome-wide SNP genotypes and 10 biochemical measures (fasting glucose levels, BUN, serum albumin levels, AST, ALT, gamma GTP, total cholesterol, HDL cholesterol, triglycerides, and LDL cholesterol) were obtained from the Korean Association Resource (KARE) consortium. The eQTL SNPs were isolated from the SNP dataset based on the RegulomeDB eQTL-SNP data from the ENCODE projects and two recent eQTL reports. A total of 25,658 eQTL SNPs were tested for their association with the 10 metabolic traits in 2 Korean populations (Ansung and Ansan). The proportion of phenotypic variance explained by eQTL and non-eQTL SNPs showed that eQTL SNPs were more likely to be associated with the metabolic traits genetically compared with non-eQTL SNPs. Finally, via a meta-analysis of the two Korean populations, we identified 14 eQTL SNPs that were significantly associated with metabolic traits. These results suggest that our approach can be expanded to other genome-wide association studies.  相似文献   

5.
The functional consequences of trait associated SNPs are often investigated using expression quantitative trait locus (eQTL) mapping. While trait-associated variants may operate in a cell-type specific manner, eQTL datasets for such cell-types may not always be available. We performed a genome-environment interaction (GxE) meta-analysis on data from 5,683 samples to infer the cell type specificity of whole blood cis-eQTLs. We demonstrate that this method is able to predict neutrophil and lymphocyte specific cis-eQTLs and replicate these predictions in independent cell-type specific datasets. Finally, we show that SNPs associated with Crohn’s disease preferentially affect gene expression within neutrophils, including the archetypal NOD2 locus.  相似文献   

6.

Background

RNA sequencing (RNA-seq) is the current gold-standard method to quantify gene expression for expression quantitative trait locus (eQTL) studies. However, a potential caveat in these studies is that RNA-seq reads carrying the non-reference allele of variant loci can have lower probability to map correctly to the reference genome, which could bias gene quantifications and cause false positive eQTL associations. In this study, we analyze the effect of this allelic mapping bias in eQTL discovery.

Results

We simulate RNA-seq read mapping over 9.5 M common SNPs and indels, with 15.6% of variants showing biased mapping rate for reference versus non-reference reads. However, removing potentially biased RNA-seq reads from an eQTL dataset of 185 individuals has a very small effect on gene and exon quantifications and eQTL discovery. We detect only a handful of likely false positive eQTLs, and overall eQTL SNPs show no significant enrichment for high mapping bias.

Conclusion

Our results suggest that RNA-seq quantifications are generally robust against allelic mapping bias, and that this does not have a severe effect on eQTL discovery. Nevertheless, we provide our catalog of putatively biased loci to allow better controlling for mapping bias to obtain more accurate results in future RNA-seq studies.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0467-2) contains supplementary material, which is available to authorized users.  相似文献   

7.
Previous expression quantitative trait loci (eQTL) studies have performed genetic association studies for gene expression, but most of these studies examined lymphoblastoid cell lines from non-diseased individuals. We examined the genetics of gene expression in a relevant disease tissue from chronic obstructive pulmonary disease (COPD) patients to identify functional effects of known susceptibility genes and to find novel disease genes. By combining gene expression profiling on induced sputum samples from 131 COPD cases from the ECLIPSE Study with genomewide single nucleotide polymorphism (SNP) data, we found 4315 significant cis-eQTL SNP-probe set associations (3309 unique SNPs). The 3309 SNPs were tested for association with COPD in a genomewide association study (GWAS) dataset, which included 2940 COPD cases and 1380 controls. Adjusting for 3309 tests (p<1.5e-5), the two SNPs which were significantly associated with COPD were located in two separate genes in a known COPD locus on chromosome 15: CHRNA5 and IREB2. Detailed analysis of chromosome 15 demonstrated additional eQTLs for IREB2 mapping to that gene. eQTL SNPs for CHRNA5 mapped to multiple linkage disequilibrium (LD) bins. The eQTLs for IREB2 and CHRNA5 were not in LD. Seventy-four additional eQTL SNPs were associated with COPD at p<0.01. These were genotyped in two COPD populations, finding replicated associations with a SNP in PSORS1C1, in the HLA-C region on chromosome 6. Integrative analysis of GWAS and gene expression data from relevant tissue from diseased subjects has located potential functional variants in two known COPD genes and has identified a novel COPD susceptibility locus.  相似文献   

