首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Canakinumab     
《MABS-AUSTIN》2013,5(1):3-13
Canakinumab (ACZ885, Ilaris) is a human anti-IL-1β monoclonal antibody developed by Novartis. Its mode of action is based on the neutralization of IL-1β signaling, resulting in suppression of inflammation in patients with disorders of autoimmune origin. In June 2009 the drug was approved by the US Food and Drug Administration for the treatment of familial cold auto-inflammatory syndrome and Muckle-Wells syndrome, which are inflammatory diseases related to cryopyrin-associated periodic syndromes. The drug is currently being evaluated for its potential in the treatment of rheumatoid arthritis, systemic-onset juvenile idiopathic arthritis, chronic obstructive pulmonary disease, type 1 and 2 diabetes and ocular diseases. Reports from clinical trials suggest that canakinumab is well-tolerated in most patients, and no serious adverse effects have been reported. The drug provides significant advantages over existing competitive therapies, including bimonthly administration and approved use in children.  相似文献   

2.
Interleukin-1β (IL-1β) plays a key role in autoinflammatory diseases, such as systemic juvenile idiopathic arthritis (sJIA) or cryopyrin-associated periodic syndrome (CAPS). Canakinumab, a human monoclonal anti-IL-1β antibody, was recently approved for human use under the brand name Ilaris®. Canakinumab does not cross-react with IL-1β from mouse, rat, rabbit, or macaques. The crystal structure of the canakinumab Fab bound to human IL-1β was determined in an attempt to rationalize the species specificity. The X-ray analysis reveals a complex surface epitope with an intricate network of well-ordered water molecules at the antibody-antigen interface. The canakinumab paratope is largely pre-organized, as demonstrated by the structure determination of the free Fab. Glu 64 of human IL-1β is a pivotal epitope residue explaining the exquisite species specificity of canakinumab. We identified marmoset as the only non-human primate species that carries Glu 64 in its IL-1β and demonstrates full cross-reactivity of canakinumab, thereby enabling toxicological studies in this species. As demonstrated by the X-ray structure of the complex with IL-1β, canakinumab binds IL-1β on the opposite side with respect to the IL-1RAcP binding site, and in an approximately orthogonal orientation with respect to IL-1RI. However, the antibody and IL-1RI binding sites slightly overlap and the VH region of canakinumab would sterically interfere with the D1 domain of IL-1RI, as shown by a structural overlay with the IL-1β:IL-1RI complex. Therefore, direct competition with IL-1RI for IL-1β binding is the molecular mechanism of neutralization by canakinumab, which is also confirmed by competition assays with recombinant IL-1RI and IL-1RII.  相似文献   

3.
The pro-inflammatory cytokine interleukin (IL)-1β is a clinical target in many conditions involving dysregulation of the immune system; therapeutics that block IL-1β have been approved to treat diseases such as rheumatoid arthritis (RA), neonatal onset multisystem inflammatory diseases, cryopyrin-associated periodic syndromes, active systemic juvenile idiopathic arthritis. Here, we report the generation and engineering of a new fully human antibody that binds tightly to IL-1β with a neutralization potency more than 10 times higher than that of the marketed antibody canakinumab. After affinity maturation, the derived antibody shows a >30-fold increased affinity to human IL-1β compared with its parent antibody. This anti-human IL-1β IgG also cross-reacts with mouse and monkey IL-1β, hence facilitating preclinical development. In a number of mouse models, this antibody efficiently reduced or abolished signs of disease associated with IL-1β pathology. Due to its high affinity for the cytokine and its potency both in vitro and in vivo, we propose that this novel fully human anti-IL-1β monoclonal antibody is a promising therapeutic candidate and a potential alternative to the current therapeutic arsenal.  相似文献   

