首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epigenetic mechanisms involved in primary hyperparathyroidism are poorly understood as studies are limited. In order to understand the role of aberrant DNA promoter methylation in the pathogenesis of parathyroid tumors, we have quantified the CpG island promoter methylation density of several candidate genes including APC (promoter 1A and 1B), β-catenin (CTNNB1), CASR, CDC73/HRPT2, MEN1, P16 (CDKN2A), PAX1, RASSF1A, SFRP1 and VDR in 72 parathyroid tumors and 3 normal parathyroid references using bisulfite pyrosequencing. Global methylation levels were assessed for LINE-1. We also compared methylation levels with gene expression levels measured by qRT-PCR for genes showing frequent hypermethylation. The adenomas displayed frequent hypermethylation of APC 1A (37/66; 56%), RASSF1A (34/66; 52%) and β-catenin (19/66; 29%). One of the three atypical adenomas was hypermethylated for APC 1A. The three carcinomas were hypermethylated for RASSF1A and SFRP1, and the latter was only observed in this subtype. The global methylation density was similar in tumors (mean 70%) and parathyroid reference samples (mean 70%). In general, hypermethylated genes had reduced expression in the parathyroid adenomas using qRT-PCR. Among the adenomas, methylation of APC 1A correlated with adenoma weight (r = 0.306, p < 0.05). Furthermore, the methylation status of RASSF1A correlated with each of APC 1A (r = 0.289, p < 0.05) and β-catenin (r = 0.315, p < 0.01). Our findings suggest a role for aberrant DNA promoter methylation of APC 1A, β-catenin and RASSF1A in a subset of parathyroid tumors.  相似文献   

2.

Background

The genetic background of Basal Cell Carcinoma (BCC) has been studied extensively, while its epigenetic makeup has received comparatively little attention. Epigenetic alterations such as promoter hypermethylation silence tumor suppressor genes (TSG) in several malignancies.

Objective

We sought to analyze the promoter methylation status of ten putative (tumor suppressor) genes that are associated with Sonic Hedgehog (SHH), WNT signaling and (hair follicle) tumors in a large series of 112 BCC and 124 healthy control samples by methylation-specific PCR.

Results

Gene promoters of SHH (P = 0.016), adenomatous polyposis coli (APC) (P = 0.003), secreted frizzled-related protein 5 (SFRP5) (P = 0.004) and Ras association domain family 1A (RASSF1A) (P = 0.023) showed significantly more methylation in BCC versus normal skin. mRNA levels of these four genes were reduced for APC and SFRP5 in BCC (n = 6) vs normal skin (n = 6). Down regulation of SHH, APC and RASSF1A could be confirmed on protein level as well (P<0.001 for all genes) by immunohistochemical staining. Increased canonical WNT activity was visualized by β-catenin staining, showing nuclear β-catenin in only 28/101 (27.7%) of BCC. Absence of nuclear β-catenin in some samples may be due to high levels of membranous E-cadherin (in 94.1% of the samples).

Conclusions

We provide evidence that promoter hypermethylation of key players within the SHH and WNT pathways is frequent in BCC, consistent with their known constitutive activation in BCC. Epigenetic gene silencing putatively contributes to BCC tumorigenesis, indicating new venues for treatment.  相似文献   

3.

Background

Tumor suppressor gene (TSG) inactivation plays a crucial role in carcinogenesis. FUS1, NPRL2/G21 and RASSF1A are TSGs from LUCA region at 3p21.3, a critical chromosomal region in lung cancer development. The aim of the study was to analyze and compare the expression levels of these 3 TSGs in NSCLC, as well as in macroscopically unchanged lung tissue surrounding the primary lesion, and to look for the possible epigenetic mechanism of TSG inactivation via gene promoter methylation.

