首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two neuraminidase inhibitors, oseltamivir and zanamivir, are important drug treatments for influenza. Oseltamivir-resistant mutants of the influenza virus A/H1N1 and A/H5N1 have emerged, necessitating the development of new long-acting antiviral agents. One such agent is a new neuraminidase inhibitor R-125489 and its prodrug CS-8958. An atomic level understanding of the nature of this antiviral agents binding is still missing. We address this gap in our knowledge by applying steered molecular dynamics (SMD) simulations to different subtypes of seasonal and highly pathogenic influenza viruses. We show that, in agreement with experiments, R-125489 binds to neuraminidase more tightly than CS-8958. Based on results obtained by SMD and the molecular mechanics-Poisson–Boltzmann surface area method, we predict that R-125489 can be used to treat not only wild-type but also tamiflu-resistant N294S, H274Y variants of A/H5N1 virus as its binding affinity does not vary much across these systems. The high correlation level between theoretically determined rupture forces and experimental data on binding energies for the large number of systems studied here implies that SMD is a promising tool for drug design.  相似文献   

2.
Like the histidine-to-tyrosine substitution at position 274 in neuraminidase (NA H274Y), an asparagine-to-serine mutation at position 294 in this protein (NA N294S) confers oseltamivir resistance to highly pathogenic H5N1 influenza A viruses. However, unlike viruses with the NA H274Y mutation, the properties of viruses possessing NA N294S are not well understood. Here, we assessed the effect of the NA N294S substitution on the replication and pathogenicity of human H5N1 viruses and on the efficacy of the NA inhibitors oseltamivir and zanamivir in mouse and ferret models. Although NA N294S-possessing H5N1 viruses were attenuated in mice and ferrets compared to their oseltamivir-sensitive counterparts, one of the infected ferrets died from systemic infection, demonstrating the potential lethality in ferrets of oseltamivir-resistant H5N1 viruses with the NA N294S substitution. The efficacy of oseltamivir, but not that of zanamivir, against an NA N294S-possessing virus was substantially impaired both in ferrets and in vitro. These results demonstrate the considerable pathogenicity of NA N294S substitution-possessing H5N1 viruses and underscore the importance of monitoring the emergence of the NA N294S mutation in circulating H5N1 viruses.  相似文献   

3.
Vavricka CJ  Li Q  Wu Y  Qi J  Wang M  Liu Y  Gao F  Liu J  Feng E  He J  Wang J  Liu H  Jiang H  Gao GF 《PLoS pathogens》2011,7(10):e1002249
The 2009 H1N1 influenza pandemic (pH1N1) led to record sales of neuraminidase (NA) inhibitors, which has contributed significantly to the recent increase in oseltamivir-resistant viruses. Therefore, development and careful evaluation of novel NA inhibitors is of great interest. Recently, a highly potent NA inhibitor, laninamivir, has been approved for use in Japan. Laninamivir is effective using a single inhaled dose via its octanoate prodrug (CS-8958) and has been demonstrated to be effective against oseltamivir-resistant NA in vitro. However, effectiveness of laninamivir octanoate prodrug against oseltamivir-resistant influenza infection in adults has not been demonstrated. NA is classified into 2 groups based upon phylogenetic analysis and it is becoming clear that each group has some distinct structural features. Recently, we found that pH1N1 N1 NA (p09N1) is an atypical group 1 NA with some group 2-like features in its active site (lack of a 150-cavity). Furthermore, it has been reported that certain oseltamivir-resistant substitutions in the NA active site are group 1 specific. In order to comprehensively evaluate the effectiveness of laninamivir, we utilized recombinant N5 (typical group 1), p09N1 (atypical group 1) and N2 from the 1957 pandemic H2N2 (p57N2) (typical group 2) to carry out in vitro inhibition assays. We found that laninamivir and its octanoate prodrug display group specific preferences to different influenza NAs and provide the structural basis of their specific action based upon their novel complex crystal structures. Our results indicate that laninamivir and zanamivir are more effective against group 1 NA with a 150-cavity than group 2 NA with no 150-cavity. Furthermore, we have found that the laninamivir octanoate prodrug has a unique binding mode in p09N1 that is different from that of group 2 p57N2, but with some similarities to NA-oseltamivir binding, which provides additional insight into group specific differences of oseltamivir binding and resistance.  相似文献   

