共查询到17条相似文献,搜索用时 15 毫秒
1.
2.
DeLaughter DM Saint-Jean L Baldwin HS Barnett JV 《Birth defects research. Part A, Clinical and molecular teratology》2011,91(6):511-525
Specific cell and tissue interactions drive the formation and function of the vertebrate cardiovascular system. Although much attention has been focused on the muscular components of the developing heart, the endocardium plays a key role in the formation of a functioning heart. Endocardial cells exhibit heterogeneity that allows them to participate in events such as the formation of the valves, septation of the outflow tract, and trabeculation. Here we review, the contributions of the endocardium to cardiovascular development and outline useful approaches developed in the chick and mouse that have revealed endocardial cell heterogeneity, the signaling molecules that direct endocardial cell behavior, and how these insights have contributed to our understanding of cardiovascular development and disease. 相似文献
3.
4.
Benedikt Westermann 《Seminars in cell & developmental biology》2010,21(6):542-549
Mitochondrial fusion and fission are important for a great variety of cellular functions, including energy metabolism, development, aging and cell death. Many of the core components mediating mitochondrial dynamics in human cells have been first identified and mechanistically analyzed in model organisms, such as Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster. In particular, the functions of FZO/mitofusin and Mgm1/EAT-3/OPA1 in fusion and Dnm1/DRP1 in fission have been remarkably well conserved in yeasts, worms, flies and mammals. On the other hand, mechanisms to coordinate and regulate the activity of these molecular machines appear to be more diverse in different organisms. Here, I will discuss how S. cerevisiae, C. elegans and Drosophila have contributed to our current understanding of the cellular machineries mediating the dynamic behaviour of mitochondria. 相似文献
5.
Neil A. Youngson Margaret J. Morris 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2013,368(1609)
The pathophysiology of obesity is extremely complex and is associated with extensive gene expression changes in tissues throughout the body. This situation, combined with the fact that all gene expression changes are thought to have associated epigenetic changes, means that the links between obesity and epigenetics will undoubtedly be vast. Much progress in identifying epigenetic changes induced by (or inducing) obesity has already been made, with candidate and genome-wide approaches. These discoveries will aid the clinician through increasing our understanding of the inheritance, development and treatment of obesity. However, they are also of great value for epigenetic researchers, as they have revealed mechanisms of environmental interactions with epigenetics that can produce or perpetuate a disease state. Here, we will review the evidence for four mechanisms through which epigenetics contributes to obesity: as downstream effectors of environmental signals; through abnormal global epigenetic state driving obesogenic expression patterns; through facilitating developmental programming and through transgenerational epigenetic inheritance. 相似文献
6.
Guy Doron Michael Brecht 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2015,370(1677)
In recent years, single-cell stimulation experiments have resulted in substantial progress towards directly linking single-cell activity to movement and sensation. Recent advances in electrical recording and stimulation techniques have enabled control of single neuron spiking in vivo and have contributed to our understanding of neuronal coding schemes in the brain. Here, we review single neuron stimulation effects in different brain structures and how they vary with artificially inserted spike patterns. We briefly compare single neuron stimulation with other brain stimulation techniques. A key advantage of single neuron stimulation is the precise control of the evoked spiking patterns. Systematically varying spike patterns and measuring evoked movements and sensations enables ‘decoding’ of the single-cell spike patterns and provides insights into the readout mechanisms of sensory and motor cortical spikes. 相似文献
7.
Amos LA 《Seminars in cell & developmental biology》2011,22(9):916-926
A wide range of small molecules, including alkaloids, macrolides and peptides, bind to tubulin and disturb microtubule assembly dynamics. Some agents inhibit assembly, others inhibit disassembly. The binding sites of drugs that stabilize microtubules are discussed in relation to the properties of microtubule associated proteins. The activities of assembly inhibitors are discussed in relation to different nucleotide states of tubulin family protein structures. 相似文献
8.
9.