4.
Certolizumab pegol (Cimzia®) is currently the only PEGylated anti-TNFα biologic approved for the treatment of rheumatoid arthritis and Crohn disease. The product, developed by UCB, is a humanized antigen-binding fragment (Fab’) of a monoclonal antibody that has been conjugated to polyethylene glycol. Certolizumab pegol was approved as a treatment for rheumatoid arthritis in the EU, US and Canada in 2009, and as a treatment for Crohn disease in Switzerland in 2007 and the US in 2008. Certolizumab pegol is entering into an increasingly competitive marketplace, especially in rheumatoid arthritis, but clinical data demonstrate benefits across a range of clinical, radiographic and patient reported outcomes.Key words: certolizumab pegol, rheumatoid arthritis, Crohn disease, TNFα, PEGylated, methotrexate  相似文献   

5.
Golimumab     
Golimumab, a human anti-TNFα IgG1. monoclonal antibody, was approved in the US and Canada in April 2009 as a treatment for rheumatoid arthritis, psoriatic arthritis and ankylosing spondylitis, and is undergoing regulatory review in the EU for these indications. The product was developed by Centocor and Janssen Pharmaceutical KK (Johnson & Johnson subsidiaries), in collaboration with Schering-Plough and Mitsubishi Tanabe Pharma. Golimumab faces numerous protein therapeutic competitors on the market, but, as the first patient-administered, once-monthly dosed anti-TNFα drug, it will likely be an attractive option for patients.Key words: golimumab, monoclonal antibody, immunomodulator, anti-TNF, arthritis  相似文献   

6.
7.
In the early 1990s, it has been described that LTα and LTβ form LTα2β and LTαβ2 heterotrimers, which bind to TNFR1 and LTβR, respectively. Afterwards, the LTαβ2–LTβR system has been intensively studied while the LTα2β–TNFR1 interaction has been ignored to date, presumably due to the fact that at the time of identification of the LTα2β–TNFR1 interaction one knew already two ligands for TNFR1, namely TNF and LTα. Here, we show that LTα2β interacts not only with TNFR1 but also with TNFR2. We furthermore demonstrate that membrane-bound LTα2β (memLTα2β), despite its asymmetric structure, stimulates TNFR1 and TNFR2 signaling. Not surprising in view of its ability to interact with TNFR2, LTα2β is inhibited by Etanercept, which is approved for the treatment of rheumatoid arthritis and also inhibits TNF and LTα.Subject terms: Cytokines, Signal transduction  相似文献   

8.
Atherosclerotic vascular calcification contributes to increased risk of death in patients with cardiovascular diseases. Assessing the type and severity of inflammation is crucial in the treatment of numerous cardiovascular conditions. IL-1β, a potent proinflammatory cytokine, plays diverse roles in the pathogenesis of atherosclerotic vascular calcification. Several large-scale, population cohort trials have shown that the incidence of cardiovascular events is clinically reduced by the administration of anti-IL-1β therapy. Anti-IL-1β therapy might reduce the incidence of cardiovascular events by affecting atherosclerotic vascular calcification, but the mechanism underlying this effect remains unclear. In this review, we summarize current knowledge on the role of IL-1β in atherosclerotic vascular calcification, and describe the latest results reported in clinical trials evaluating anti-IL-1β therapies for the treatment of cardiovascular diseases. This review will aid in improving current understanding of the pathophysiological roles of IL-1β and mechanisms underlying its activity.  相似文献   

9.
Interleukin-1β (IL-1β) is a potent proinflammatory and immunoregulatory cytokine playing an important role in the progression of rheumatoid arthritis (RA). However, the signaling network of IL-1β in synoviocytes from RA patients is still poorly understood. Here, we show for the first time that phospholipase D1 (PLD1), but not PLD2, is selectively upregulated in IL-1β-stimulated synoviocytes, as well as synovium, from RA patients. IL-1β enhanced the binding of NF-κB and ATF-2 to the PLD1 promoter, thereby enhancing PLD1 expression. PLD1 inhibition abolished the IL-1β-induced expression of proinflammatory mediators and angiogenic factors by suppressing the binding of NF-κB or hypoxia-inducible factor 1α to the promoter of its target genes, as well as IL-1β-induced proliferation or migration. However, suppression of PLD1 activity promoted cell cycle arrest via transactivation of FoxO3a. Furthermore, PLD1 inhibitor significantly suppressed joint inflammation and destruction in IL-1 receptor antagonist-deficient (IL-1Ra−/−) mice, a model of spontaneous arthritis. Taken together, these results suggest that the abnormal upregulation of PLD1 may contribute to the pathogenesis of IL-1β-induced chronic arthritis and that a selective PLD1 inhibitor might provide a potential therapeutic molecule for the treatment of chronic inflammatory autoimmune disorders.  相似文献   