Methods

Expression levels of 3 TSGs and 2 DNA methyltransferases, DNMT1 and DNMT3B, were assessed using real-time PCR method (qPCR) in 59 primary non-small cell lung tumors and the matched macroscopically unchanged lung tissue samples. Promoter methylation status of TSGs was analyzed using methylation-specific PCRs (MSP method) and Methylation Index (MI) value was calculated for each gene.

Results

The expression of all three TSGs were significantly different between NSCLC subtypes: RASSF1A and FUS1 expression levels were significantly lower in squamous cell carcinoma (SCC), and NPRL2/G21 in adenocarcinoma (AC). RASSF1A showed significantly lower expression in tumors vs macroscopically unchanged lung tissues. Methylation frequency was 38–76 %, depending on the gene. The highest MI value was found for RASSF1A (52 %) and the lowest for NPRL2/G21 (5 %). The simultaneous decreased expression and methylation of at least one RASSF1A allele was observed in 71 % tumor samples. Inverse correlation between gene expression and promoter methylation was found for FUS1 (rs = −0.41) in SCC subtype. Expression levels of DNMTs were significantly increased in 75–92 % NSCLCs and were significantly higher in tumors than in normal lung tissue. However, no correlation between mRNA expression levels of DNMTs and DNA methylation status of the studied TSGs was found.

Conclusions

The results indicate the potential role of the studied TSGs in the differentiation of NSCLC histopathological subtypes. The significant differences in RASSF1A expression levels between NSCLC and macroscopically unchanged lung tissue highlight its possible diagnostic role in lung cancer in situ recognition. High percentage of lung tumor samples with simultaneous RASSF1A decreased expression and gene promoter methylation indicates its epigenetic silencing. However, DNMT overexpression doesn’t seem to be a critical determinate of its promoter hypermethylation.  相似文献   

4.

Background

Gene silencing due to aberrant DNA methylation is a frequent event in hepatocellular carcinoma (HCC) and also in hepatocellular adenoma (HCA). However, very little is known about epigenetic defects in fibrolamellar carcinoma (FLC), a rare variant of hepatocellular carcinoma that displays distinct clinical and morphological features.

Methodology/Principal Findings

We analyzed the methylation status of the APC, CDH1, cyclinD2, GSTπ1, hsa-mir-9-1, hsa-mir-9-2, and RASSF1A gene in a series of 15 FLC and paired normal liver tissue specimens by quantitative high-resolution pyrosequencing. Results were compared with common HCC arising in non-cirrhotic liver (n = 10). Frequent aberrant hypermethylation was found for the cyclinD2 (19%) and the RASSF1A (38%) gene as well as for the microRNA genes mir-9-1 (13%) and mir-9-2 (33%). In contrast to common HCC the APC and CDH1 (E-cadherin) genes were found devoid of any DNA methylation in FLC, whereas the GSTπ1 gene showed comparable DNA methylation in tumor and surrounding tissue at a moderate level. Changes in global DNA methylation level were measured by analyzing methylation status of the highly repetitive LINE-1 sequences. No evidence of global hypomethylation could be found in FLCs, whereas HCCs without cirrhosis showed a significant reduction in global methylation level as described previously.

Conclusions

FLCs display frequent and distinct gene-specific hypermethylation in the absence of significant global hypomethylation indicating that these two epigenetic aberrations are induced by different pathways and that full-blown malignancy can develop in the absence of global loss of DNA methylation. Only quantitative DNA methylation detection methodology was able to identify these differences.  相似文献   

5.
6.

Background

The RAS association domain family protein 1a gene (RASSF1A) is one of the tumor suppressor genes (TSG). Inactivation of RASSF1A is critical to the pathogenesis of cancer. Aberrant TSG methylation was considered an important epigenetic silencing mechanism in the progression of ovarian cancer. A number of studies have discussed association between RASSF1A promoter methylation and ovarian cancer. However, they were mostly based on a small number of samples and showed inconsist results, Therefore, we conducted a meta-analysis to better identify the association.

