首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
In higher plants, timely degradation of tapetal cells, the innermost sporophytic cells of the anther wall layer, is a prerequisite for the development of viable pollen grains. However, relatively little is known about the mechanism underlying programmed tapetal cell development and degradation. Here, we report a key regulator in monocot rice (Oryza sativa), PERSISTANT TAPETAL CELL1 (PTC1), which controls programmed tapetal development and functional pollen formation. The evolutionary significance of PTC1 was revealed by partial genetic complementation of the homologous mutation MALE STERILITY1 (MS1) in the dicot Arabidopsis (Arabidopsis thaliana). PTC1 encodes a PHD-finger (for plant homeodomain) protein, which is expressed specifically in tapetal cells and microspores during anther development in stages 8 and 9, when the wild-type tapetal cells initiate a typical apoptosis-like cell death. Even though ptc1 mutants show phenotypic similarity to ms1 in a lack of tapetal DNA fragmentation, delayed tapetal degeneration, as well as abnormal pollen wall formation and aborted microspore development, the ptc1 mutant displays a previously unreported phenotype of uncontrolled tapetal proliferation and subsequent commencement of necrosis-like tapetal death. Microarray analysis indicated that 2,417 tapetum- and microspore-expressed genes, which are principally associated with tapetal development, degeneration, and pollen wall formation, had changed expression in ptc1 anthers. Moreover, the regulatory role of PTC1 in anther development was revealed by comparison with MS1 and other rice anther developmental regulators. These findings suggest a diversified and conserved switch of PTC1/MS1 in regulating programmed male reproductive development in both dicots and monocots, which provides new insights in plant anther development.  相似文献   

4.
Mature pollen is covered by durable cell walls, principally composed of sporopollenin, an evolutionary conserved, highly resilient, but not fully characterized, biopolymer of aliphatic and aromatic components. Here, we report that ABORTED MICROSPORES (AMS) acts as a master regulator coordinating pollen wall development and sporopollenin biosynthesis in Arabidopsis thaliana. Genome-wide coexpression analysis revealed 98 candidate genes with specific expression in the anther and 70 that showed reduced expression in ams. Among these 70 members, we showed that AMS can directly regulate 23 genes implicated in callose dissociation, fatty acids elongation, formation of phenolic compounds, and lipidic transport putatively involved in sporopollenin precursor synthesis. Consistently, ams mutants showed defective microspore release, a lack of sporopollenin deposition, and a dramatic reduction in total phenolic compounds and cutin monomers. The functional importance of the AMS pathway was further demonstrated by the observation of impaired pollen wall architecture in plant lines with reduced expression of several AMS targets: the abundant pollen coat protein extracellular lipases (EXL5 and EXL6), and CYP98A8 and CYP98A9, which are enzymes required for the production of phenolic precursors. These findings demonstrate the central role of AMS in coordinating sporopollenin biosynthesis and the secretion of materials for pollen wall patterning.  相似文献   

5.
6.
7.
The tapetum of the anther locule encloses the male reproductive cells and plays a supportive role for normal pollen development. However, the underlying mechanism remains less understood. Previously, we identified a complete recessive male sterile mutant, post-meiotic deficient anther1 (pda1), with abnormal postmeiotic tapetal development. In this study we comprehensively characterized pda1. Chemical analysis uncovered that pda1 anther had significant lower levels of cutin monomers and cuticular waxes. PDA1 gene encodes an ATP-binding cassette (ABC) half-transporter, namely OsABCG15, which is conserved from algae to higher plants. In situ RNA hybridization assay showed that PDA1 is strongly expressed in tapetal cells, and weakly in microspores during the anther development. Additionally, the expression of two pollen exine biosynthetic genes CYP704B2 and CYP703A3 was dramatically reduced in pda1 mutant anthers. Altogether, these observations suggest that the tapetum-expressed ABC transporter PDA1 plays a crucial role in secreting lipidic precursors from the tapetum to developing microspores and the anther epidermis.  相似文献   

8.
9.
10.
11.
12.
Differentiation of Arabidopsis epidermal cells into root hairs and trichomes is a functional model system for understanding plant cell development. Previous studies showed that one of the Arabidopsis basic-helix-loop-helix (AtbHLH) proteins, GLABRA3 (GL3), is involved in root-hair and trichome differentiation. We analyzed 11 additional AtbHLH genes with homology to GL3. Estimation of the phylogeny based on amino acid sequences of the bHLH region suggests that 11 AtbHLH genes used in this study evolved by duplications of a single common GL3 ancestor. Promoter-GUS analysis showed that AtbHLH006, AtbHLH013, AtbHLH017 and AtbHLH020 were expressed in roots. Among them, AtbHLH006 and AtbHLH020 were preferentially expressed in root epidermal non-hair cells. Consistent with the expression patterns from promoter-GUS analysis, GFP fluorescence was observed in the nuclei of root epidermal non-hair cells of AtbHLH006p::AtbHLH006:GFP and AtbHLH020p::AtbHLH020:GFP transgenic plants. However, AtbHLH006 and AtbHLH0020 proteins did not interact with epidermis-specific MYB proteins and TTG1. Taken together, AtbHLH006 and AtbHLH020 may function in root epidermal cells, but other GL3-like bHLH proteins may have evolved to regulate different processes.  相似文献   

13.
14.
15.
16.
17.
Pollen grains are encased by a multilayered, multifunctional wall. The sporopollenin and pollen coat constituents of the outer pollen wall (exine) are contributed by surrounding sporophytic tapetal cells. Because the biosynthesis and development of the exine occurs in the innermost cell layers of the anther, direct observations of this process are difficult. The objective of this study was to investigate the transport and assembly of exine components from tapetal cells to microspores in the intact anthers of Arabidopsis thaliana. Intrinsically fluorescent components of developing tapetum and microspores were imaged in intact, live anthers using two-photon microscopy. Mutants of ABCG26, which encodes an ATP binding cassette transporter required for exine formation, accumulated large fluorescent vacuoles in tapetal cells, with corresponding loss of fluorescence on microspores. These vacuolar inclusions were not observed in tapetal cells of double mutants of abcg26 and genes encoding the proposed sporopollenin polyketide biosynthetic metabolon (ACYL COENZYME A SYNTHETASE5, POLYKETIDE SYNTHASE A [PKSA], PKSB, and TETRAKETIDE α-PYRONE REDUCTASE1), providing a genetic link between transport by ABCG26 and polyketide biosynthesis. Genetic analysis also showed that hydroxycinnamoyl spermidines, known components of the pollen coat, were exported from tapeta prior to programmed cell death in the absence of polyketides, raising the possibility that they are incorporated into the exine prior to pollen coat deposition. We propose a model where ABCG26-exported polyketides traffic from tapetal cells to form the sporopollenin backbone, in coordination with the trafficking of additional constituents, prior to tapetum programmed cell death.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号