10.
Cardiovascular events are important co-morbidities in patients with chronic inflammatory diseases like rheumatoid arthritis. Tristetraprolin (TTP) regulates pro-inflammatory processes through mRNA destabilization and therefore TTP-deficient mice (TTP−/− mice) develop a chronic inflammation resembling human rheumatoid arthritis. We used this mouse model to evaluate molecular signaling pathways contributing to the enhanced atherosclerotic risk in chronic inflammatory diseases. In the aorta of TTP−/− mice we observed elevated mRNA expression of known TTP targets like tumor necrosis factor-α (TNF-α) and macrophage inflammatory protein-1α, as well as of other pro-atherosclerotic mediators, like Calgranulin A, Cathepsin S, and Osteopontin. Independent of cholesterol levels TTP−/− mice showed a significant reduction of acetylcholine-induced, nitric oxide-mediated vasorelaxation. The endothelial dysfunction in TTP−/− mice was associated with increased levels of reactive oxygen and nitrogen species (RONS), indicating an enhanced nitric oxide inactivation by RONS in the TTP−/− animals. The altered RONS generation correlates with increased expression of NADPH oxidase 2 (Nox2) resulting from enhanced Nox2 mRNA stability. Although TNF-α is believed to be a central mediator of inflammation-driven atherosclerosis, genetic inactivation of TNF-α neither improved endothelial function nor normalized Nox2 expression or RONS production in TTP−/− animals. Systemic inflammation caused by TTP deficiency leads to endothelial dysfunction. This process is independent of cholesterol and not mediated by TNF-α solely. Thus, other mediators, which need to be identified, contribute to enhanced cardiovascular risk in chronic inflammatory diseases.  相似文献   

11.

Background

The risk of malignancies on TNF-α antagonists is controversial. The aim of this survey was to assess cancer risk on TNF-α antagonists in adult rheumatoid arthritis patients, including the five marketed drugs (infliximab, etanercept, adalimumab, golimumab and certolizumab) used in line with the New Drug Application. Furthermore, the relative interest of modified intention to treat or per protocol analyses to assess such sparse events remains unknown.

Methodology/Principal Findings

Data sources were MEDLINE, CENTRAL, ISI Web of Science, ACR and EULAR meeting abstracts, scientific evaluation of the drugs leading to their marketing approval, and clinicaltrials.gov, until 31 December 2012.We selected double-blind randomized controlled trials in adult rheumatoid arthritis patients, including at least one treatment arm in line with New Drug Application. We performed random effect meta-analysis, with modified intention to treat and per protocol analyses. Thirty-three trials were included. There was no excess risk of malignancies on anti-TNF-α administered in line with New Drug Application in the per protocol model (OR, 0.93 95%CI[0.59–1.44]), as well as in the modified intention to treat model (OR, 1.27 95%CI[0.82–1.98]). There was a non-significant tendency for an excess non-melanoma skin cancer risk in both models (respectively, 1.37 [0.71–2.66] and 1.90 [0.98–3.67]). With fixed effect Peto model restricting to trials during at least 52 weeks, the overall cancer risk was respectively 1.60 [0.97–2.64] and 1.22 [0.72–2.08]. Whatever the model, modified intention to treat analysis led to higher estimations than per protocol analysis. The later may underestimate the treatment effect when assessing very sparse events and when many patients dropped out in placebo arms. In metaregression, there was no differential risk among the five drugs.

Conclusions/Significance

This study did not find any evidence for an excess cancer risk on TNF-α antagonists in adult rheumatoid arthritis patients, but an excess cancer risk after several years of exposure cannot be ruled out. Both modified intention to treat and per protocol analyses should be presented in such safety analyses.  相似文献   

12.