Methods

Eligible studies were identified by searching the PubMed, EMBASE, Web of Science, and CNKI databases using a systematic searching strategy. We pooled the odds ratio (ORs) from individual studies using a fixed-effects model. We performed heterogeneity and publication bias analysis simultaneously.

Results

Thirteen studies, with 763 ovarian cancer patients and 438 controls were included in the meta-analysis. The frequencies of RASSF1A promoter methylation ranged from 30% to 58% (median is 48%) in the cancer group and 0 to 21% (median is 0) in the control group. The frequencies of RASSF1A promoter methylation in the cancer group were significantly higher than those in the control group. The pooled odds ratio was 11.17 (95% CI = 7.51–16.61) in the cancer group versus the corresponding control group under the fixed-effects model.

Conclusion

The results suggested that RASSF1A promoter methylation had a strong association with ovarian cancer.  相似文献   

7.
We evaluated the promoter methylation levels of the APC, MGMT, hMLH1, RASSF1A and CDKN2A genes in 107 colorectal cancer (CRC) samples and 80 healthy adjacent tissues. We searched for correlation with both physical and pathological features, polymorphisms of folate metabolism pathway genes (MTHFR, MTRR, MTR, RFC1, TYMS, and DNMT3B), and data on circulating folate, vitamin B12 and homocysteine, which were available in a subgroup of the CRC patients. An increased number of methylated samples were found in CRC respect to adjacent healthy tissues, with the exception of APC, which was also frequently methylated in healthy colonic mucosa. Statistically significant associations were found between RASSF1A promoter methylation and tumor stage, and between hMLH1 promoter methylation and tumor location. Increasing age positively correlated with both hMLH1 and MGMT methylation levels in CRC tissues, and with APC methylation levels in the adjacent healthy mucosa. Concerning gender, females showed higher hMLH1 promoter methylation levels with respect to males. In CRC samples, the MTR 2756AG genotype correlated with higher methylation levels of RASSF1A, and the TYMS 1494 6bp ins/del polymorphism correlated with the methylation levels of both APC and hMLH1. In adjacent healthy tissues, MTR 2756AG and TYMS 1494 6bp del/del genotypes correlated with APC and MGMT promoter methylation, respectively. Low folate levels were associated with hMLH1 hypermethylation. Present results support the hypothesis that DNA methylation in CRC depends from both physiological and environmental factors, with one-carbon metabolism largely involved in this process.  相似文献   

8.

Purpose

Schistosoma haematobium is associated with chronic bladder damage and may subsequently induce bladder cancer in humans, thus posing a serious threat where the parasite is endemic. Here we evaluated aberrant promoter DNA methylation as a potential biomarker to detect severe bladder damage that is associated with schistosomiasis by analyzing urine specimens.

Materials and Methods

A quantitative methylation-specific PCR (QMSP) assay was used to examine the methylation status of seven genes (RASSF1A, RARβ2, RUNX3, TIMP3, MGMT, P16, ARF) in 57 urine samples obtained from volunteers that include infected and uninfected by S. haematobium from an endemic region. The Fishers Exact Test and Logistic Regression analysis were used to evaluate the methylation status with bladder damage (as assessed by ultrasound examination) in subjects with S. haematobium infection.

Results

RASSF1A and TIMP3 were significant to predict severe bladder damage both in univariate (p = 0.015 and 0.023 respectively) and in multivariate (p = 0.022 and 0.032 respectively) logistic regression analysis. Area under the receiver operator characteristic curves (AUC-ROC) for RASSF1A and TIMP3 to predict severe bladder damage were 67.84% and 63.73% respectively. The combined model, which used both RASSF1A and TIMP3 promoter methylation, resulted in significant increase in AUC-ROC compared to that of TIMP3 (77.55% vs. 63.73%.29; p = 0.023).

Conclusions

In this pilot study, we showed that aberrant promoter methylation of RASSF1A and TIMP3 are present in urine sediments of patients with severe bladder damage associated with S. haematobium infection and that may be used to develop non-invasive biomarker of S. haematobium exposure and early molecular risk assessmentof neoplastic transformation.  相似文献   

9.
10.
11.