4.
Influenza viruses resistant to antiviral drugs emerge frequently. Not surprisingly, the widespread treatment in many countries of patients infected with 2009 pandemic influenza A (H1N1) viruses with the neuraminidase (NA) inhibitors oseltamivir and zanamivir has led to the emergence of pandemic strains resistant to these drugs. Sporadic cases of pandemic influenza have been associated with mutant viruses possessing a histidine-to-tyrosine substitution at position 274 (H274Y) in the NA, a mutation known to be responsible for oseltamivir resistance. Here, we characterized in vitro and in vivo properties of two pairs of oseltaimivir-sensitive and -resistant (possessing the NA H274Y substitution) 2009 H1N1 pandemic viruses isolated in different parts of the world. An in vitro NA inhibition assay confirmed that the NA H274Y substitution confers oseltamivir resistance to 2009 H1N1 pandemic viruses. In mouse lungs, we found no significant difference in replication between oseltamivir-sensitive and -resistant viruses. In the lungs of mice treated with oseltamivir or even zanamivir, 2009 H1N1 pandemic viruses with the NA H274Y substitution replicated efficiently. Pathological analysis revealed that the pathogenicities of the oseltamivir-resistant viruses were comparable to those of their oseltamivir-sensitive counterparts in ferrets. Further, the oseltamivir-resistant viruses transmitted between ferrets as efficiently as their oseltamivir-sensitive counterparts. Collectively, these data indicate that oseltamivir-resistant 2009 H1N1 pandemic viruses with the NA H274Y substitution were comparable to their oseltamivir-sensitive counterparts in their pathogenicity and transmissibility in animal models. Our findings highlight the possibility that NA H274Y-possessing oseltamivir-resistant 2009 H1N1 pandemic viruses could supersede oseltamivir-sensitive viruses, as occurred with seasonal H1N1 viruses.  相似文献   

5.
The use of antiviral drugs such as influenza neuraminidase (NA) inhibitors is a critical strategy to prevent and control flu pandemic, but this strategy faces the challenge of emerging drug-resistant strains. F or a highly pathogenic avian influenza (HPAI) H5N1 virus, biosafety restrictions have significantly limited the efforts to monitor its drug responses and mechanisms involved. In this study, a rapid and biosafe assay based on NA pseudovirus was developed to study the resistance of HPAI H5N1 virus to NA inhibitor drugs. The H5N1 NA pseudovirus was comprehensively tested using oseltamivir-sensitive strains and their resistant mutants. Results were consistent with those in previous studies, in which live H5N1 viruses were used. Several oseltamivir-resistant mutations reported in human H1N1 were also identifi ed to cause decreased oseltamivir sensitivity in H5N1 NA by using the H5N1 NA pseudovirus. Thus, H5N1 NA pseudoviruses could be used to monitor HPAI H5N1 drug resistance rapidly and safely.  相似文献   

6.
Between 2007 and 2009, oseltamivir resistance developed among seasonal influenza A/H1N1 (sH1N1) virus isolates at an exponential rate, without a corresponding increase in oseltamivir usage. We hypothesized that the oseltamivir-resistant neuraminidase (NA), in addition to being relatively insusceptible to the antiviral effect of oseltamivir, might confer an additional fitness advantage on these viruses by enhancing their transmission efficiency among humans. Here we demonstrate that an oseltamivir-resistant clinical isolate, an A/Brisbane/59/2007(H1N1)-like virus isolated in New York State in 2008, transmits more efficiently among guinea pigs than does a highly similar, contemporaneous oseltamivir-sensitive isolate. With reverse genetics reassortants and point mutants of the two clinical isolates, we further show that expression of the oseltamivir-resistant NA in the context of viral proteins from the oseltamivir-sensitive virus (a 7:1 reassortant) is sufficient to enhance transmissibility. In the guinea pig model, the NA is the critical determinant of transmission efficiency between oseltamivir-sensitive and -resistant Brisbane/59-like sH1N1 viruses, independent of concurrent drift mutations that occurred in other gene products. Our data suggest that the oseltamivir-resistant NA (specifically, one or both of the companion mutations, H275Y and D354G) may have allowed resistant Brisbane/59-like viruses to outtransmit sensitive isolates. These data provide in vivo evidence of an evolutionary mechanism that would explain the rapidity with which oseltamivir resistance achieved fixation among sH1N1 isolates in the human reservoir.  相似文献   

