首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The vanilloid-like TRP-channel VRL-1 (TRPV2) is a nonselective cation channel expressed by primary sensory neurons and non-neuronal tissues [Caterina, M.J., Rosen, T.A., Tominaga, M., Brake, A.J and Julius, D. (1999) Nature 398, 436-441]. It is one of the six members of the vanilloid-like TRP-channel family which is now termed the TRPV family [Montell, G., Birnbaumer, L., Flockerzi, V., Bindels, R.J., Brutford, E.A., Caterina, M.J., Clapham, D.E., Harteneck, C., Heller, S., Julius, D., Kojima, I., Mori, Y., Penner, R., Prawitt, D., Scharenberg, A.M., Schultz, G., Shimizu, N. and Zhu, M.X. (2002) Mol. Cell 2, 229-231]. As it is a temperature-gated channel, VRL-1 appears to be functionally related to VR1. In contrast to VR1, VRL-1 is activated at a higher temperature threshold and it does not respond to capsaicin or protons. Here we describe the expression of VRL-1 in the rat dorsal root ganglion-derived cell line F-11, a hybridoma of mouse neuroblastoma (N18TG2) and rat dorsal root ganglion cells. We found by RT-PCR that F-11 cells express not only the rat VRL-1, but also its mouse orthologue in a single cell. The F-11 parental cell line N18TG2 also expressed murine VRL-1. Due to its neuronal character, the DRG-derived F-11 cell line provides an experimental system for the study of VRL-1 biochemistry. However, one has to be aware that both the mouse and the rat protein are expressed simultaneously. Furthermore we cloned VRL-1 from rat brain and analyzed its glycosylation and localization in comparison to the endogenously expressed protein in F-11 cells. In contrast to the endogenous VRL-1 the overexpressed protein is glycosylated. Similar to VR1 the glycosylation is N-linked as shown by an deglycosylation assay. Immunofluorescence analysis of the endogenous VRL-1 in F-11 cells gives only weak signals in the cytoplasm whereas the overexpressed rat VRL-1 appears mainly at the plasma membrane.  相似文献   

2.
The balance of glycosylation and deglycosylation of ion channels can markedly influence their function and regulation. However, the functional importance of glycosylation of the TRPV1 receptor, a key sensor of pain-sensing nerves, is not well understood, and whether TRPV1 is glycosylated in neurons is unclear. We report that TRPV1 is N-glycosylated and that N-glycosylation is a major determinant of capsaicin-evoked desensitization and ionic permeability. Both N-glycosylated and unglycosylated TRPV1 was detected in extracts of peripheral sensory nerves by Western blotting. TRPV1 expressed in HEK-293 cells exhibited various degrees of glycosylation. A mutant of asparagine 604 (N604T) was not glycosylated but did not alter plasma membrane expression of TRPV1. Capsaicin-evoked increases in intracellular calcium ([Ca(2+)](i)) were sustained in wild-type TRPV1 HEK-293 cells but were rapidly desensitized in N604T TRPV1 cells. There was marked cell-to-cell variability in capsaicin responses and desensitization between individual cells expressing wild-type TRPV1 but highly uniform responses in cells expressing N604T TRPV1, consistent with variable levels of glycosylation of the wild-type channel. These differences were also apparent when wild-type or N604T TRPV1-GFP fusion proteins were expressed in neurons from trpv1(-/-) mice. Capsaicin evoked a marked, concentration-dependent increase in uptake of the large cationic dye YO-PRO-1 in cells expressing wild-type TRPV1, indicative of loss of ion selectivity, that was completely absent in cells expressing N604T TRPV1. Thus, TRPV1 is variably N-glycosylated and glycosylation is a key determinant of capsaicin regulation of TRPV1 desensitization and permeability. Our findings suggest that physiological or pathological alterations in TRPV1 glycosylation would affect TRPV1 function and pain transmission.  相似文献   