Background

Colorectal cancer (CRC) multiplicity has been mainly related to polyposis and non-polyposis hereditary syndromes. In sporadic CRC, aberrant gene promoter methylation has been shown to play a key role in carcinogenesis, although little is known about its involvement in multiplicity. To assess the effect of methylation in tumor multiplicity in sporadic CRC, hypermethylation of key tumor suppressor genes was evaluated in patients with both multiple and solitary tumors, as a proof-of-concept of an underlying epigenetic defect.

Methodology/Principal Findings

We examined a total of 47 synchronous/metachronous primary CRC from 41 patients, and 41 gender, age (5-year intervals) and tumor location-paired patients with solitary tumors. Exclusion criteria were polyposis syndromes, Lynch syndrome and inflammatory bowel disease. DNA methylation at the promoter region of the MGMT, CDKN2A, SFRP1, TMEFF2, HS3ST2 (3OST2), RASSF1A and GATA4 genes was evaluated by quantitative methylation specific PCR in both tumor and corresponding normal appearing colorectal mucosa samples. Overall, patients with multiple lesions exhibited a higher degree of methylation in tumor samples than those with solitary tumors regarding all evaluated genes. After adjusting for age and gender, binomial logistic regression analysis identified methylation of MGMT2 (OR, 1.48; 95% CI, 1.10 to 1.97; p = 0.008) and RASSF1A (OR, 2.04; 95% CI, 1.01 to 4.13; p = 0.047) as variables independently associated with tumor multiplicity, being the risk related to methylation of any of these two genes 4.57 (95% CI, 1.53 to 13.61; p = 0.006). Moreover, in six patients in whom both tumors were available, we found a correlation in the methylation levels of MGMT2 (r = 0.64, p = 0.17), SFRP1 (r = 0.83, 0.06), HPP1 (r = 0.64, p = 0.17), 3OST2 (r = 0.83, p = 0.06) and GATA4 (r = 0.6, p = 0.24). Methylation in normal appearing colorectal mucosa from patients with multiple and solitary CRC showed no relevant difference in any evaluated gene.

Conclusions

These results provide a proof-of-concept that gene promoter methylation is associated with tumor multiplicity. This underlying epigenetic defect may have noteworthy implications in the prevention of patients with sporadic CRC.  相似文献   

12.
《Epigenetics》2013,8(4):621-633
We evaluated the promoter methylation levels of the APC, MGMT, hMLH1, RASSF1A and CDKN2A genes in 107 colorectal cancer (CRC) samples and 80 healthy adjacent tissues. We searched for correlation with both physical and pathological features, polymorphisms of folate metabolism pathway genes (MTHFR, MTRR, MTR, RFC1, TYMS, and DNMT3B), and data on circulating folate, vitamin B12 and homocysteine, which were available in a subgroup of the CRC patients. An increased number of methylated samples were found in CRC respect to adjacent healthy tissues, with the exception of APC, which was also frequently methylated in healthy colonic mucosa. Statistically significant associations were found between RASSF1A promoter methylation and tumor stage, and between hMLH1 promoter methylation and tumor location. Increasing age positively correlated with both hMLH1 and MGMT methylation levels in CRC tissues, and with APC methylation levels in the adjacent healthy mucosa. Concerning gender, females showed higher hMLH1 promoter methylation levels with respect to males. In CRC samples, the MTR 2756AG genotype correlated with higher methylation levels of RASSF1A, and the TYMS 1494 6bp ins/del polymorphism correlated with the methylation levels of both APC and hMLH1. In adjacent healthy tissues, MTR 2756AG and TYMS 1494 6bp del/del genotypes correlated with APC and MGMT promoter methylation, respectively. Low folate levels were associated with hMLH1 hypermethylation. Present results support the hypothesis that DNA methylation in CRC depends from both physiological and environmental factors, with one-carbon metabolism largely involved in this process.  相似文献   

13.