7.
The rapid emergence and subsequent spread of the novel 2009 Influenza A/H1N1 virus (2009 H1N1) has prompted the World Health Organization to declare the first pandemic of the 21st century, highlighting the threat of influenza to public health and healthcare systems. Widespread resistance to both classes of influenza antivirals (adamantanes and neuraminidase inhibitors) occurs in both pandemic and seasonal viruses, rendering these drugs to be of marginal utility in the treatment modality. Worldwide, virtually all 2009 H1N1 and seasonal H3N2 strains are resistant to the adamantanes (rimantadine and amantadine), and the majority of seasonal H1N1 strains are resistant to oseltamivir, the most widely prescribed neuraminidase inhibitor (NAI). To address the need for more effective therapy, we evaluated the in vitro activity of a triple combination antiviral drug (TCAD) regimen composed of drugs with different mechanisms of action against drug-resistant seasonal and 2009 H1N1 influenza viruses. Amantadine, ribavirin, and oseltamivir, alone and in combination, were tested against amantadine- and oseltamivir-resistant influenza A viruses using an in vitro infection model in MDCK cells. Our data show that the triple combination was highly synergistic against drug-resistant viruses, and the synergy of the triple combination was significantly greater than the synergy of any double combination tested (P<0.05), including the combination of two NAIs. Surprisingly, amantadine and oseltamivir contributed to the antiviral activity of the TCAD regimen against amantadine- and oseltamivir-resistant viruses, respectively, at concentrations where they had no activity as single agents, and at concentrations that were clinically achievable. Our data demonstrate that the TCAD regimen composed of amantadine, ribavirin, and oseltamivir is highly synergistic against resistant viruses, including 2009 H1N1. The TCAD regimen overcomes baseline drug resistance to both classes of approved influenza antivirals, and thus may represent a highly active antiviral therapy for seasonal and pandemic influenza.  相似文献   

8.
The limited availability of approved influenza virus antivirals highlights the importance of studying the fitness and transmissibility of drug-resistant viruses. S247N is a novel, naturally occurring N1 neuraminidase mutation that reduces oseltamivir sensitivity and greatly potentiates oseltamivir resistance in the context of the H275Y mutation. Here we show that highly oseltamivir-resistant viruses containing both the S247N and H275Y mutations transmit efficiently in the guinea pig transmission model.  相似文献   

9.
Bouvier NM  Lowen AC  Palese P 《Journal of virology》2008,82(20):10052-10058
Influenza viruses resistant to the neuraminidase (NA) inhibitor oseltamivir arise under drug selection pressure both in vitro and in vivo. Several mutations in the active site of the viral NA are known to confer relative resistance to oseltamivir, and influenza viruses with certain oseltamivir resistance mutations have been shown to transmit efficiently among cocaged ferrets. However, it is not known whether NA mutations alter aerosol transmission of drug-resistant influenza virus. Here, we demonstrate that recombinant human influenza A/H3N2 viruses without and with oseltamivir resistance mutations (in which NA carries the mutation E119V or the double mutations E119V I222V) have similar in ovo growth kinetics and infectivity in guinea pigs. These viruses also transmit efficiently by the contact route among cocaged guinea pigs, as in the ferret model. However, in an aerosol transmission model, in which guinea pigs are caged separately, the oseltamivir-resistant viruses transmit poorly or not at all; in contrast, the oseltamivir-sensitive virus transmits efficiently even in the absence of direct contact. The present results suggest that oseltamivir resistance mutations reduce aerosol transmission of influenza virus, which could have implications for public health measures taken in the event of an influenza pandemic.  相似文献   

10.
The neuraminidase (NA) inhibitor oseltamivir offers an important immediate option for the control of influenza, and its clinical use has increased substantially during the recent H1N1 pandemic. In view of the high prevalence of oseltamivir-resistant seasonal H1N1 influenza viruses in 2007–2008, there is an urgent need to characterize the transmissibility and fitness of oseltamivir-resistant H1N1/2009 viruses, although resistant variants have been isolated at a low rate. Here we studied the transmissibility of a closely matched pair of pandemic H1N1/2009 clinical isolates, one oseltamivir-sensitive and one resistant, in the ferret model. The resistant H275Y mutant was derived from a patient on oseltamivir prophylaxis and was the first oseltamivir-resistant isolate of the pandemic virus. Full genome sequencing revealed that the pair of viruses differed only at NA amino acid position 275. We found that the oseltamivir-resistant H1N1/2009 virus was not transmitted efficiently in ferrets via respiratory droplets (0/2), while it retained efficient transmission via direct contact (2/2). The sensitive H1N1/2009 virus was efficiently transmitted via both routes (2/2 and 1/2, respectively). The wild-type H1N1/2009 and the resistant mutant appeared to cause a similar disease course in ferrets without apparent attenuation of clinical signs. We compared viral fitness within the host by co-infecting a ferret with oseltamivir-sensitive and -resistant H1N1/2009 viruses and found that the resistant virus showed less growth capability (fitness). The NA of the resistant virus showed reduced substrate-binding affinity and catalytic activity in vitro and delayed initial growth in MDCK and MDCK-SIAT1 cells. These findings may in part explain its less efficient transmission. The fact that the oseltamivir-resistant H1N1/2009 virus retained efficient transmission through direct contact underlines the necessity of continuous monitoring of drug resistance and characterization of possible evolving viral proteins during the pandemic.  相似文献   