Introduction

Synovial fibroblasts invade cartilage and bone, leading to joint destruction in rheumatoid arthritis. However, the mechanisms that regulate synovial fibroblast invasion are not well understood. Focal adhesion kinase (FAK) has been implicated in cellular invasion in several cell types, and FAK inhibitors are in clinical trials for cancer treatment. Little is known about the role of FAK in inflammatory arthritis, but, given its expression in synovial tissue, its known role in invasion in other cells and the potential clinical availability of FAK inhibitors, it is important to determine if FAK contributes to synovial fibroblast invasion and inflammatory arthritis.

Methods

After treatment with FAK inhibitors, invasiveness of human rheumatoid synovial fibroblasts was determined with Matrigel invasion chambers. Migration and focal matrix degradation, two components of cellular invasion, were assessed in FAK-inhibited rheumatoid synovial fibroblasts by transwell assay and microscopic examination of fluorescent gelatin degradation, respectively. Using mice with tumor necrosis factor α (TNFα)–induced arthritis in which fak could be inducibly deleted, invasion and migration by FAK-deficient murine arthritic synovial fibroblasts were determined as described above and arthritis was clinically and pathologically scored in FAK-deficient mice.

Results

Inhibition of FAK in human rheumatoid synovial fibroblasts impaired cellular invasion and migration. Focal matrix degradation occurred both centrally and at focal adhesions, the latter being a novel site for matrix degradation in synovial fibroblasts, but degradation was unaltered with FAK inhibitors. Loss of FAK reduced invasion in murine arthritic synovial fibroblasts, but not migration or TNFα-induced arthritis severity and joint erosions.

Conclusions

FAK inhibitors reduce synovial fibroblast invasion and migration, but synovial fibroblast migration and TNFα-induced arthritis do not rely on FAK itself. Thus, inhibition of FAK alone is unlikely to be sufficient to treat inflammatory arthritis, but current drugs that inhibit FAK may inhibit multiple factors, which could increase their efficacy in rheumatoid arthritis.  相似文献   

13.
Overexpression of tumor necrosis factor α (TNFα) is a hallmark of many inflammatory diseases, including rheumatoid arthritis, inflammatory bowel disease, and septic shock and hepatitis, making it a potential therapeutic target for clinical interventions. To explore chemical inhibitors against TNFα activity, we applied computer-aided drug design combined with in vitro and cell-based assays and identified a lead chemical compound, (E)-4-(2-(4-chloro-3-nitrophenyl) (named as C87 thereafter), which directly binds to TNFα, potently inhibits TNFα-induced cytotoxicity (IC50 = 8.73 μm) and effectively blocks TNFα-triggered signaling activities. Furthermore, by using a murine acute hepatitis model, we showed that C87 attenuates TNFα-induced inflammation, thereby markedly reducing injuries to the liver and improving animal survival. Thus, our results lead to a novel and highly specific small-molecule TNFα inhibitor, which can be potentially used to treat TNFα-mediated inflammatory diseases.  相似文献   

14.
Etanercept, a TNF receptor 2-Fc fusion protein, is currently being used for the treatment of rheumatoid arthritis (RA). However, 25% to 38% of patients show no response which is suspected to be partially due to insufficient affinity of this protein to TNFα. By using computational protein design, we found that residue W89 and E92 of TNFR2 were critical for ligand binding. Among several mutants tested, W89Y/E92N displayed 1.49-fold higher neutralizing activity to TNFα, as compared to that of Etanercept. Surface plasmon resonance (SPR) based binding assay revealed that the equilibrium dissociation constant of W89Y/E92N to TNFα was 3.65-fold higher than that of Etanercept. In a rat model of collagen-induced arthritis (CIA), W89Y/E92N showed a significantly better ability than Etanercept in reducing paw swelling and improvement of arthritic joint histopathologically. These data demonstrate that W89Y/E92N is potentially a better candidate with improved efficacy in treating RA and other autoimmune diseases.  相似文献   