Objective

Early-onset colorectal cancer (CRC) represents a clinically distinct form of CRC that is often associated with a poor prognosis. Methylation levels of genomic repeats such as LINE-1 elements have been recognized as independent factors for increased cancer-related mortality. The methylation status of LINE-1 elements in early-onset CRC has not been analyzed previously.

Design

We analyzed 343 CRC tissues and 32 normal colonic mucosa samples, including 2 independent cohorts of CRC diagnosed ≤50 years old (n = 188), a group of sporadic CRC >50 years (MSS n = 89; MSI n = 46), and a group of Lynch syndrome CRCs (n = 20). Tumor mismatch repair protein expression, microsatellite instability status, LINE-1 and MLH1 methylation, somatic BRAF V600E mutation, and germline MUTYH mutations were evaluated.

Results

Mean LINE-1 methylation levels (±SD) in the five study groups were early-onset CRC, 56.6% (8.6); sporadic MSI, 67.1% (5.5); sporadic MSS, 65.1% (6.3); Lynch syndrome, 66.3% (4.5) and normal mucosa, 76.5% (1.5). Early-onset CRC had significantly lower LINE-1 methylation than any other group (p<0.0001). Compared to patients with <65% LINE-1 methylation in tumors, those with ≥65% LINE-1 methylation had significantly better overall survival (p = 0.026, log rank test).

Conclusions

LINE-1 hypomethylation constitutes a potentially important feature of early-onset CRC, and suggests a distinct molecular subtype. Further studies are needed to assess the potential of LINE-1 methylation status as a prognostic biomarker for young people with CRC.  相似文献   

14.
Hepatocellular carcinoma (HCC) is the second most common cause of cancer mortality worldwide. Most cases of HCC are associated with cirrhosis related to chronic hepatitis B virus or hepatitis C virus infections. Hypermethylation of promoter regions is the main epigenetic mechanism of gene silencing and has been involved in HCC development. The aim of this study was to determine whether aberrant methylation of RASSF1A and DOK1 gene promoters is associated with the progression of liver disease in Brazilian patients. Methylation levels were measured by pyrosequencing in 41 (20 HCC, 9 cirrhotic, and 12 non-cirrhotic) liver tissue samples. Mean rates of methylation in RASSF1A and DOK1 were 16.2% and 12.0% in non-cirrhotic, 26.1% and 19.6% in cirrhotic, and 59.1% and 56.0% in HCC tissues, respectively, showing a gradual increase according to the progression of the disease, with significantly higher levels in tumor tissues. In addition, hypermethylation of RASSF1A and DOK1 was found in the vast majority (88%) of the HCC cases. Interestingly, DOK1 methylation levels in HCC samples were significantly higher in the group of younger (<40 years) patients, and higher in moderately differentiated than in poorly differentiated tumors (p < 0.05). Our results reinforce the hypothesis that hypermethylation of RASSF1A and DOK1 contributes to hepatocarcinogenesis and is associated to clinicopathological characteristics. RASSF1A and DOK1 promoter hypermethylation may be a valuable biomarker for early diagnosis of HCC and a potential molecular target for epigenetic-based therapy.  相似文献   

15.

Background

Methylated DNA in fluids may be a suitable biomarker for cancer patients. XAF1 has been shown to be frequently down-regulated in human gastric cancer (GC). Here, we investigated if XAF1 methylation in GC could be a useful biomarker.

Methods

Real-time RT-PCR was used to detect XAF1 mRNA expression; immunohistochemistry and western blot were used to examine XAF1 protein expression in GC tissues (n = 202) and their corresponding para-cancerous histological normal tissues (PCHNTs). Real-time methylation specific-PCR was used to investigate XAF1 promoter methylation in the same panel of GC tissues, their PCHNTs and sera.