3.
To investigate the glycosylation of the human bradykinin B2 receptor and the functional significance of this modification, we studied receptors mutated at single or multiple combinations of the three potential N-linked glycosylation sites, asparagines N3, N12 and N180, in COS-7, HEK 293 and CHO-K1 cells. Western blot experiments demonstrated that all three extracellular asparagines are glycosylated. The kinetics of bradykinin binding and receptor sequestration remained unchanged after glycosylation had been suppressed. However, the glycosylated receptors were expressed at the cell-surface to a much greater extent than the non-glycosylated receptor and coupling to phospholipase C was less efficient for receptor lacking N-terminal glycosylation. These results indicate that, for the human bradykinin B2 receptor, glycosylation is not required for optimal ligand binding, but plays an important role in cell-surface addressing and receptor function.  相似文献   

4.
G-Protein-coupled receptors (GPCRs) act on the cell surface where they recognize and convert external stimuli to modulate cellular activity and are regulated by agonist and various partner molecules. We here studied the cell surface post-translationally modified forms of a GPCR, the human bradykinin B2 receptor. This was by means of detailed molecular analysis of the cell surface forms of N-glycosylation site mutant and wild-type receptors that were treated with glycosidases, neuraminidase, and/or the reducing agent dithiothreitol or not treated before Western blotting. We found that the receptor undergoes similar glycosylation processes and similar cell surface organization in CHO-K1 and HEK 293 cells, used for stable and transient receptor expression, respectively. The receptor is present as dimers and monomers on the cell surface. The dimers result from heterologous association of differently glycosylated mature receptor molecules. Importantly, receptor sialylation and N-glycosylation participate with disulfide bonding in the stabilization of the cell surface human B2 receptor dimers.  相似文献   

5.
The ligand-binding domains of AMPA receptor subunits carry two conserved N-glycosylation sites. In order to gain insight into the functional role of the corresponding N-glycans, we examined how the elimination of glycosylation at these sites (N407 and N414) affects the ligand-binding characteristics, structural stability, cell-surface expression, and channel properties of homomeric GluR-D (GluR4) receptor and its soluble ligand-binding domain (S1S2). GluR-D S1S2 protein expressed as a secreted protein in insect cells was found to be glycosylated at N407 and N414. No major differences in the ligand-binding properties were observed between the 'wild-type' S1S2 and non-glycosylated N407D/N414Q double mutant, or between S1S2 proteins expressed in the presence or absence of tunicamycin, an inhibitor of N-glycosylation. Purified glycosylated and non-glycosylated S1S2 proteins also showed similar thermostabilities as determined by CD spectroscopy. Full-length homomeric GluR-D receptor with N407D/N414Q mutation was expressed on the surface of HEK293 cells like the wild-type GluR-D. In outside-out patches, GluR-D and the N407D/N414Q mutant produced similar rapidly desensitizing current responses to glutamate and AMPA. We therefore report that the two conserved ligand-binding domain glycans do not play any major role in receptor-ligand interactions, do not impart a stabilizing effect on the ligand-binding domain, and are not critical for the formation and surface localization of homomeric GluR-D AMPA receptors in HEK293 cells.  相似文献   

6.
Analysis of small dorsal root ganglion (DRG) neurons revealed novel functions for vanilloid receptor 1 (VR1) in the regulation of cytosolic Ca(2+). The VR1 agonist capsaicin induced Ca(2+) mobilization from intracellular stores in the absence of extracellular Ca(2+), and this release was inhibited by the VR1 antagonist capsazepine but was unaffected by the phospholipase C inhibitor xestospongins, indicating that Ca(2+) mobilization was dependent on capsaicin receptor binding and was not due to intracellular inositol-1,4,5-trisphosphate generation. Confocal microscopy revealed extensive expression of VR1 on endoplasmic reticulum, consistent with VR1 operating as a Ca(2+) release receptor. The main part of the capsaicin-releasable Ca(2+) store was insensitive to thapsigargin, a selective endoplasmic reticulum Ca(2+)-ATPase inhibitor, suggesting that VR1 might be predominantly localized to a thapsigargin-insensitive endoplasmic reticulum Ca(2+) store. In addition, VR1 was observed to behave as a store-operated Ca(2+) influx channel. In DRG neurons, capsazepine attenuated Ca(2+) influx following thapsigargin-induced Ca(2+) store depletion and inhibited thapsigargin-induced inward currents. Conversely, transfected HEK-293 cells expressing VR1 showed enhanced Ca(2+) influx and inward currents following Ca(2+) store depletion. Combined data support topographical and functional diversity for VR1 in the regulation of cytosolic Ca(2+) with the plasma membrane-associated form behaving as a store-operated Ca(2+) influx channel and endoplasmic reticulum-associated VR1 possibly functioning as a Ca(2+) release receptor in sensory neurons.  相似文献   