15.
16.
Low to moderate ethanol consumption has been associated with protective effects in autoimmune diseases such as rheumatoid arthritis, RA. An expansion of γδ T cells induced by isopentenyl pyrophosphate, IPP, likewise seems to have a protective role in arthritis. The aim of this project was to test the hypothesis that low doses of ethanol can enhance IPP-induced expansion of synovial fluid γδ T cells from patients with arthritis and may thereby potentially account for the beneficial effects of ethanol on symptoms of the arthritic process. Thus, mononuclear cells from synovial fluid (SF) from 15 patients with arthritis and from peripheral blood (PB) from 15 healthy donors were stimulated with low concentrations of ethanol and IPP for 7 days in vitro. IPP in combination with ethanol 0.015%, 2.5 mM, equivalent to the decrease per hour in blood ethanol concentration due to metabolism, gave a significantly higher fractional expansion of SF γδ T cells compared with IPP alone after 7 days (ratio 10.1+/−4.0, p<0.0008, n = 12) in patients with arthritis. Similar results were obtained for PB γδ T cells from healthy controls (ratio 2.0+/−0.4, p<0.011, n = 15). The augmented expansion of γδ T cells in SF is explained by a higher proliferation (p = 0.0034, n = 11) and an increased survival (p<0.005, n = 11) in SF cultures stimulated with IPP plus ethanol compared to IPP alone. The synergistic effects of IPP and ethanol indicate a possible allosteric effect of ethanol. Similar effects could be seen when stimulating PB with ethanol in presence of risedronate, which has the ability to increase endogenous levels of IPP. We conclude that expansion of γδ T cells by combinatorial drug effects, possibly in fixed-dose combination, FDC, of ethanol in the presence of IPP might give a protective role in diseases such as arthritis.  相似文献   

17.
Signal transduction through the interleukin-1 receptor (IL-1R) pathway mediates a strong pro-inflammatory response, which contributes to a number of human diseases such as rheumatoid arthritis. Within the IL-1 family, IL-1α and IL-1β are both agonistic ligands for IL-1R, whereas IL-1 receptor antagonist (IL-1ra) is an endogenous antagonist that binds to IL-R, but does not signal. Therefore, the ideal therapeutic strategy would be blocking both IL-1α and IL-1β, but not IL-1ra. However, due to low sequence homology between the three members of the family, it has been exceedingly difficult to identify potent therapeutic agents, e.g., monoclonal antibodies (mAbs), that selectively recognize both IL-1α and IL-1β, but not IL-1ra. Currently, several anti-IL-1 therapeutic agents in clinical development either inhibit only IL-1β (i.e., anti-IL-1β mAb), or recognize all three ligands (i.e., anti-IL-1R mAb or IL-1R Trap). We have recently developed a novel dual variable domain immunoglobulin (or DVD-Ig™) technology that enables engineering the distinct specificities of two mAbs into a single functional, dual-specific, tetravalent IgG-like molecule. Based on this approach, we have developed anti-human IL-1α/β DVD-Ig™ molecules using several pairs of monoclonal antibodies with therapeutic potential, and present a case study for optimal design of a DVD-Ig™ agent for a specific target pair combination.Key words: DVD-Ig, dual variable domain immunoglobulin, interleukin-1, rheumatoid arthritis, variable domain, linker, antibody engineering, dual-specific antibody  相似文献   

18.
Interleukin-1β (IL-1β) is a potent mediator of inflammatory responses and plays a role in the differentiation of a number of lymphoid cells. In several inflammatory and autoimmune diseases, serum levels of IL-1β are elevated and correlate with disease development and severity. The central role of the IL-1 pathway in several diseases has been validated by inhibitors currently in clinical development or approved by the FDA. However, the need to effectively modulate IL-1β-mediated local inflammation with the systemic delivery of an efficacious, safe and convenient drug still exists. To meet these challenges, we developed XOMA 052 (gevokizumab), a potent anti-IL-1β neutralizing antibody that was designed in silico and humanized using Human Engineering™ technology. XOMA 052 has a 300 femtomolar binding affinity for human IL-1β and an in vitro potency in the low picomolar range. XOMA 052 binds to a unique IL-1β epitope where residues critical for binding have been identified. We have previously reported that XOMA 052 is efficacious in vivo in a diet-induced obesity mouse model thought to be driven by low levels of chronic inflammation. We report here that XOMA 052 also reduces acute inflammation in vivo, neutralizing the effect of exogenously administered human IL-1β and blocking peritonitis in a mouse model of acute gout. Based on its high potency, novel mechanism of action, long half-life and high affinity, XOMA 052 provides a new strategy for the treatment of a number of inflammatory, autoimmune and metabolic diseases in which the role of IL-1β is central to pathogenesis.Key words: IL-1β, gevokizumab, gout, inflammation, autoimmune disease, affinity, therapeutic antibody  相似文献   