11.
If highly pathogenic H5N1 influenza viruses acquire affinity for human rather than avian respiratory epithelium, will their susceptibility to neuraminidase (NA) inhibitors (the likely first line of defense against an influenza pandemic) change as well? Adequate pandemic preparedness requires that this question be answered. We generated and tested 31 recombinants of A/Vietnam/1203/04 (H5N1) influenza virus carrying single, double, or triple mutations located within or near the receptor binding site in the hemagglutinin (HA) glycoprotein that alter H5 HA binding affinity or specificity. To gain insight into how combinations of HA and NA mutations can affect the sensitivity of H5N1 virus to NA inhibitors, we also rescued viruses carrying the HA changes together with the H274Y NA substitution, which was reported to confer resistance to the NA inhibitor oseltamivir. Twenty viruses were genetically stable. The triple N158S/Q226L/N248D HA mutation (which eliminates a glycosylation site at position 158) caused a switch from avian to human receptor specificity. In cultures of differentiated human airway epithelial (NHBE) cells, which provide an ex vivo model that recapitulates the receptors in the human respiratory tract, none of the HA-mutant recombinants showed reduced susceptibility to antiviral drugs (oseltamivir or zanamivir). This finding was consistent with the results of NA enzyme inhibition assay, which appears to predict influenza virus susceptibility in vivo. Therefore, acquisition of human-like receptor specificity does not affect susceptibility to NA inhibitors. Sequence analysis of the NA gene alone, rather than analysis of both the NA and HA genes, and phenotypic assays in NHBE cells are likely to adequately identify drug-resistant H5N1 variants isolated from humans during an outbreak.  相似文献   

12.
In search of novel anti-influenza agents with higher potency, a series of acylguanidine oseltamivir carboxylate analogues were synthesized and evaluated against influenza viruses (H1N1 and H3N2) in vitro. The representative compounds with strong inhibitory activities (IC50 <40 nM) against neuraminidase (NA) were further tested against the NA from oseltamivir-resistant strain (H259Y). Among them, compounds 9 and 17 were potent NA inhibitors that exhibited a 5 and 11-fold increase in activity comparing with oseltamivir carboxylate (2, OC) against the H259Y mutant, respectively. Furthermore, the effect against influenza virus H259Y mutant (H1N1) replication and cytotoxicity assays indicated that compounds 9 and 17 exhibited a 20 and 6-fold increase than the parent compound 2, and had no obvious cytotoxicity in vitro. Moreover, the molecular docking studies revealed that the docking modes of compounds 9 and 17 were different from that of oseltamivir, and the new hydrogen bonds and hydrophobic interaction were formed in this case. This work provided unique insights in the discovery of potent inhibitors against NAs from wild-type and oseltamivir-resistant strains.  相似文献   

13.
Yang JR  Lin YC  Huang YP  Su CH  Lo J  Ho YL  Yao CY  Hsu LC  Wu HS  Liu MT 《PloS one》2011,6(3):e18177
A dramatic increase in the frequency of the H275Y mutation in the neuraminidase (NA), conferring resistance to oseltamivir, has been detected in human seasonal influenza A/H1N1 viruses since the influenza season of 2007-2008. The resistant viruses emerged in the ratio of 14.3% and quickly reached 100% in Taiwan from September to December 2008. To explore the mechanisms responsible for emergence and spread of the resistant viruses, we analyzed the complete genome sequences of 25 viruses collected during 2005-2009 in Taiwan, which were chosen from various clade viruses, 1, 2A, 2B-1, 2B-2, 2C-1 and 2C-2 by the classification of hemagglutinin (HA) sequences. Our data revealed that the dominant variant, clade 2B-1, in the 2007-2008 influenza emerged through an intra-subtype 4+4 reassortment between clade 1 and 2 viruses. The dominant variant acquired additional substitutions, including A206T in HA, H275Y and D354G in NA, L30R and H41P in PB1-F2, and V411I and P453S in basic polymerase 2 (PB2) proteins and subsequently caused the 2008-2009 influenza epidemic in Taiwan, accompanying the widespread oseltamivir-resistant viruses. We also characterized another 3+5 reassortant virus which became double resistant to oseltamivir and amantadine. Comparison of oseltamivir-resistant influenza A/H1N1 viruses belonging to various clades in our study highlighted that both reassortment and mutations were associated with emergence and spread of these viruses and the specific mutation, H275Y, conferring to antiviral resistance, was acquired in a hitch-hiking mechanism during the viral evolutionary processes.  相似文献   