7.
Hendra virus (HeV) continues to cause morbidity and mortality in both humans and horses with a number of sporadic outbreaks. HeV has two structural membrane glycoproteins that mediate the infection of host cells: the attachment (G) and the fusion (F) glycoproteins that are essential for receptor binding and virion-host cell membrane fusion, respectively. N-linked glycosylation of viral envelope proteins are critical post-translation modifications that have been implicated in roles of structural integrity, virus replication and evasion of the host immune response. Deciphering the glycan composition and structure on these glycoproteins may assist in the development of glycan-targeted therapeutic intervention strategies. We examined the site occupancy and glycan composition of recombinant soluble G (sG) glycoproteins expressed in two different mammalian cell systems, transient human embryonic kidney 293 (HEK293) cells and vaccinia virus (VV)-HeLa cells, using a suite of biochemical and biophysical tools: electrophoresis, lectin binding and tandem mass spectrometry. The N-linked glycans of both VV and HEK293-derived sG glycoproteins carried predominantly mono- and disialylated complex-type N-glycans and a smaller population of high mannose-type glycans. All seven consensus sequences for N-linked glycosylation were definitively found to be occupied in the VV-derived protein, whereas only four sites were found and characterized in the HEK293-derived protein. We also report, for the first time, the existence of O-linked glycosylation sites in both proteins. The striking characteristic of both proteins was glycan heterogeneity in both N- and O-linked sites. The structural features of G protein glycosylation were also determined by X-ray crystallography and interactions with the ephrin-B2 receptor are discussed.  相似文献   

8.
The vanilloid receptor (VR1 or TRPV1) is a capsaicin (CAP)-sensitive non-selective cation channel. Although its channel activity is reportedly modulated through protein-protein interactions, to date very few VR1 interacting proteins have been identified. To address this issue, a yeast two-hybrid screening technique using the C-terminus of rVR1 as bait was employed. Upon interrogation of a mouse brain library, one gene product that interacts with VR1 and is highly homologous to human eferin was found. Its interaction with VR1 was confirmed by GST-pull-down and co-immunoprecipitation. When cotransfected into HEK cells, VR1 and eferin largely colocalize. Furthermore, in rat dorsal root ganglion cells, the rat eferin homologue also colocalizes with rVR1. However, this protein had no significant effect on VR1 channel activity in response to CAP. This was determined by two-electrode recording of oocytes and whole cell recording of HEK cells that were cotransfected with VR1 and human eferin.  相似文献   

9.
The low density lipoprotein receptor (LDLR) is crucial for cholesterol homeostasis and deficiency in LDLR functions cause hypercholesterolemia. LDLR is a type I transmembrane protein that requires O-glycosylation for stable expression at the cell surface. It has previously been suggested that LDLR O-glycosylation is found N-terminal to the juxtamembrane region. Recently we identified O-glycosylation sites in the linker regions between the characteristic LDLR class A repeats in several LDLR-related receptors using the “SimpleCell” O-glycoproteome shotgun strategy. Herein, we have systematically characterized O-glycosylation sites on recombinant LDLR shed from HEK293 SimpleCells and CHO wild-type cells. We find that the short linker regions between LDLR class A repeats contain an evolutionarily conserved O-glycosylation site at position −1 of the first cysteine residue of most repeats, which in wild-type CHO cells is glycosylated with the typical sialylated core 1 structure. The glycosites in linker regions of LDLR class A repeats are conserved in LDLR from man to Xenopus and found in other homologous receptors. O-Glycosylation is controlled by a large family of polypeptide GalNAc transferases. Probing into which isoform(s) contributed to glycosylation of the linker regions of the LDLR class A repeats by in vitro enzyme assays suggested a major role of GalNAc-T11. This was supported by expression of LDLR in HEK293 cells, where knock-out of the GalNAc-T11 isoform resulted in the loss of glycosylation of three of four linker regions.  相似文献   