Theresa S.S. Schilhab 《Biology & philosophy》2004,19(1):111-126
Research on mirror self-recognition where animals are observed for mirror-guided self-directed behaviour has predominated the empirical approach to self-awareness in nonhuman primates. The ability to direct behaviour to previously unseen parts of the body such as the inside of the mouth, or grooming the eye by aid of mirrors has been interpreted as recognition of self and evidence of a self-concept. Three decades of research has revealed that contrary to monkeys, most great apes (humans, common chimpanzees, pygmy chimpanzees and orangutans but not the gorilla) have convincingly displayed the capacity to recognize self by mirrors. The putative discontinuity in phylogeny of the ability suggests the existence of a so-called cognitive gap between great apes and the rest of the animal kingdom. However, methodological and theoretical inconsistencies regarding the empirical approach prevail. For instance, the observation of self-directed behaviour might not be as straightforward as it seems. In addition, the interpretation of mirror self-recognition as an index of self-awareness is challenged by alternative explanations, raising doubt about some assumptions behind mirror self-recognition. To evaluate the significance of the test in discussions of the concept of self this paper presents and analyses some major arguments raised on the mirror task. 相似文献
10.
11.
Michael Quante Julian A. Abrams Yoomi Lee Timothy C. Wang 《Cell cycle (Georgetown, Tex.)》2012,11(23):4328-4338
The incidence of esophageal adenocarcinoma (EAC) is rapidly rising in the western world and accounts for 2% of all cancer-related deaths. The precursor lesion for EAC is Barrett esophagus (BE), which is strongly associated with gastresophageal reflux disease. A major limitation to the study of EAC has been the absence of tractable and genetically modifiable preclinical models of BE. A mouse model of BE and EAC that resembles human disease could provide novel insights into the origins and molecular pathogenesis of BE. In addition, validated animal models could help stratify BE patients given the limited predictive power of current standard endoscopic measures and clinical assessment. Here, we review the findings from recently developed mouse models of BE and EAC and their impact on clinical decision making, surveillance programs and therapeutic options. The data, taken together, suggest potential origins of BE from the gastric cardia, a role of bile acid and hypergatrinemia for carcinogenesis, a growing importance for columnar-like epithelium and a critical role for Notch signaling. 相似文献
12.
Drosophila models have been successfully used to identify many genetic components that affect neurodegenerative disorders. Recently, there has been a growing interest in identifying innate and environmental factors that influence the individual outcomes following traumatic brain injury (TBI). This includes both severe TBI and more subtle, mild TBI (mTBI), which is common in people playing contact sports. Autophagy, as a clearance pathway, exerts protective effects in multiple neurological disease models. In a recent publication, we highlighted the development of a novel repetitive mTBI system using Drosophila, which recapitulates several phenotypes associated with trauma in mammalian models. In particular, flies subjected to mTBI exhibit an acute impairment of the macroautophagy/autophagy pathway that is restored 1 wk following traumatic injury exposure. These phenotypes closely resemble temporary autophagy defects observed in a mouse TBI model. Through these studies, we also identified methods to directly assess autophagic responses in the fly nervous system and laid the groundwork for future studies designed to identify genetic, epigenetic and environmental factors that have an impact on TBI outcomes. 相似文献
13.