14.
Influenza A virus poses a great threat to global health, and oseltamivir (trade marked as Tamiflu), which targets influenza surface glycoprotein neuraminidase (NA), is used clinically as a major anti-influenza treatment. However, certain substitutions in NA can render an influenza virus resistant to this drug. In this study, using a lentiviral pseudotyping system, which alleviates the safety concerns of studying highly pathogenic influenza viruses such as avian influenza H5N1, that utilizes influenza surface glycoproteins (hemagglutinin or HA, and NA) and an HIV-core combined with a luciferase reporter gene as a surrogate assay, we first assessed the functionality of NA by measuring pseudovirion release in the absence or presence of oseltamivir. We demonstrated that oseltamivir displays a dose-dependent inhibition on NA activity. In contrast, a mutant NA (H274Y) is more resistant to oseltamivir treatment. In addition, the effects of several previously reported substitution NA mutants were examined as well. Our results demonstrate that this lentivirus-based pseudotyping system provides a quick, safe, and effective way to assess resistance to neuraminidase inhibitors. And we believe that as new mutations appear in influenza isolates, their impact on the effectiveness of current and future anti-NA can be quickly and reliably evaluated by this assay.  相似文献   

15.
The neuraminidase (NA) of influenza virus is the target of anti-flu drugs oseltamivir and zanamivir. Clinical practices showed that oseltamivir was effective to treat the 2009-H1N1 influenza but failed to the 2006-H5N1 avian influenza. To perform an in-depth analysis on such a drug-resistance problem, the 2009-H1N1-NA structure was developed. To compare it with the crystal 2006-H5N1-NA structure as well as the 1918 influenza virus H1N1-NA structure, the multiple sequential and structural alignments were performed. It has been revealed that the hydrophobic residue Try347 in H5N1-NA does not match with the hydrophilic carboxyl group of oseltamivir as in the case of H1N1-NA. This may be the reason why H5N1 avian influenza virus is drug-resistant to oseltamivir. The finding provides useful insights for how to modify the existing drugs, such as oseltamivir and zanamivir, making them not only become more effective against H1N1 virus but also effective against H5N1 virus.  相似文献   