10.
Nucleotides signal through purinergic receptors such as the P2 receptors, which are subdivided into the ionotropic P2X receptors and the metabotropic P2Y receptors. The diversity of functions within the purinergic receptor family is required for the tissue-specificity of nucleotide signalling. In the present study, hetero-oligomerization between two metabotropic P2Y receptor subtypes is established. These receptors, P2Y1 and P2Y11, were found to associate together when co-expressed in HEK293 cells. This association was detected by co-pull-down, immunoprecipitation and FRET (fluorescence resonance energy transfer) experiments. We found a striking functional consequence of the interaction between the P2Y11 receptor and the P2Y1 receptor where this interaction promotes agonist-induced internalization of the P2Y11 receptor. This is remarkable because the P2Y11 receptor by itself is not able to undergo endocytosis. Co-internalization of these receptors was also seen in 1321N1 astrocytoma cells co-expressing both P2Y11 and P2Y1 receptors, upon stimulation with ATP or the P2Y1 receptor-specific agonist 2-MeS-ADP. 1321N1 astrocytoma cells do not express endogenous P2Y receptors. Moreover, in HEK293 cells, the P2Y11 receptor was found to functionally associate with endogenous P2Y1 receptors. Treatment of HEK293 cells with siRNA (small interfering RNA) directed against the P2Y1 receptor diminished the agonist-induced endocytosis of the heterologously expressed GFP-P2Y11 receptor. Pharmacological characteristics of the P2Y11 receptor expressed in HEK293 cells were determined by recording Ca2+ responses after nucleotide stimulation. This analysis revealed a ligand specificity which was different from the agonist profile established in cells expressing the P2Y11 receptor as the only metabotropic nucleotide receptor. Thus the hetero-oligomerization of the P2Y1 and P2Y11 receptors allows novel functions of the P2Y11 receptor in response to extracellular nucleotides.  相似文献   

11.
Interaction between the receptor for advanced glycation end products (RAGE) and its ligands amplifies the proinflammatory response. N-Linked glycosylation of RAGE plays an important role in the regulation of ligand binding. Two potential sites for N-linked glycosylation, at Asn(25) and Asn(81), are implicated, one of which is potentially influenced by a naturally occurring polymorphism that substitutes Gly(82) with Ser. This G82S polymorphic RAGE variant displays increased ligand binding and downstream signaling. We hypothesized that the G82S polymorphism affects RAGE glycosylation and thereby affects ligand binding. WT or various mutant forms of RAGE protein, including N25Q, N81Q, N25Q/G82S, and N25Q/N81Q, were produced by transfecting HEK293 cells. The glycosylation patterns of expressed proteins were compared. Enzymatic deglycosylation showed that WT RAGE and the G82S polymorphic variant are glycosylated to the same extent. Our data also revealed N-linked glycosylation of N25Q and N81Q mutants, suggesting that both Asn(25) and Asn(81) can be utilized for N-linked glycosylation. Using mass spectrometry analysis, we found that Asn(81) may or may not be glycosylated in WT RAGE, whereas in G82S RAGE, Asn(81) is always glycosylated. Furthermore, RAGE binding to S100B ligand is affected by Asn(81) glycosylation, with consequences for NF-κB activation. Therefore, the G82S polymorphism promotes N-linked glycosylation of Asn(81), which has implications for the structure of the ligand binding region of RAGE and might explain the enhanced function associated with the G82S polymorphic RAGE variant.  相似文献   