Results

We confirmed frequent XAF1 down-regulation in both mRNA and protein levels in GC tissues as compared to normal controls and PCHNTs. XAF1 hypermethylation was evidenced in 83.2% (168/202) of GC tissues and 27.2% (55/202) of PCHNTs, while no methylation was detected in the 88 normal controls. The methylation level in GC tissues was significantly higher than that in PCHNTs (p<0.05). The hypermethylation of XAF1 significantly correlated with the down-regulation of XAF1 in GC tissues in both mRNA and protein levels (p<0.001 each). Moreover, we detected high frequency of XAF1 methylation (69.8%, 141 out of 202) in the sera DNAs from the same patients, while the sera DNAs from 88 non-tumor controls were negative for XAF1 methylation. The XAF1 methylation in both GC tissues and in the sera could be a good biomarker for diagnosis of GC (AUC = 0.85 for tissue and AUC = 0.91 for sera) and significantly correlated with poorer prognosis (p<0.001). In addition, after-surgery negative-to-positive transition of XAF1 methylation in sera strongly associated with tumor recurrence.

Conclusions

1) Dysfunction of XAF1 is frequent and is regulated through XAF1 promoter hypermethylation; 2) Detection of circulating methylated XAF1 DNAs in the serum may be a useful biomarker in diagnosis, evaluating patient’s outcome (prognosis and recurrence) for GC patients.  相似文献   

16.

Background

Aberrant methylation of CpG islands acquired in tumor cells in promoter regions plays an important role in carcinogenesis. Accumulated evidence demonstrates P16INK4a gene promoter hypermethylation is involved in non-small cell lung carcinoma (NSCLC), indicating it may be a potential biomarker for this disease. The aim of this study is to evaluate the frequency of P16INK4a gene promoter methylation between cancer tissue and autologous controls by summarizing published studies.

Methods

By searching Medline, EMBSE and CNKI databases, the open published studies about P16INK4a gene promoter methylation and NSCLC were identified using a systematic search strategy. The pooled odds of P16INK4A promoter methylation in lung cancer tissue versus autologous controls were calculated by meta-analysis method.

Results

Thirty-four studies, including 2 652 NSCLC patients with 5 175 samples were included in this meta-analysis. Generally, the frequency of P16INK4A promoter methylation ranged from 17% to 80% (median 44%) in the lung cancer tissue and 0 to 80% (median 15%) in the autologous controls, which indicated the methylation frequency in cancer tissue was much higher than that in autologous samples. We also find a strong and significant correlation between tumor tissue and autologous controls of P16INK4A promoter methylation frequency across studies (Correlation coefficient 0.71, 95% CI:0.51–0.83, P<0.0001). And the pooled odds ratio of P16INK4A promoter methylation in cancer tissue was 3.45 (95% CI: 2.63–4.54) compared to controls under random-effect model.

Conclusion

Frequency of P16INK4a promoter methylation in cancer tissue was much higher than that in autologous controls, indicating promoter methylation plays an important role in carcinogenesis of the NSCLC. Strong and significant correlation between tumor tissue and autologous samples of P16INK4A promoter methylation demonstrated a promising biomarker for NSCLC.  相似文献   

17.
18.

Background

Repetitive element DNA methylation is related to prominent obesity-related chronic diseases including cancer and cardiovascular disease; yet, little is known of its relation with weight status. We examined associations of LINE-1 DNA methylation with changes in adiposity and linear growth in a longitudinal study of school-age children from Bogotá, Colombia.

Methods

We quantified methylation of LINE-1 elements from peripheral leukocytes of 553 children aged 5–12 years at baseline using pyrosequencing technology. Anthropometric characteristics were measured periodically for a median of 30 months. We estimated mean change in three age-and sex-standardized indicators of adiposity: body mass index (BMI)-for-age Z-score, waist circumference Z-score, and subscapular-to-triceps skinfold thickness ratio Z-score according to quartiles of LINE-1 methylation using mixed effects regression models. We also examined associations with height-for-age Z-score.