16.
The fitness of oseltamivir-resistant highly pathogenic H5N1 influenza viruses has important clinical implications. We generated recombinant human A/Vietnam/1203/04 (VN; clade 1) and A/Turkey/15/06 (TK; clade 2.2) influenza viruses containing the H274Y neuraminidase (NA) mutation, which confers resistance to NA inhibitors, and compared the fitness levels of the wild-type (WT) and resistant virus pairs in ferrets. The VN-H274Y and VN-WT viruses replicated to similar titers in the upper respiratory tract (URT) and caused comparable disease signs, and none of the animals survived. On days 1 to 3 postinoculation, disease signs caused by oseltamivir-resistant TK-H274Y virus were milder than those caused by TK-WT virus, and all animals survived. We then studied fitness by using a novel approach. We coinoculated ferrets with different ratios of oseltamivir-resistant and -sensitive H5N1 viruses and measured the proportion of clones in day-6 nasal washes that contained the H274Y NA mutation. Although the proportion of VN-H274Y clones increased consistently, that of TK-H274Y virus decreased. Mutations within NA catalytic (R292K) and framework (E119A/K, I222L, H274L, and N294S) sites or near the NA enzyme active site (V116I, I117T/V, Q136H, K150N, and A250T) emerged spontaneously (without drug pressure) in both pairs of viruses. The NA substitutions I254V and E276A could exert a compensatory effect on the fitness of VN-H274Y and TK-H274Y viruses. NA enzymatic function was reduced in both drug-resistant H5N1 viruses. These results show that the H274Y NA mutation affects the fitness of two H5N1 influenza viruses differently. Our novel method of assessing viral fitness accounts for both virus-host interactions and virus-virus interactions within the host.The neuraminidase (NA) inhibitors (orally administered oseltamivir and inhaled zanamivir) are currently an important class of antiviral drugs available for the treatment of seasonal and pandemic influenza. Although administration of NA inhibitors may significantly reduce influenza virus transmission, it risks the emergence of drug-resistant variants (16, 32). The impact of drug resistance would depend on the fitness (i.e., infectivity in vitro and virulence and transmissibility in vivo) of the resistant virus. If the resistance mutation only modestly reduces the virus'' biological fitness and does not impair its replication efficiency and transmissibility, the effectiveness of antiviral treatment can be significantly impaired. The unexpected natural emergence and spread of oseltamivir-resistant variants (carrying the H274Y NA amino acid substitution) among seasonal H1N1 influenza viruses of the A/Brisbane/59/07 lineage demonstrated that drug-resistant viruses can be highly fit and transmissible in humans (11, 22, 29), although the fitness of these variants is not completely understood. They are hypothesized to have lower NA receptor affinity and more-optimal NA and hemagglutinin (HA) functional balance than do wild-type (WT) viruses (38). Fortunately, oseltamivir-resistant variants have rarely been reported to occur among the novel pandemic H1N1 influenza viruses that emerged in April 2009; therefore, initial data suggest that currently circulating wild-type viruses possibly possess greater fitness than drug-resistant viruses (45), although only retrospective epidemiological data can provide a conclusive answer. The key questions are whether the risk posed by NA inhibitor-resistant viruses can be assessed experimentally and what the most reliable approach may be.All NA inhibitor-resistant influenza viruses characterized to date have contained specific mutations in the NA molecule. Clinically derived drug-resistant viruses have carried mutations that are NA subtype specific and differ in accordance with the NA inhibitor used (12, 35). The most commonly observed mutations are H274Y and N294S in the influenza A N1 NA subtype, E119A/G/D/V and R292K in the N2 NA subtype, and R152K and D198N in influenza B viruses (35, 36). The fitness of NA inhibitor-resistant viruses has been studied in vitro and in vivo. Many groups have assessed their replicative capacity in MDCK cells, but this assay system can yield anomalous results (49), particularly in the case of low-passage clinical isolates. The mismatch between virus specificity and cellular receptors can be overcome by using cell lines engineered to express human-like α-2,6-linked sialyl cell surface receptors (MDCK-SIAT1) (15, 34) or a novel cell culture-based system that morphologically and functionally recapitulates differentiated normal human bronchial epithelial (NHBE) cells (24). Investigations in vivo typically compare replication efficiencies, clinical signs, and transmissibility levels between oseltamivir-resistant viruses and the corresponding wild-type virus. Initial studies found that NA inhibitor-resistant influenza viruses were severely compromised in vitro and in animal models (6, 17, 26) and thus led to the idea that resistant viruses will unlikely have an impact on epidemic and pandemic influenza. However, clinically derived H1N1 virus with the H274Y NA mutation (18) and reverse genetics-derived H3N2 virus with the E119V NA mutation (46) were subsequently found to possess biological fitness and transmissibility similar to those of drug-sensitive virus in direct-contact ferrets. Recent studies in a guinea pig model showed that recombinant human H3N2 influenza viruses carrying either a single E119V NA mutation or the double NA mutation E119V-I222V were transmitted efficiently by direct contact but not by aerosol (5).There is limited information about the fitness of NA inhibitor-resistant H5N1 influenza viruses. Although they are not efficiently transmitted from human to human, their pandemic potential remains a serious public health concern because of their virulence in humans (1, 4, 7). H5N1 viruses isolated from untreated patients are susceptible to the NA inhibitors oseltamivir and zanamivir (21), although oseltamivir-resistant variants with the H274Y NA mutation have been reported to occur in five patients after (9, 30) or before (41) treatment with oseltamivir. The World Health Organization reported the isolation of two oseltamivir-resistant H5N1 viruses from an Egyptian girl and her uncle (44) after oseltamivir treatment. The virus was moderately resistant and possessed an N294S NA mutation. Preliminary evidence suggests that the resistance mutation existed before transmission of the virus from birds to the patients and thus before initiation of treatment (41). We previously showed that wild-type A/Vietnam/1203/04 (H5N1) influenza virus and recombinants carrying either the H274Y or the N294S NA mutation reached comparable titers in MDCK and MDCK-SIAT1 cells and caused comparable mortality rates among BALB/c mice (48). In contrast, clinically derived A/Hanoi/30408/05 (H5N1) influenza virus with the H274Y NA mutation reproduced to lower titers than the oseltamivir-sensitive virus in the lungs of inoculated ferrets (30).In a ferret model, we compared the fitness levels of two pairs of H5N1 viruses in the absence of selective drug pressure. One virus of each pair was the wild type, while the other carried the H274Y NA mutation conferring oseltamivir resistance. The two viruses used, A/Vietnam/1203/04 (HA clade 1) and A/Turkey/15/06 (HA clade 2.2), differ in their pathogenicity to ferrets. Virus fitness was evaluated by two approaches. Using the traditional approach, we compared clinical disease signs, relative inactivity indexes, weight and temperature changes, and virus replication levels in the upper respiratory tract (URT). We then used a novel competitive fitness approach in which we genetically analyzed individual virus clones after coinfection of ferrets with mixtures of oseltamivir-sensitive and -resistant H5N1 viruses; thus, we determined virus-virus interactions within the host. We observed no difference between the resistant and sensitive virus of each pair in clinical signs or virus replication in the URT; however, analysis of virus-virus interactions within the host showed that the H274Y NA mutation affected the fitness of the two viruses differently. The oseltamivir-resistant A/Vietnam/1203/04-like virus outgrew its wild-type counterpart, while the oseltamivir-resistant A/Turkey/15/06-like virus showed less fitness than its wild-type counterpart.  相似文献   