12.
Analysis of the native quaternary structure of vanilloid receptor 1   总被引:15,自引:0,他引:15  
Vanilloid receptor subtype 1 (VR1) is a ligand-gated channel that can be activated by capsaicin and other vanilloids as well as by protons and heat. In the present study, we have analyzed the oligomeric state of VR1. Co-immunoprecipitation of differently tagged VR1 molecules indicated that VR1 can form oligomers. Using two different heterologous VR1 expression systems as well as endogenous VR1 expressed in dorsal root ganglion cells, we analyzed oligomer formation using perfluoro-octanoic acid polyacrylamide gel electrophoresis. Results were confirmed both with chemical cross-linking agents as well as through endogenous cross-linking mediated by transglutaminase. Our results clearly show that VR1 forms multimers in each of the expression systems with a homotetramer as a predominant form. The oligomeric structure of VR1 may contribute to the complexity of VR1 pharmacology. Finally, differences in glycosylation between the systems were observed, indicating the need for caution in the use of the heterologous expression systems for analysis of VR1 properties.  相似文献   

13.
Receptor binding studies on sarbecoviruses would benefit from an available toolkit of recombinant spike proteins, or domains thereof, that recapitulate receptor binding properties of native viruses. We hypothesized that trimeric Receptor Binding Domain (RBD) proteins would be suitable candidates to study receptor binding properties of SARS-CoV-1 and -2. Here we created monomeric and trimeric fluorescent RBD proteins, derived from adherent HEK293T, as well as in GnTI-/- mutant cells, to analyze the effect of complex vs high mannose glycosylation on receptor binding. The results demonstrate that trimeric, complex glycosylated proteins are superior in receptor binding compared to monomeric and immaturely glycosylated variants. Although differences in binding to commonly used cell lines were minimal between the different RBD preparations, substantial differences were observed when respiratory tissues of experimental animals were stained. The RBD trimers demonstrated distinct ACE2 expression profiles in bronchiolar ducts and confirmed the higher binding affinity of SARS-CoV-2 over SARS-CoV-1. Our results show that complex glycosylated trimeric RBD proteins are attractive to analyze sarbecovirus receptor binding and explore ACE2 expression profiles in tissues.  相似文献   

14.
Rat corticotropin-releasing factor receptor 1 (rCRFR1) was produced either in transfected HEK 293 cells as a complex glycosylated protein or in the presence of the mannosidase I inhibitor kifunensine as a high mannose glycosylated protein. The altered glycosylation did not influence the biological function of rCRFR1 as demonstrated by competitive binding of rat urocortin (rUcn) or human/rat corticotropin-releasing factor (h/rCRF) and agonist-induced cAMP accumulation. The low production rate of the N-terminal domain of rCRFR1 (rCRFR1-NT) by transfected HEK 293 cells, was increased by a factor of 100 in the presence of kifunensine. The product, rCRFR1-NT-Kif, bound rUcn specifically (K(D) = 27 nM) and astressin (K(I) = 60 nM). This affinity was 10-fold lower than the affinity of full length rCRFR1. However, it was sufficiently high for rCRFR1-NT-Kif to serve as a model for the N-terminal domain of rCRFR1. With protein fragmentation, Edman degradation, and mass spectrometric analysis, evidence was found for the signal peptide cleavage site C-terminally to Thr(23) and three disulfide bridges between precursor residues 30 and 54, 44 and 87, and 68 and 102. Of all putative N-glycosylation sites in positions 32, 38, 45, 78, 90, and 98, all Asn residues except for Asn(32) were glycosylated to a significant extent. No O-glycosylation was observed.  相似文献   

15.
Membrane currents and changes in the intracellular Ca2+ concentration ([Ca2+]i) were measured in HEK293 cells transfected with the human P2X3 receptor (HEK293-hP2X3). RT-PCR and immunocytochemistry indicated the additional presence of endogenous P2Y1 and to some extent P2Y4 receptors. P2 receptor agonists induced inward currents in HEK293-hP2X3 cells with the rank order of potency alpha,beta-meATP approximately ATP > ADP-beta-S > UTP. A comparable rise in [Ca2+]i was observed after the slow superfusion of ATP, ADP-beta-S and UTP; alpha,beta-meATP was ineffective. These data, in conjunction with results obtained by using the P2 receptor antagonists TNP-ATP, PPADS and MRS2179 indicate that the current response to alpha,beta-meATP is due to P2X3 receptor activation, while the ATP-induced rise in [Ca2+]i is evoked by P2Y1 and P2Y4 receptor activation. TCE depressed the alpha,beta-meATP current in a manner compatible with a non-competitive antagonism. The ATP-induced increase of [Ca2+]i was much less sensitive to the inhibitory effect of TCE than the current response to alpha,beta-meATP. The present study indicates that in HEK293-hP2X3 cells, TCE, but not ethanol, potently inhibits ligand-gated P2X3 receptors and, in addition, moderately interferes with G protein-coupled P2Y1 and P2Y4 receptors. Such an effect may be relevant for the interruption of pain transmission in dorsal root ganglion neurons following ingestion of chloral hydrate or trichloroethylene.  相似文献   