19.
IntroductionImpairment in the ability of the inflamed synovium to generate cortisol has been proposed to be a factor in the persistence and severity of inflammatory arthritis. In the inflamed synovium, cortisol is generated from cortisone by the 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) enzyme. The objective of this study was to determine the role of endogenous glucocorticoid metabolism in the development of persistent inflammatory arthritis.MethodsUrine samples were collected from patients with early arthritis (symptoms ≤12 weeks duration) whose final diagnostic outcomes were established after clinical follow-up and from patients with established rheumatoid arthritis (RA). All patients were free of disease-modifying anti-rheumatic drugs at the time of sample collection. Systemic measures of glucocorticoid metabolism were assessed in the urine samples by gas chromatography/mass spectrometry. Clinical data including CRP and ESR were also collected at baseline.ResultsSystemic measures of 11β-HSD1 activity were significantly higher in patients with early arthritis whose disease went on to persist, and also in the subgroup of patients with persistent disease who developed RA, when compared with patients whose synovitis resolved over time. We observed a significant positive correlation between systemic 11β-HSD1 activity and ESR/CRP in patients with established RA but not in any of the early arthritis patients group.ConclusionsThe present study demonstrates that patients with a new onset of synovitis whose disease subsequently resolved had significantly lower levels of systemic 11β-HSD1 activity when compared with patients whose synovitis developed into RA or other forms of persistent arthritis. Low absolute levels of 11β-HSD1 activity do not therefore appear to be a major contributor to the development of RA and it is possible that a high total body 11β-HSD1 activity during early arthritis may reduce the probability of disease resolution.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0633-2) contains supplementary material, which is available to authorized users.  相似文献   

20.
ObjectiveTo explore the baseline predictors of clinical effectiveness after tocilizumab or infliximab treatment in biologic-naïve rheumatoid arthritis patients.MethodsConsecutive biologic-naïve patients with rheumatoid arthritis initiating infliximab (n = 57) or tocilizumab (n = 70) treatment were included in our prospective cohort study. Our cohort started in February 2010, and the patients observed for at least 1 year as of April 2013 were analysed. We assessed baseline variables including patients'' characteristics (age, sex, disease duration, prednisolone dose, methotrexate dose, other disease-modifying antirheumatic drug use, Clinical Disease Activity Index [CDAI]) and serum biomarker levels (C-reactive protein, immunoglobulin M-rheumatoid factor, anti-cyclic citrullinated protein/peptide antibodies, interferon-γ, interleukin (IL)-1β, IL-2, IL-6, IL-8, IL-10, IL-17, tumor necrosis factor-α, soluble intercellular adhesion molecule-1, bone alkaline phosphatase, osteonectin, osteopontin) to extract factors associated with clinical remission (CDAI≤2.8) at 1 year using univariate analyses, and the extracted factors were entered into a multivariate logistic regression model. Similar analyses were also performed for Simplified Disease Activity Index (SDAI) remission (≤3.3) and Disease Activity Score with 28 joint counts, erythrocyte sedimentation rate (DAS28-ESR) remission (<2.6).ResultsThere were no significant differences in the baseline characteristics except for methotrexate use between the groups. In the multivariate analyses, the low baseline osteopontin levels (OR 0.9145, 95% CI 0.8399–0.9857) were identified as predictors of CDAI remission in the tocilizumab group, whereas no predictors of CDAI remission were found in the infliximab group. Similar results were obtained when using SDAI and DAS28-ESR remission criteria.ConclusionBaseline low serum osteopontin levels predict clinical remission 1 year after tocilizumab treatment and not infliximab treatment in biologic-naïve patients with rheumatoid arthritis. Our prediction model provided insights into how to optimize the choice of biologics and warrants external validation in other cohorts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号