17.
An epidemic of an avian-origin H7N9 influenza virus has recently emerged in China, infecting 134 patients of which 45 have died. This is the first time that an influenza virus harboring an N9 serotype neuraminidase (NA) has been known to infect humans. H7N9 viruses are divergent and at least two distinct NAs and hemagglutinins (HAs) have been found, respectively, from clinical isolates. The prototypes of these viruses are A/Anhui/1/2013 and A/Shanghai/1/2013. NAs from these two viruses are distinct as the A/Shanghai/1/2013 NA has an R294K substitution that can confer NA inhibitor oseltamivir resistance. Oseltamivir is by far the most commonly used anti-influenza drug due to its potency and high bioavailability. In this study, we show that an R294K substitution results in multidrug resistance with extreme oseltamivir resistance (over 100 000-fold) using protein- and virus-based assays. To determine the molecular basis for the inhibitor resistance, we solved high-resolution crystal structures of NAs from A/Anhui/1/2013 N9 (R294-containing) and A/Shanghai/1/2013 N9 (K294-containing). R294K substitution results in an unfavorable E276 conformation for oseltamivir binding, and consequently loss of inhibitor carboxylate interactions, which compromises the binding of all classical NA ligands/inhibitors. Moreover, we found that R294K substitution results in reduced NA catalytic efficiency along with lower viral fitness. This helps to explain why K294 has predominantly been found in clinical cases of H7N9 infection under the selective pressure of oseltamivir treatment and not in the dominant human-infecting viruses. This implies that oseltamivir can still be efficiently used in the treatment of H7N9 infections.  相似文献   