16.
Sphingomyelinases (SMases) catalyze the hydrolysis of sphingomyelin, an essential lipid constituent of the plasma membrane, lysosomal membranes, endoplasmic reticulum, and the Golgi membrane stacks of mammalian cells. In this study, we report the biochemical and functional characterization and subcellular localization of magnesium-dependent nSMase1 from overexpressing human embryonic kidney (HEK293) cells. Site-directed mutagenesis of conserved residues probably involved in the enzymatic sphingomyelin cleavage as well as the removal of one or both putative transmembrane domains lead to the complete loss of enzymatic activity of human nSMase1 expressed in HEK293 cells. Polyclonal antibodies raised against recombinant mammalian nSMase1 immunoprecipitated and inactivated the enzyme in membrane extracts of overexpressing HEK293 cells and different murine tissues. Cell fractionation combined with immunoprecipitation studies localized the nSMase1 protein predominantly in the microsomal fraction. The enzyme colocalized with marker proteins of the endoplasmic reticulum and the Golgi apparatus in immunocytochemistry. Anti-nSMase1 antibodies did not affect the nSMase activity in the plasma membrane fraction and membrane extracts from murine brain. Our study leads to the conclusion that nSMase1 is one of at least two mammalian neutral sphingomyelinases with different subcellular localization, tissue specificity, and enzymatic properties.  相似文献   

17.
Mammalian target of rapamycin (mTOR) controls initiation of translation through regulation of ribosomal p70S6 kinase (S6K1) and eukaryotic translation initiation factor-4E (eIF4E) binding protein (4E-BP). mTOR is considered to be located predominantly in cytosolic or membrane fractions and may shuttle between the cytoplasm and nucleus. In most previous studies a single cell line, E1A-immortalized human embryonic kidney cells (HEK293), has been used. Here we show that in human malignant cell lines, human fibroblasts, and murine myoblasts mTOR is predominantly nuclear. In contrast, mTOR is largely excluded from the nucleus in HEK293 cells. Hybrids between HEK293 and Rh30 rhabdomyosarcoma cells generated cells co-expressing markers unique to HEK293 (E1A) and Rh30 (MyoD). mTOR distribution was mainly nuclear with detectable levels in the cytoplasm. mTOR isolated from Rh30 nuclei phosphorylated recombinant GST-4E-BP1 (Thr-46) in vitro and thus has kinase activity. We next investigated the cellular distribution of mTOR substrates 4E-BP, S6K1, and eIF4E. 4E-BP was exclusively detected in cytoplasmic fractions in all cell lines. S6K1 was localized in the cytoplasm in colon carcinoma, HEK293 cells, and IMR90 fibroblasts. S6K1 was readily detected in all cellular fractions derived from rhabdomyosarcoma cells. eIF4E was detected in all fractions derived from rhabdomyosarcoma cells but was not detectable in nuclear fractions from colon carcinoma HEK293 or IMR90 cells.  相似文献   