《Molecular membrane biology》2013,30(3):97-112
This review describes the numerous and innovative methods used to study the structure and function of viral fusion peptides. The systems studied include both intact fusion proteins and synthetic peptides interacting with model membranes. The strategies and methods include dissecting the fusion process into intermediate stages, comparing the effects of sequence mutations, electrophysiological patch clamp methods, hydrophobic photolabelling, video microscopy of the redistribution of both aqueous and lipophilic fluorescent probes between cells, standard optical spectroscopy of peptides in solution (circular dichroism and fluorescence) and attenuated total reflection-Fourier transform infrared spectroscopy of peptides bound to planar bilayers. Although the goal of a detailed picture of the fusion pore has not been achieved for any of the intermediate stages, important properties useful for constraining the development of models are emerging. For example, the presence of x-helical structure in at least part of the fusion peptide is strongly correlated with activity; whereas, β-structure tends to be less prevalent, associated with non-native experimental conditions, and more related to vesicle aggregation than fusion. The specific angle of insertion of the peptides into the membrane plane is also found to be an important characteristic for the fusion process. A shallow penetration, extending only to the central aliphatic core region, is likely responsible for the destabilization of the lipids required for coalescence of the apposing membranes and fusion. The functional role of the fusion peptides (which tend to be either nonpolar or aliphatic) is then to bind to and dehydrate the outer bilayers at a localized site; and thus reduce the energy barrier for the formation of highly curved, lipidic 'stalk’ intermediates. In addition, the importance of the formation of specific, ‘higher-order’ fusion peptide complexes has also been shown. Recent crystallographic structures of core domains of two more fusion proteins (in addition to influenza haemagglutinin) has greatly facilitated the development of prototypic models of the fusion site. This latter effort will undoubtedly benefit from the insights and constraints gained from the studies of fusion peptides. 相似文献
14.
Consolidated bioprocessing (CBP) of cellulosic biomass is a promising source of ethanol. This process uses anaerobic bacteria, their own cellulolytic enzymes and fermentation pathways that convert the products of cellulose hydrolysis to ethanol in a single reactor. However, the engineering and economics of the process remain questionable. The ruminal fermentation is a very highly developed natural cellulose-degrading system. We propose that breakthroughs developed by cattle and other ruminant animals in cellulosic biomass conversion can guide future improvements in engineered CBP systems. These breakthroughs include, among others, an elegant and effective physical pretreatment; operation at high solids loading under non-aseptic conditions; minimal nutrient requirements beyond the plant biomass itself; efficient fermentation of nearly all plant components; efficient recovery of primary fermentation end-products; and production of useful co-products. Ruminal fermentation does not produce significant amounts of ethanol, but it produces volatile fatty acids and methane at a rapid rate. Because these alternative products have a high energy content, efforts should be made to recover these products and convert them to other organic compounds, particularly transportation fuels. 相似文献
15.
The primary cilium has emerged as a hotbed of sensory and developmental signaling, serving as a privileged domain to concentrate the functions of a wide number of channels, receptors and downstream signal transducers. This realization has provided important insight into the pathophysiological mechanisms underlying the ciliopathies, an ever expanding spectrum of multi-symptomatic disorders affecting the development and maintenance of multiple tissues and organs. One emerging research focus is the subcompartmentalised nature of the organelle, consisting of discrete structural and functional subdomains such as the periciliary membrane/basal body compartment, the transition zone, the Inv compartment and the distal segment/ciliary tip region. Numerous ciliopathy, transport-related and signaling molecules localize at these compartments, indicating specific roles at these subciliary sites. Here, by focusing predominantly on research from the genetically tractable nematode C. elegans, we review ciliary subcompartments in terms of their structure, function, composition, biogenesis and relationship to human disease. 相似文献
16.
17.
By the use of appropriate light intensities the expression of the transient nature of the receptor potential observed in the trp mutant of Drosophila melanogaster can be confined to the peripheral retinula cells in which the visual pigment can also be manipulated predictably, affording an experimental means to probe in these receptors the relationship of the visual pigment to the “electrogenic membrane”. Repeated blue light exposures cause w;trp flies to respond in a manner like cn;bw flies in which the dark-adapted rhodopsin fraction is reduced to 0.5% of the normal level by vitamin A deprivation: this comparable response behaviour, since the amount of visual pigment in w;trp flies is normal, implies that only some subfraction of the photoequilibrium value of rhodopsin may be available. Recovery of the peripheral receptors' sensitivity in ambient light conditions which would render them insensitive by expression of the phenotype is paradoxical and allows a “wavelength effectivity” curve to be constructed which identifies the involvement of the rhodopsin. Resolution of the paradox is discussed. 相似文献