18.
Oseltamivir is routinely used worldwide for the treatment of severe influenza A virus infection, and should drug-resistant pandemic 2009 H1N1 viruses become widespread, this potent defense strategy might fail. Oseltamivir-resistant variants of the pandemic 2009 H1N1 influenza A virus have been detected in a substantial number of patients, but to date, the mutant viruses have not moved into circulation in the general population. It is not known whether the resistance mutations in viral neuraminidase (NA) reduce viral fitness. We addressed this question by studying transmission of oseltamivir-resistant mutants derived from two different isolates of the pandemic H1N1 virus in both the guinea pig and ferret transmission models. In vitro, the virus readily acquired a single histidine-to-tyrosine mutation at position 275 (H275Y) in viral neuraminidase when serially passaged in cell culture with increasing concentrations of oseltamivir. This mutation conferred a high degree of resistance to oseltamivir but not zanamivir. Unexpectedly, in guinea pigs and ferrets, the fitness of viruses with the H275Y point mutation was not detectably impaired, and both wild-type and mutant viruses were transmitted equally well from animals that were initially inoculated with 1:1 virus mixtures to naïve contacts. In contrast, a reassortant virus containing an oseltamivir-resistant seasonal NA in the pandemic H1N1 background showed decreased transmission efficiency and fitness in the guinea pig model. Our data suggest that the currently circulating pandemic 2009 H1N1 virus has a high potential to acquire drug resistance without losing fitness.Oseltamivir resistance was rare until 2008, when resistant seasonal H1N1 viruses were found circulating in the general Scandinavian population (15). Soon after, studies from other countries in Europe also reported the isolation of oseltamivir-resistant viruses, and eventually, oseltamivir resistance was recognized as a global phenomenon (9, 27). Prior to 2008, resistant viruses were primarily isolated from patients with nonresponsive influenza virus infections or from infected patients who received a low-dose prophylaxis regiment prior to symptom onset. At the time, these resistant isolates accounted for 1% of the circulating H1N1 virus. Drug resistance mutations were identified during oseltamivir development, including a histidine-to-tyrosine mutation at position 275 (H275Y) in N1 neuraminidase (NA). This mutation in particular was shown to attenuate virus growth and pathology in ferrets (17). Additionally, oseltamivir-resistant viruses with a nearby mutation in N2 neuraminidase transmitted less efficiently than oseltamivir-sensitive viruses in the guinea pig transmission model (4). Surprisingly, the seasonal 2008 H1N1 viral isolates that spread around the world had the same tyrosine mutation, which was previously associated with iatrogenic infections and attenuation. Furthermore, epidemiological studies concluded that this resistant virus developed independently of drug selection, suggesting that compensatory adaptations allowed an attenuating mutation to become permissible (3, 18). The ability of resistant 2008 isolates to perform on par with nonresistant 2008 isolates in growth curves, in mean plaque size, and in a transmission model was recently confirmed (2). Currently, 99% of seasonal H1N1 viruses are oseltamivir resistant; however, the prevalence of these viruses is very low due to replacement by a novel reassortant H1N1 virus (6, 8). This novel reassortant was originally identified in Mexico by doctors concerned about a jump in the number of influenza cases during the month of March in 2009 (7). Later referred to as swine-origin influenza virus, novel H1N1 virus, or 2009 pandemic H1N1 virus, this virus would continue to efficiently transmit around the world, even during the summer months of the northern hemisphere. Its robust transmission was later confirmed in aerosol transmission models, in which 86% of ferrets and 100% of guinea pigs exposed to infected animals contracted pandemic influenza (22, 28, 31). Oseltamivir was used broadly during the outbreak, treating those with complications and prophylactically treating close contacts of confirmed cases. The use of oseltamivir in this manner provided ample opportunity for oseltamivir-resistant viruses to develop. More than 225 cases of oseltamivir-resistant infections have been confirmed from the beginning of the pandemic, including four incidents of suspected aerosol transmission (21, 32, 33). Fortunately, these clinical isolates never progressed into stable transmission in the general public. This study seeks to evaluate if introducing the H275Y mutation into the pandemic 2009 H1N1 virus attenuates virus replication in vitro or in vivo using the guinea pig model and the ferret model to test aerosol transmission efficiency. Furthermore, this study evaluates if a reassortant between the circulating novel H1N1 virus and seasonal neuraminidase (NA) forms a well-adapted, resistant virus capable of efficient transmission.Currently, oseltamivir is the drug of choice for treating novel H1N1 complications and outpatient prophylaxis. Therefore, it is of great importance to study the in vitro replication and transmission phenotypes of oseltamivir-resistant novel H1N1 viruses to understand why broad oseltamivir resistance has not occurred or whether we should expect it to occur in the future.  相似文献   

19.
The 2009 flu pandemic and the appearance of oseltamivir-resistant H1N1 influenza strains highlight the need for treatment alternatives. One such option is the creation of a protective physical barrier in the nasal cavity. In vitro tests demonstrated that iota-carrageenan is a potent inhibitor of influenza A virus infection, most importantly also of pandemic H1N1/2009 in vitro. Consequently, we tested a commercially available nasal spray containing iota-carrageenan in an influenza A mouse infection model. Treatment of mice infected with a lethal dose of influenza A PR8/34 H1N1 virus with iota-carrageenan starting up to 48 hours post infection resulted in a strong protection of mice similar to mice treated with oseltamivir. Since alternative treatment options for influenza are rare, we conclude that the nasal spray containing iota-carrageenan is an alternative to neuraminidase inhibitors and should be tested for prevention and treatment of influenza A in clinical trials in humans.  相似文献   

20.
The recent H1N1 influenza pandemic has attracted worldwide attention due to the high infection rate. Oseltamivir is a new class of anti-viral agent approved for the treatment and prevention of influenza infections. The principal target for this drug is a virus surface glycoprotein, neuraminidase (NA), which facilitates the release of nascent virus and thus spreads infection. Until recently, only a low prevalence of neuraminidase inhibitor (NAI) resistance (<1 %) had been detected in circulating viruses. However, there have been reports of significant numbers of A (H1N1) influenza strains with a N294S neuraminidase mutation that was highly resistant to the NAI, oseltamivir. Hence, in the present study, we highlight the effect of point mutation-induced oseltamivir resistance in H1N1 subtype neuraminidases by molecular simulation approach. The docking analysis reveals that mutation (N294S) significantly affects the binding affinity of oseltamivir with mutant type NA. This is mainly due to the decrease in the flexibility of binding site residues and the difference in prevalence of hydrogen bonds in the wild and mutant structures. This study throws light on the possible effects of drug-resistant mutations on the large functionally important collective motions in biological systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号