18.
Calcitonin receptor-like receptor (CRLR) constitutes either a CGRP receptor when complexed with receptor activity-modifying protein 1 (RAMP1) or an adrenomedullin receptor when complexed with RAMP2 or RAMP3. RAMP proteins modify the glycosylation status of CRLR and determine their receptor specificity; when treated with tunicamycin, a glycosylation inhibitor, CHO-K1 cells constitutively expressing both RAMP2 and CRLR lost the capacity to bind adrenomedullin. Similarly, in HEK293 EBNA cells constitutively expressing RAMP1/CRLR receptor complex CGRP binding was remarkably inhibited. Whichever RAMP protein was co-expressing with CRLR, the ligand binding was sensitive to tunicamycin. There are three putative Asn-linked glycosylation sites in the extracellular, amino terminal domain of CRLR at positions 66, 118 and 123. Analysis of CRLR mutants in which Gln was substituted for selected Asn residues showed that glycosylation of Asn123 is required for both the binding of adrenomedullin and the transduction of its signal. Substituting Asn66 or Asn118 had no effect. FACS analysis of cells expressing FLAG-tagged CRLRs showed that disrupting Asn-linked glycosylation severely affected the transport of the CRLR protein to the cell surface on N66/118/123Q mutant, and slightly reduced the level of the cell surface expression of N123Q mutant compared with wild-type CRLR. But other single mutants (N66Q, N118Q) had no effect for other single mutants. Our data shows that glycosylation of Asn66 and Asn118 is not essential for ligand binding, signal transduction and cell surface expression, and Asn123 is important for ligand binding and signal transduction rather than cell surface expression. It thus appears that glycosylation of Asn123 is required for CRLR to assume the appropriate conformation on the cell surface through its interaction with RAMPs.  相似文献   

19.
Despite heterologous expression of epitope-tagged GPCR is widely adopted for functional characterization, there is lacking of systematic analysis of the impact of expression host and epitope tag on GPCR expression. Angiotensin type II (AT2) receptor displays agonist-dependent and -independent activities, coupling to a spectrum of signaling molecules. However, consensus has not been reached on the subcellular distributions, signaling cascades and receptor-mediated actions. To examine the contributions of host cell and epitope tag on receptor expression and activity, epitope-tagged AT2 receptor variants were transiently or stably expressed in HEK293, CHO-K1 and PC12 cells. The epitope-tagged AT2 receptor variants were detected both on the cell membrane and in the perinuclear region. In transiently transfected HEK293 cells, Myc-AT2 existed predominantly as monomer. Additionally, a ladder of ubiquitinated AT2 receptor proteins was detected. By contrast, stably expressed epitope-tagged AT2 receptor variants existed as both monomer and high molecular weight complexes, and the latter was enriched in cell surface. Glycosylation promoted cell surface expression of Myc-AT2 but had no effect on AT2-GFP in HEK293 cells. In cells that stably expressed Myc-AT2, serum starvation induced apoptosis in CHO-K1 cells but not in HEK293 or PC12 cells. Instead, HEK293 and PC12 cells stably expressing Myc-AT2 exhibited partial cell cycle arrest with cells accumulating at G1 and S phases, respectively. Taken together, these results suggest that expression levels, subcellular distributions and ligand-independent constitutive activities of AT2 receptor were cell type-dependent while posttranslational processing of nascent AT2 receptor protein was modulated by epitope tag and mode of expression.  相似文献   

20.
The endogenous cannabinoid receptor ligand, anandamide (AEA), is a full agonist of the vanilloid receptor type 1 (VR1) for capsaicin. Here, we demonstrate that the potency and efficacy of AEA at VR1 receptors can be significantly increased by the concomitant activation of protein kinase A (PKA). In human embryonic kidney (HEK) cells over-expressing human VR1, AEA induces a rise in cytosolic Ca(2+) concentration that is mediated by this receptor. The EC(50) for this effect was decreased five-fold in the presence of forskolin (FRSK, 1-5 microM) or the cAMP analogue, 8-Br-cAMP (10-100 microM). The effects of 8-Br-cAMP and FRSK were blocked by a selective PKA inhibitor. The FRSK (10 nM) also potently enhanced the sensory neurone- and VR1-mediated constriction by AEA of isolated guinea-pig bronchi, and this effect was abolished by a PKA inhibitor. In rat dorsal root ganglia slices, AEA-induced release of substance P, an effect mediated by VR1 activation, was enhanced three-fold by FRSK (10 nM). Thus, the ability of AEA to stimulate sensory VR1, with subsequent neuropeptide release, appears to be regulated by the state of activation of PKA. This observation supports the hypothesis that endogenous AEA might stimulate VR1 under certain pathophysiological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号