Results

There were non-linear, inverse relations of LINE-1 methylation with BMI-for-age Z-score and the skinfold thickness ratio Z-score. After adjustment for baseline age and socioeconomic status, boys in the lowest quartile of LINE-1 methylation experienced annual gains in BMI-for-age Z-score and skinfold thickness ratio Z-score that were 0.06 Z/year (P = 0.04) and 0.07 Z/year (P = 0.03), respectively, higher than those in the upper three quartiles. The relation of LINE-1 methylation and annual change in waist circumference followed a decreasing monotonic trend across the four quartiles (P trend = 0.02). DNA methylation was not related to any of the adiposity indicators in girls. There were no associations between LINE-1 methylation and linear growth in either sex.

Conclusions

Lower LINE-1 DNA methylation is related to development of adiposity in boys.  相似文献   

19.
Navarro A  Yin P  Monsivais D  Lin SM  Du P  Wei JJ  Bulun SE 《PloS one》2012,7(3):e33284

Background

Uterine leiomyomas, or fibroids, represent the most common benign tumor of the female reproductive tract. Fibroids become symptomatic in 30% of all women and up to 70% of African American women of reproductive age. Epigenetic dysregulation of individual genes has been demonstrated in leiomyoma cells; however, the in vivo genome-wide distribution of such epigenetic abnormalities remains unknown.

Principal Findings

We characterized and compared genome-wide DNA methylation and mRNA expression profiles in uterine leiomyoma and matched adjacent normal myometrial tissues from 18 African American women. We found 55 genes with differential promoter methylation and concominant differences in mRNA expression in uterine leiomyoma versus normal myometrium. Eighty percent of the identified genes showed an inverse relationship between DNA methylation status and mRNA expression in uterine leiomyoma tissues, and the majority of genes (62%) displayed hypermethylation associated with gene silencing. We selected three genes, the known tumor suppressors KLF11, DLEC1, and KRT19 and verified promoter hypermethylation, mRNA repression and protein expression using bisulfite sequencing, real-time PCR and western blot. Incubation of primary leiomyoma smooth muscle cells with a DNA methyltransferase inhibitor restored KLF11, DLEC1 and KRT19 mRNA levels.

Conclusions

These results suggest a possible functional role of promoter DNA methylation-mediated gene silencing in the pathogenesis of uterine leiomyoma in African American women.  相似文献   

20.
In addition to the clinicopathological parameters, molecular biomarkers are becoming increasingly important in the prognostic evaluation of cancer patients. This study aimed to determine the molecular alterations in the RAS association domain family protein1A gene (RASSF1A) in salivary adenoid cystic carcinoma (ACC) and to evaluate the potential of such alterations as prognostic markers. One hundred and sixty-seven ACC tumor tissues and 50 samples of matched normal salivary gland tissues from the same patients were analyzed for RASSF1A promoter methylation status by bisulfite sequencing PCR (BSP) and/or methylation-specific PCR (MSP). Fifty ACC tumor tissues and matched normal salivary gland tissues were analyzed for loss of heterozygosity (LOH) by examining two microsatellite markers (D3S1478, D3S1621) at 3p21. RASSF1A gene mutations were detected by direct sequencing of all six exons in 50 tumor and normal tissue specimens. Over-all, RASSF1A promoter hypermethylation was detected in 35.3% (59/167) of ACC tissues and was associated with histologically solid tumor pattern (P = 0.002) and advanced TNM stage (P = 0.014). RASSF1A LOH was observed in 18.0% (9/50) of cases, and no somatic mutation of RASSF1A was detected in any cases. RASSF1A promoter methylation was associated with the poor over-all survival (Log-rank test, P <0.001) and disease-free survival (Log-rank test, P <0.001) and identified as an independent predicator of over-all patient survival (P = 0.009) and disease-free survival (P <0.001). It was concluded that RASSF1A methylation is involved in the development, differentiation and progression of ACC and is a strong independent biomarker of poor survival in ACC patients in a Chinese population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号