8.
9.
10.
Revealing the architecture of gene regulation: the promise of eQTL studies   总被引:3,自引:0,他引:3  
Expression quantitative trait loci (eQTL) mapping studies have become a widely used tool for identifying genetic variants that affect gene regulation. In these studies, expression levels are viewed as quantitative traits, and gene expression phenotypes are mapped to particular genomic loci by combining studies of variation in gene expression patterns with genome-wide genotyping. Results from recent eQTL mapping studies have revealed substantial heritable variation in gene expression within and between populations. In many cases, genetic factors that influence gene expression levels can be mapped to proximal (putatively cis) eQTLs and, less often, to distal (putatively trans) eQTLs. Beyond providing great insight into the biology of gene regulation, a combination of eQTL studies with results from traditional linkage or association studies of human disease may help predict a specific regulatory role for polymorphic sites previously associated with disease.  相似文献   

11.
12.
13.
14.
15.
16.
DNA sequence variation causes changes in gene expression, which in turn has profound effects on cellular states. These variations affect tissue development and may ultimately lead to pathological phenotypes. A genetic locus containing a sequence variation that affects gene expression is called an “expression quantitative trait locus” (eQTL). Whereas the impact of cellular context on expression levels in general is well established, a lot less is known about the cell-state specificity of eQTL. Previous studies differed with respect to how “dynamic eQTL” were defined. Here, we propose a unified framework distinguishing static, conditional and dynamic eQTL and suggest strategies for mapping these eQTL classes. Further, we introduce a new approach to simultaneously infer eQTL from different cell types. By using murine mRNA expression data from four stages of hematopoiesis and 14 related cellular traits, we demonstrate that static, conditional and dynamic eQTL, although derived from the same expression data, represent functionally distinct types of eQTL. While static eQTL affect generic cellular processes, non-static eQTL are more often involved in hematopoiesis and immune response. Our analysis revealed substantial effects of individual genetic variation on cell type-specific expression regulation. Among a total number of 3,941 eQTL we detected 2,729 static eQTL, 1,187 eQTL were conditionally active in one or several cell types, and 70 eQTL affected expression changes during cell type transitions. We also found evidence for feedback control mechanisms reverting the effect of an eQTL specifically in certain cell types. Loci correlated with hematological traits were enriched for conditional eQTL, thus, demonstrating the importance of conditional eQTL for understanding molecular mechanisms underlying physiological trait variation. The classification proposed here has the potential to streamline and unify future analysis of conditional and dynamic eQTL as well as many other kinds of QTL data.  相似文献   

17.
18.
19.
Statistical methods for expression quantitative trait loci (eQTL) mapping   总被引:7,自引:0,他引:7  
  相似文献   

20.
The discovery of quantitative trait loci (QTL) in model organisms has relied heavily on the ability to perform controlled breeding to generate genotypic and phenotypic diversity. Recently, we and others have demonstrated the use of an existing set of diverse inbred mice (referred to here as the mouse diversity panel, MDP) as a QTL mapping population. The use of the MDP population has many advantages relative to traditional F(2) mapping populations, including increased phenotypic diversity, a higher recombination frequency, and the ability to collect genotype and phenotype data in community databases. However, these methods are complicated by population structure inherent in the MDP and the lack of an analytical framework to assess statistical power. To address these issues, we measured gene expression levels in hypothalamus across the MDP. We then mapped these phenotypes as quantitative traits with our association algorithm, resulting in a large set of expression QTL (eQTL). We utilized these eQTL, and specifically cis-eQTL, to develop a novel nonparametric method for association analysis in structured populations like the MDP. These eQTL data confirmed that the MDP is a suitable mapping population for QTL discovery and that eQTL results can serve as a gold standard for relative measures of statistical power.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号